“VLSI circuit design - Study on high speed multi-bit adder architectures”

In the Very Large Scale Integration (VLSI), high-performance digital signal processing (DSP) systems
require both efficient methods for processing data as well as for building architectures that support
faster operation, and low power dissipation to enable data to be processed in real-time [1]. As the
demand for higher performance processors grows, there is a continuing need to improve the
performance of arithmetic units and to increase their functionality. Furthermore, the selection of the
initial topology expected to yield a desired performance in the allotted power budget is the most
important step taken.

In VLSI design process, addition is the pivotal operation. More specifically addition is the most
commonly used arithmetic operation and also the speed-limiting element to make faster VLSI
processors. The design of high-speed, low-power and area efficient binary adders always receives a
great deal of attention. Hence, developing efficient adder architecture (from the standpoint of timing,
area, and power) is crucial to improving the efficiency of the design.

Adder architectures:

The arrangement of the prefix network gives rise to various families of adders. There exist various
architectures for the carry calculation part [2]. Tradeoffs in these architecture involves

* Area of the Adder

* Its depth

* The fan out of the nodes

* The overall wiring network.

Parallel Prefix Adders are the most important elements used in arithmetic operations of many
processors. Their regular structure and fast performance makes them particularly attractive for VLSI
implementation. Over the years several classical topologies for parallel prefix adder have been
proposed, since the structure of the prefix network determines the type of the prefix adder. The
classical parallel prefix adder structures that have been introduced optimize the logic depth size area,
fanout and interconnect count of the logic circuits. The main difference between the full adder and
parallel prefix adder is that in the full adder, summation and carry calculation is done in the same,
one bit block but in the prefix adder, summation and carry calculation are separated from the bit
block and all calculation is treated as a whole in the carry graph. The carry graph uses the prefix
circuit and this is the origin of the name, “Prefix Adder”. Parallel Prefix Adders have been established
as the most efficient technique for speeding up binary addition as it includes the implementation of
logic functions which determine whether groups of bits will generate or propagate a carry.

A Parallel Prefix Addition is generally a three step process [3] [4]: The first stage of the computation is
called as pre-processing, involves the creation of generate and propagate signals for the input operand
bits. The second stage in the prefix addition is termed as prefix computation and involves the

mailto:ioulia.tzouvadaki@epfl.ch
ergunay
Rectangle

generation of carry signals. Namely, this stage is responsible for creation of group generate and groups
propagate signals. The final stage in the prefix addition is termed as post-processing and involves the

generation of sum bits with the propagate signals of the operand bits and the preceding stage carry
bit.

Addends

v

Computation of Generate and Propagate

Signals

'

Calculation of Carries in Parallel

!

Generating of Sum Signals

V

Final Sum

Fig. 1 Three basic step process generally involved in the construction of Parallel Prefix Adders.

The first stage and last stage are intrinsically fast because they involve only simple operations on
signals local to each bit position. The intermediate stage embodies long distance propagation of
carries, so the performance of the adder depends on the intermediate stage. This is the reason that
prefix adders are distinguished by the structure of their intermediate stages.

In a prefix adder this part is constructed of nodes which perform the prefix operation “’. In logical
terms, the prefix operator consists of an AND gate and an AND-OR gate. The carry into any bit
position can be computed as a chain of prefix operations. A parallel prefix adder computes multiple
sub-terms in parallel by exploiting the associativity property.

It is worth mentioning that Parallel Prefix Adders are variations of the Carry Lookahead adder (CLA)
[2]. The difference between a Carry Lookahead adder and a Parallel Prefix Adder is found in the
second stage of the “Addition three step process”, which is responsible for the generation of the carry
signals of the binary addition. A carry-lookahead adder system estimates whether a carry will be
generated before it actually computes the sum. There are multiple schemes of doing this, so this is the
reason why there is no just "one" circuit that constitutes a look-ahead adder. Carry Look Ahead
adders are considered fast, but they required more area comparing to other adder architectures.

As Bs Az B2 A1 Bl Ao Bo

I I e o i

1-bit 1-bit 1-bit 1-bit @
Full Full Full Full
Adder Adder Adder Adder
Ss3 S2 Si So
Yyv Yy Y Yy Y Yy Y

P38 Cs Pz 82 (2 Pl 8 C po go
Cs 4-bit Carry Look Ahead PG GG

!

Fig. 2 Carry Lookahead adder (CLA)

Among the plethora of adder architectures known in the literature, when high performances are
mandatory, parallel-prefix trees are generally preferable. Optimizing a parallel-prefix tree architecture
and its transistor-level implementation for a specific design is not trivial since the designer has to
choose the radix-of the carry tree, namely the number of carries grouped in each step of the
computation, the tree architecture and the logic style. All these choices are crucial for both speed and
power. In fact, higher radices determine a lower number of stages needed in the tree to compute the
output carry signals, but they require more complex gates.

For example at a given radix r, dense architectures, such as the Kogge-Stone tree, reach the minimum
logic depth, but they require a large number of gates and consume a large amount of power. On the
contrary, other sparse trees, do not assure obtaining the minimum logic depth, but they save
hardware resources and power [5].

The Kogge-Stone adder is a parallel prefix form Carry Lookahead adder and is widely considered one
of the fastest adder designs possible. It is the common design for high-performance adders in
industry.

A=1001 B=1100 Sum=10101

A3 B3 A2B2 A1B1 A0 BO
11 0 1 00 10

3 mgwfo

)y @ @

C3=1 C2=0 C1=0 C0=0 Cin=0
Legend: PiGl Pip, Gire PiGi

AiBi ‘ /
P=Aixor Bi P=Pi and Piereu P=Pi
G=Aiand Bi G=(Pi and Gir«) or Gi G=Gi
Ci=Gi
Si = Pixor Ci1

Fig. 3 A 4-bit Kogge-Stone adder architecture. Each vertical stage produces a "propagate" and a "generate"
bit. The culminating generate bits, namely the carries are produced in the last stage, and these bits are go
through “XOR process” with the initial propagate after the input to produce the sum bits.

The Kogge-Stone tree reaches the minimum logic depth using a very regular structure with uniform
fanout, but has a drawback in that it is very dense, thus requiring a large number of gates and wires.

The Kogge-Stone scheme uses the property of limiting the lateral logical fanout at each node to unity,
but at the cost of a dramatic increase in the number of lateral wires at each level. This is because there
is massive overlap between the prefix sub-terms being pre-computed [6]. On the contrary, sparse
trees, like the Brent-Kung, do not assure obtaining the minimum logic depth, but they save hardware
resources and power, and, in any case, allow high-speed performances to be reached.

Circuit design style - Dynamic logic styles:

The combinational logic is implemented with dynamic circuits that can offer the desirable high speed
operation. The selection of the initial topology that will allow the acquisition of the desired
performance in the acceptable power budget is the most important step taken. In this way, high
quality designs can be achieved, in terms of performance, energy consumption and area, with respect
to alternative dynamic design styles.

Logic style significantly affects delay and energy. For example, it is proven in the literature [5] [7] that
parallel-prefix trees realized using dynamic domino logic achieve higher speed performances at the
expense of consumed energy; whereas, using static logics lowers power consumption, but sacrifices
computational speed.

Static CMOS circuits achieve low-power consumption and high robustness and are preferable when
the performance target is relaxed, and limiting the energy consumption is the main objective.
Conversely, in high-performance designs, dynamic circuits are typically required. Dynamic circuit
design techniques can provide high speed operation at lower silicon area requirements, compared to
full static CMOS designs. Due to these features dynamic circuits are widely used to speed up critical
units in high performance CMOS microprocessors.

According to the typical dynamic design style, the gate output is periodically precharged to high
through a single pMOS control transistor (precharge transistor). This phase in the circuit operation is
called precharge phase. Then, in between the precharge phases, an n-network is exploited to calculate
the gate response according to the input data. In case that a logic low value is required at the output
an active path in the n-network discharges the output while in case that logic high value is required
no path is formed in the n-network to discharge the output which simply remains charged to VDD.
This phase in the circuit operation is called evaluation phase. An additional nMOS control transistor
(evaluation transistor) isolates the n-network from the ground and ensures that no discharge path is
formed through the n-network during the precharge phase. During the evaluation phase the pMOS
precharge transistor is inactive and no low to high transitions can take place at the output. This
implies that during the evaluation phase if an input combination discharges the output, the latter will
remain discharged regardless of the input combinations that may follow within the same evaluation
phase. Consequently, it must be ensured that only a single and valid input combination is applied
during each evaluation phase.

Dynamic logic uses a clock signal in its implementation of combinational logic circuits. The clock
signal is used to drive the control transistors -synchronize transistors in sequential logic circuits-
forming the two circuit operating phases. Therefore, dynamic logic circuit requires two phases where
the output is driven high or low during distinct parts of the clock cycle. The first phase, when Clock is
low, is the setup phase or the precharge phase and the second phase, when Clock is high, is the
evaluation phase. Dynamic logic requires a minimum clock rate fast enough that the output state of
each dynamic gate is used or refreshed before the charge in the output capacitance leaks out enough
to cause the digital state of the output to change, during the part of the clock cycle that the output is
not being actively driven.

Advantages of Dynamic Logic design:

< When properly designed, can be over twice as fast as static logic.

< It uses only the faster N transistors, which improve transistor sizing optimizations.

< Faster than static logic because static logic has twice the capacitive loading, higher thresholds,
and uses slow P transistors.

< Avoiding pFETs where possible is one of the main goals of Dynamic Logic, due to speed.

< It may be the only choice when increased processing speed is needed.

Disadvantages of Dynamic Logic design:

If the clock speed is too slow, the output will decay too quickly to be of use.

Also, the output is only valid for part of each clock cycle, so the device connected to it must
sample it synchronously during the time that it is valid.

< In general, dynamic logic greatly increases the number of transistors that are switching at any
given time, which increases power consumption over static CMOS.

0,
o
0,
o

The most frequently used dynamic design logic styles are Domino logic and Multiple-output domino
logic (MODL), which is a CMOS-based evolution of the dynamic logic techniques based on either
PMOS or NMOS transistors. Multiple-output domino logic (MODL) is a dynamic CMOS logic in
which complex gates can have multiple outputs for producing multiple functions. Domino logic
allows a rail-to-rail logic swing. It was developed to speed up circuits by inserting an ordinary static
inverter between stages in order to cascade dynamic logic gates. In Domino logic cascade structure of
several stages, the evaluation of each stage ripples the next stage evaluation, similar to a domino
falling one after the other. Once fallen, the node states cannot return to "1" (until the next clock cycle)
just as dominos, once fallen, cannot stand up, justifying the name Domino CMOS Logic. It contrasts
with other solutions to the cascade problem in which cascading is interrupted by clocks or other
means.

Performance and power consumption issues:

Low power consumption and high performance integrated circuits have been the main targets of the
recent research on VLSI design. However, these two design criteria are often in conflict and it is
observed that improving one particular aspect of the design may constrain the other. Concerns about
energy consumption have forced digital designers to develop techniques for improving energy
efficiency.

While the delay difference between different circuit families is apparent, the delay difference between
topologies using the same circuit family is relatively small making it difficult to know which design
can stretch further in the energy-delay space. The concept of comparing VLSI adders mainly based on
their energy-delay characteristics stems from a need to make appropriate selection at the beginning of
the design process. High-speed adders architectures based on the Carry Lookahead (CLA) principle
remain dominant, since the carry delay can be improved by calculating each stage in parallel.

Energy is also important because if too much power is used to achieve a target delay, hot spots can be
created Several approaches have been proposed to improve energy efficiency like the proper selection
of circuit family and prefix; reducing the number of logic stages without increasing gate count;
reducing switching activity; reducing the number of logic gates; and reducing the wiring complexity.
This section presents the approaches for the optimal construction of high-performance VLSI adders in
a given technology [8].

Considering that two adders A and B are compared against each other based on delay only. However,
such a comparison provides an incomplete and potentially misleading picture. If we consider that
energy can be traded for delay it is clear that further analysis is needed [9].

A
@ Region1 = Region 2
5 -—
5 Adder A
\ A . As the curves show, adder B has more room for
L] I Point where B R .
becomes better than A delay improvement and can achieve lower energy
B has in the high-performance region (Regioni).
less
energy B On the other hand, if lower computational energy
- { O Adder B is the design objective, adder A is the better
Wihbetter0 | | 0 0N TTteeeee.. choice as it can a.chieve l(?wer energy in the low-
tradeoff B can performance region (Region 2).
achieve more Alis
speed for less faster
power than A
y

Speed of A Speed of B Delay

Fig.4 Hypothetical energy-delay dependencies of two designs, A and B, optimized under the same constraints.

Recently, the main research concern in VLSI design, focus mainly in improving the already existing
conventional structures in order to gain in terms of performance and power consumption. Efficient
methods for obtaining higher performance combined with the lowest possible power consumption
may be achieved by many different manners:

One could be a new clever design inspired by the conventional topologies and based on the
combination and compositions of already existing structures introducing this way a new more
efficient topology.

It is also possible to acquire the desirable results in terms of power consumption and performance by
ameliorating the function of an existing topology by changing the placement of some elements in the
topology or/and by improving the standard processes of the specific structure by introducing extra
operations.

In their work Costas Efstathiou and his co-workers [10], are analyzing an implementation of an 8-bit
Manchester carry chain (MCC) adder in multi-output domino CMOS dynamic logic style.

The Manchester carry chain adders can efficiently be designed in CMOS logic and are considered to
be the most efficient and widely accepted design approach to construct dynamic (domino) carry-
lookahead adder (CLA) architecture with a regular, fast, and simple structure adequate for
implementation in VLSI. The recursive properties of the carries in Manchester carry chain adder have
enabled the development of multi-output domino gates which have shown area-speed improvements
with respect to single-output gates. The Manchester carry chain generates all the carries in parallel,
using an iterative shared transistor structure. In practice, the carry-lookahead adder length is limited
to four in order to cut down the number of series-connected transistors.

The novel approach of this work indicates a high-speed double carry chain adder and more
specifically an 8-bit adder module which is composed of two independent carry chains with length
limited to 4 bits. These chains have the same length (measured as the maximum number of series-
connected transistors) as the 4-bit Manchester carry chain adders. Consequently, the carries of the
case in study are computed by the two independent 4-bit carry chains. More specifically the even and
odd carries of this adder are computed separately by the two independent 4-bit carry chains. Thus,
one chain computes the even carries, while the other chain computes the odd carries. The groups of
even and odd new carries are computed in parallel by the two different carry chains in multi-output

domino CMOS logic. This separation allows the implementation of the carries by the two
independent 4-bit carry chains.

Pos 901 Paz 947 Prt-ant Gn1an
% % % % A r %n pﬂ'? G[]'T Pﬁ"ﬁ GR"S pn-W-ﬁ'm Gr-1-n'n-1
r
G G O Gna—t On C.i % % C; 4: % Cis Chig Ch-1
7| 4-DitCONVMCC ™¥4-DitCONV MCC ™~ 4-bitCONV MCC ™ 86t PROP MCC [~ 8-4itPROP MCC [— » B-0it PROP MGG [—*
Cos Caz Crt-gnet hyz hg.1s Bt
Conventional 4-bit MCC adder module Novel 8-bit MCC adder module

Fig. 5 Comparison between conventional and proposed MCC adder module

Implementation of wider adders based on the use of the proposed 8-bit adder was performed. The
novel design wider adders were compared to their corresponding adders based on the standard 4-bit
Manchester carry chain adder module. Therefore, the proposed novel design technique has been
applied for 8-bit, 16-bit, 32-bit and 64-bit adders in multi-output domino logic. In order to evaluate
the speed performance of the novel and the conventional design 8-bit, 16-bit , 32-bit and 64-bit adders
have been designed according to this carry chain principle and simulated using SPECTRE in a
standard go-nm CMOS technology (with VDD =1V).

The conventional 8-bit, 16-bit, 32-bit and 64-bit Manchester carry chain adders are designed by
cascading two, four, eight, and sixteen 4-bit MCC adder modules, respectively and the novel
Manchester carry chain adders of 16-bit, 32-bit and 64-bit are designed by cascading two, four, and
eight of the proposed 8-bit Manchester carry chain adder modules, respectively.

Considering that a=a,a,, - - -a,8, andb=b_,b_, - - - b,b, represent the two binary numbers to
be added and their sum is given by the equation: S=5S_S,, - - - S;S, the following equation describes
the computation of the carry signals in binary addition: ¢; = ¢, + Z; - C,; By the expanded form of the
previously mentioned equation the calculation for each carry bit C; can be expressed as follows:

Ci =0, v+20, *Z,Z,Q;, * - - -+ZZ, - - - 2,9, YZ;Z;, - - - Z,C,.

The terms @; =@, - b, symbolize the carry generate term while 2z, represents the carry propagate

term. The term C, is the input carry. The sum bits of the adder are defined as 5; =p; ©¢;; and since
Manchester carry chain adders are EXCLUSIVE OR adders the carry propagate signal is defined as
Zi =P =g ® bi

CLK CLK
X, SO e
a; a. b. I >i
— - '
b
]_{
CLK CLK_{

— XOR propagate signals

CLK | — |

OR propagate signals

Fig. 6 Implementation of the generate and the two types of propagate signals in domino CMOS logic.

Table.1 Computation of Even and Odd Carry and estimation of new carry.

Even Carry Computation and new carry h, estimation.

fori=0 ->h, =g, +c,
fori=2 —h, =g, +gl+p,p,t,(g, +C,)

fori=4 —h, =g, +9; +p,pst, (9, +9; +P,P.Le(9, +C.))
fori=6 —hg =g, + 0, + pgpst,

x (9, 95 +Pp,Pst, (9, + 9, +p,p,t, (9, +Cy)))

Conventional domino 4-bit MMC

0dd Carry Computation and new carry h, estimation.

fori=1 —h, =g, +9, + P,P,C.,
fori=3 —h; =g, +9, +psp,t,(9, + gy +P,PC,)
fori=5 —h, =g.+9,+p.p,t;(9; + 9, + pPsPp,t; (9, + 9y +P,P,C))

fori=7 —h, =g, + g +p;Pet, x(9s + 9, +Psp,ts) - =N E

X(gs 0, * p3p2tl(gl t0 t plpOC—l))) .
0dd carry chain

Table. 2 Estimation of the new generate and propagate signals G, =g, +g,, and Pi=p, -p,, - t.,

Equations for the new carries:

for even values of i:
h2 :GZ + PZGO
h, =G, +P,G, + P,R,G,

h6 :GG + PGG4 + P6P4GZ + P6P4PZGO

for odd values of i:

hl :Gl + PlC—l

h3 :GB + P3Gl + P3P1C-l

h5 :GS + PSGS + PSPSGl + PSPSPIC-I

h7 :G7 + P7Gs + I:)7|35G3 + P7P5P361 + P7P5P3P1C-1

o I
=i | &=i-1

Generate signals

r_gqj':l
l |-H-“;q_
L~

CLK ‘_’|
Pi

P ::l
tia #

Propagate signals

Fig. 7 Domino CMOS implementation for the new signals

The new and the conventional carries are linked by the following relation: ¢, , = t. , -h, , therefore
the sum can be calculated through the equation: s, =p, @ (t,, -h,,). According to the literature this

equation can be expressed 5, = h., - p, +h.,-(p, ® t,,) For the implementation of the sum signals,

the domino chain is terminated, and static CMOS technology is used. In order to calculate the sum a
2> 1 multiplexer is introduce since it can selects either p;or p; @ t;, according to the value of h; ;.

P
—ll'll'r"h-\ P1:_Dti-|
| |HoR ———
oy ———7/ .~

Sum bit implementation.

Static CMOS implementation of the 2—1 multiplexer.

Fig. 8 Implementation of a 2—1 multiplexer for the sum calculation

It is worth mentioning that no extra delay is introduced by the use of the proposed carries for the
computation of the sum bits. This is because of the fact that XOR gate introduces equal delay with a
2 — 1 multiplexer and both terms p;and p; @ t;_, are computed faster than h; The speed performance

is significantly improved with respect to that of the standard Manchester carry chain adders’ topology.
The simulation results, for the carry propagation delays, depict that the novel design introduced in
the work of Efstathiou and his co-workers, provides a performance improvement of 4.73% over the
conventional design for the 8-bit adder architecture. Similarly the performance improvements of the
novel design over the conventional design for the 16-bit adder, the 32-bit adder and the 64-bit adder
are also significant indicating values of 23.08%, 30.05% and 35.08% respectively. However, in all cases
previously mentioned, the average energy consumption for a computation is increased by 43.4% for
the novel design with respect to the conventional design. In addition the area overhead is 49.9%, due
to the extra gates that are required for the implementation of the t; and the new generate (G;) and
propagate (P;) signals. Thus, it can be concluded that the novel technique can be ideally used in the
design of arithmetic circuits where high performance is required at the expense of power
consumption.

In their work Zaher Owda and his collaborators [1] introduced a three phase dynamic circuit design
style that provides the ability to implement pipelines without the use of memory elements. The
proposed scheme is demonstrated on a Kogge-Stone adder design. The pipeline operation and the
memory elements elimination provide very high speed dynamic circuit realizations. Furthermore a
pre-evaluation phase hidden inside the pre-charge phase of each gate is introduced. This fact provides
significant speed improvements at reduced power consumption. Usually, two clock signals (Clkn and
Clkp) of equal period are used to drive each one of the two control transistors and provide the three
operating phases, precharge, evaluate and memory of equal time duration (called phase time). Each
gate level, that is a pipeline stage, is passing continuously through the three phases in that order.
Thus, for the case under study the data scheduling is realized with the appropriate clock signals which
are required at each level. Namely, three clock signals (Clkin, Clkan and Clk3n) and their
complements (Clkip complement of Clk3n, Clk2p complement of Clkin and Clk3p complement of
Clk2n) the two clock signals used at level L=i+1 are the clock signals used at level L=i delayed by one
third of the clock period (or equivalently a phase time).

precherge evalule memory 5 precharge evahiate | memory

Clk, [\ [\
Ctk" \ / hase time 1|||_.||r

Fig. 9 Clock signals commonly used in literature.

[

T J
— e
Clk2p \, ;

\/
[\

Clk3p \
Clock signal for nMOS Clock signal for pMOS
Level evaluation transistor precharge transistor
Lmod3 =1 Clkl, Clkl,
Lmod3=2 Clk2. Clk2,
Lmod3=0 Clk3. Clk3,

Fig. 10 The three phases clocking implemented in the novel design

Furthermore, in this work instead of placing this transistor between the n-network and the ground,
the transistor is placed between the n-network and the output.

In the precharge phase the pMOS precharge transistor of the gate is activated and the output is
precharged to high. The nMOS evaluation transistor is inactive and ensures that there is not any
discharging path though the nMOS network. The output precharge operation does not depend on the
input values of the n-network and can be completed regardless of these values.

The evaluation phase is analogous to the evaluation phase in a dynamic design. The pMOS precharge
transistor is inactive and the nMOS evaluation transistor is active. The input values of the n-network
during this phase, actually determine the response value of the gate at the end of this phase.
According to the proposed design style, a high value at the output of the gate at the beginning of the
evaluation phase is required, while valid and stable values are assumed at the inputs of the n-network
during the whole phase time. During the evaluation phase, the inputs of the gate are stable since they
are outputs of a level in the memory phase. during the precharge and evaluation phases of a level
(where its output may change) the following level in the pipeline is at the memory and precharge
phases respectively where there is not any constraint on the inputs’ status (to be stable or not).Finally
in the memory phase both pMOS and nMOS control transistors are inactive and the output will retain
the state (logic low or high). The memory phase is after the evaluation phase and ensures that for a
phase time the input values calculated during the evaluation phase will remain stable. This phase does
not normally exist in typical dynamic gates. During the memory phase the input values of the n-
network must not affect the output of the gate.

Voo Voo
Clklp Clk2p Clk3p .
E Oty E Ot

Ot Clkln I:‘7 Clk2n I:]‘ Clk3n

Frrom gaes with Froom gaes with From getes with

||||:.|,|_|\ .. _I:’>.rr-m.-|"-\urk I:> F-Hewark I:> H-tietwork | |
|_h" epp——— L=i2 L=il L-i
y.-"

1 1 1
T . .)

Pipeline construction along with the selection of the

The proposed dynamic gate topology appropriate clock signals for each gate, according to its level in

the design.

Fig. 1 Dynamic gate topologies

According to the proposed design technique, in case that we need to connect the output of a gate at
level L=i as input to a gate at level L=i+k we have to add k levels in-between.

In case that k is even, the solution is to use a dynamic NOT gate for each one of the k intermediate
levels. Since the number of the added NOT gates is even we do not alter the functionality of the
circuit. In case that k is odd, the solution is to use a dynamic NOT gate for each one of the k-1
intermediate levels plus a dynamic buffer (dynamic NOT gate followed by a static NOT gate). Once
again, since the number of the added NOT gates is even we do not alter the functionality of the
circuit.

In a standard 18onm CMOS technology (VDD=1.8V), 16-bit Kogge-Stone adders have been designed,
using for the implementation of their carry lookahead unit the dynamic design techniques shown in
the following table. At the Kogge-Stone adders each gate level is fed by the same pair of clock signals.

Table. 3 Proposed dynamic gates for the CLA unit design.
1st level NOR and NAND
2nd and 4th levels NOR and OR-NAND
3rd and 5th levels NAND and AND-NOR

Level Operation
1st G,=A-BandP,=A+B
3nd andsth | G =G, + (P, -G,)and P, =P, - P,

Fig. 12 The 16-bit Kogge-Stone adder architecture. Each line inside, except the primary inputs carries a pair of
generate/propagate signals (Gj, Pj).The square symbol at the first level represents the calculation of the
generation/propagation signals by the primary inputs. Moreover, each circle at the rest levels represents a “dot”
operation between two pairs of generate/propagate signals (Gj, Pj)-(Gs, Ps).

A major improvement of the new topology with respect to is the ability to exploit the precharge phase
of a gate as a pre-evaluation phase. That part of the evaluation operation in each level is hidden inside
its precharge phase, increasing circuit performance, as it is analyzed next. However, its main
advantage is the ability to implement pipelines without the need of memory elements. A disadvantage
of the proposed approach is the need of additional clock signals. However the generation of these
signals is a one-time cost that does not increase with circuit complexity.

The worst case gate propagation delay time in the evaluation phase of the proposed dynamic design is
44.80ops, and comparing to other conventional designs mentioned in Litterature the gate propagation
delay was reduced. In addition it was noticed an improvement of the proposed design style over
previous conventional designs in terms of clock frequency and a reduction of the dynamic energy
consumption. Last but not least, the silicon area, estimated by the sum of the transistor widths was
also reduced.

According to the results obtained from the novel techniques’ testing high quality designs can be
achieved, in terms of performance, energy consumption and area, with respect to alternative dynamic
design styles existing in literature for conventional structures. More specifically for both cases of

novel designs the speed performance was improved while the propagation delay time was significantly

reduced.

Concerning the average energy consumption for a computation it was depicted that for the first case
which combines and composes a new topology consisting of already existing structures, energy
consumption is increased as well as the area overhead due to the extra gates that are required for the
implementation. These facts make the novel technique ideal for applications of design of arithmetic
circuits where high performance is required at the expense of power consumption. On the contrary
the second novel technique presented, showed improvements also in terms of energy consumption
and design area.

References:

Cheng, K-H; S-W, Cheng “Improved 32-bit Conditional Sum Adder for Low-Power High-
Speed Applications” J. Inf. Sci. Eng. 2006, 22, 975-989.

Annapurna P. Bai, Vijaya M. Laxmi “Design of 128- bit Kogge-Stone Low Power Parallel Prefix
VLSI Adder for High Speed Arithmetic Circuits” International Journal of Engineering and
Advanced Technology (IJEAT) 2013, Volume-2, Issue-6

Konstantinos Vitoroulis Asim J. Al-Khalili “Performance of Parallel Prefix Adders
implemented with FPGA technology” Circuits and Systems, 2007.

K.Nehru A.Shanmugam S.Vadivel “Design of 64-Bit Low Power Parallel Prefix VLSI

Adder for High Speed Arithmetic Circuits” Computing, International Conference on
Communication and Applications (ICCCA), 2012

Perri S, Lanuzza M, Corsonello P., “Design of high-speed low-power parallel-prefix adder trees
in nanometer technologies” Int. J. Circ. Theor. Appl. (2012)

Knowles S. “A Family of Adders” 15th IEEE Symposium on Computer Arithmetic Proceedings,
2001.

Perri S, Corsonello P. “Efficient Implementations of Radix-4 Parallel-Prefix Trees” CENICS
The Fourth International Conference on Advances in Circuits, Electronics and Micro-
electronics 2011.

Zeydel B, Baran D, Oklobdzija,V, “Energy-Efficient Design Methodologies: High-Performance
VLSI Adders” journal of solid-state circuits, 45, 6, E 2010.

Oklobdzija V, Zeydel B, Dao H, Mathew S, Krishnamurthy R. “Comparison of High-
Performance VLSI Adders in the Energy-Delay Space” Transactions on very large scale
integration (VLSI) systems, 13, 6, 2005

Efstathiou C, Owda Z, Tsiatouhas Y, “New High-Speed Multioutput Carry Look-Ahead
Adders” Transactions on circuits and systems—II: express briefs, 60, 10, 2013

Owda Z, Tsiatouhas Y, Haniotakis T. “High Performance and Low Power Dynamic Circuit
Design” o1/2011; DOI:10.1109/NEWCAS.2011.5981329

