ISCAS 2000 - IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

Higher Radix Kogge-Stone Parallel Prefix Adder Architectures

F rankK. Gurkaynaki, Yusuf Leblebicif, Laurent Chaouat* and P atrik J. McGuinness?

t Ele ctrical and Computer Enginering Department Worcester Polytechnic Institute Worcester, MA 01609
t SoCDT Advanc é Tools, Motorola, Inc. A ustin, TX 78730

Abstract

In this paper, we describe the design of radix-3 and radix-
4 parallel prefix adders, that theoretically ha velogical
depths of logsn and logyn respectively, where n is the bit-
width of the input signals. The main building bloc ksof
the higher radix parallel prefix adders are identified and
higher radix structures of K ogge-StoneA ddersare pre-
sented. We show that with the higher radix architectures
the logic depth can be reduced by 50% and the cell count
can be reduced as much as 47% for 64-bit adders. Simula-
tion results indicate that radix-4 adders can be more than
30% faster than radix-2 realizations.

1 Introduction

The addition of tw obinary numbers is one of the most
important arithmetic function in modern digital VLSI sys-
tems, taking a major partthé design effort of modern
digital signal processors and general purpose microproces-
sors. The maximum operating speed of these processors
depend largely on ho wfast the main computation bloc k
can process data. For a large mmber of applications, the
speed critical computation block includes adders: either
as stand-alone blocks or integrated irto multiplier archi-
tectures. As a result, specialized speed optimized adder
arc hitectures are required for high performance systems.

The design of faster, smaller and more efficient adder
arc hitectures has been the focus of many researc h efforts
and has resulted in a large number of adder architec-
tures. Some architectures like Carry-Skip A dder, Con-
ditional Sum A dderand Carry Select A dder[] rely on a
basic ripple carry adder structure that has been modi-
fied to shorten carry propagation path. The parallel pre-
fix adders|2] are a more general form where a netw ork is
used to pre-calculate the carry signals. Some well known
parallel prefix adder architectures using different carry-
lookahead netw orks are: The Sklansky Binary Tree Adder
0-7803-5482-6/99/$10.00 ©2000 IEEE

[3], the Brent Kung Adder [4], and the Kogge-Stone Adder
[5]. Although most of the above mentioned algorithms are
formulated for an yradii, practical implementations ha ve
generally been limited to radix-2 implementations.

In this paper, w ediscuss the theory ,and feasibilit yof
implementation of the radix-4 and radix-3 implementa-
tions of the K ogge-Stone Alder. An introduction to the
parallel prefix problem is given in Section-2 of this paper.
Section-3 defines standard building blocks, and introduces
tw onew blocks, for building higher radix parallel prefix
adders. The higher radix realizations of Kogge-Stone par-
allel prefix architecture is examined in detail in Section-4.
Finally, Section-5 includes a summary of our results.

2 Parallel Prefix Problem

Most of the known adder architectures can be represented
as a parallel prefix adder structure consisting of three main
parts : Pre-processing, carry lookahead network and post-
processing. ’

Assuming tw o binarjnput vectors A and B, the pre-
processing part extracts tw o special signals propagate p)
and generate (g) using simple logic circuits. The calcu-
lation of the Sum is assigned to the post-processing step,
which is like the pre-processing step a constant time opera-
tion. This leaves only the carry propagation (carry looka-
head) problem, which is a recursiv efunction, to be ad-
dressed. The carry propagation problem can be expressed
in terms of a prefix problem where for a set of binary inputs
(z; : i =0,1,2,...,n) the outputs (y; : ¢ = 0,1,2,..,n)
are defined by the help of an associative binary operator
® as:

Yo = o (1)
Yi = Ti®Yi-1
Yi = X;8T;—1 @ -0 T

Since the e operator is associative, it can be grouped in
any order and computed in a number of levels. To express

V-609

the sub-products let us introduce the notation Yi’fj, where
k is the level of the sub-product and 7 : j represent a
continuous range that this sub-product covers. Forthe
carry propagation problem let us define the sub-product

couple (G, P) such that:

(G, P):c] = (va)f;-il-l b (G’P)f;;l
Where the desired
Ca'rryi = Gi:O (3)

regardless of the number of levels necessary to cover
the range ¢ : 0. Depending on the algorithm the carry
propagation net work will ha vea different structure and
shape. In general the following observations can be made:

e The maximum levels required to calculate the final
Carry signal is referred as the depth of the prefix
graph, and equals to the number of logic levels in the
netw ork.The depth of the carry propagate netw ork is
a function of the bit-width of the input. This number
relates roughly to the delay of the network.

e The total number of binary associative operations
within the netw ork determine the actie area required
to compute the result.

o Secondary effects like the number of times a sub-range
is used in subsequent operations (fan-out) and the dis-
tance betw een operators of an operation (connection
length) also contribute to the overall performance of
the system. h

3 Higher Radix Parallel Prefix

Adder Architectures

The delay of a parallel prefix adder is directly proportional
to the number of levels in the carry propagation netw ork
stage. The majority of contemporary adder architectures
rely on carry propagation netw orkscomposed of bloc ks
that have only tw o inputs. The low er bound of the mmber
of stages required for such netw orks lie atlogon where n is
the bit-width of the input vectors. This lower bound can
be low ered ly using more complex blocks that process 3 or
even 4 inputs toobtain low er bounds oflogsn and logsn
respectively. A dders designed using these complex bloks
can theoretically achiev e higherprocessing speeds at the
cost of additional area.

PP3

Figure 1: Transistor level schematics for the generate block
of the parallel prefix cells with 3 and 4 inputs.

3.1 Building Blocks for Radix-4 Parallel
Prefix Adders

The pre-processing and post-processing stages of a typical
parallel prefix adders consist of .simple logic gates. The
pre-processing stage can be realized by a simple half adder,
or an AND gate and an OR gate. The post-processing
stage is merely an XOR gate. The simple, 2-input, prefix
function can be mapped to standard logic operations as
follo ws: ‘

(G,P)sy = (G,P)Ete(G P! (4)
Gk Gt + P GE
Pr, = pPF1 ‘Pbk—I

This function pair can be realized using an AND-OR
gate and a separate AND gate sharing common inputs.
We call this basic cell PP2 (parallel prefix-2) and define
tw o additional cells PP3 and PP4 whid realize the parallel
prefix function for three and four inputs respectively. The
PP3 and PP4 cells realize the following logic functions for
the generate output. (The propagate structure is a 3 or 4
input AND gate).

G2+ (Py- (Gy + Py - Go)) (5)
G3+ (P3-(G24+ M (P2 (G1+ P1 - Go)))) (6)

Gppz =
" Gppa =
The transistor level schematics for these functions are

shown in Figure-1. Simulation results for these blocks
(Figure-2) indicate that the delay of a PP4 block is only

V-610

Teut of Porgiiel Prefix

Tronsient Response 2]

ot 3-input PP cell
=i 4—input PP cell

v: 2—~input PP cett
4+ Input pulse

(v)

-1

n ,

5@.4n 51.6n
time (s)

COICHR Y ,ug =TTERTm)

slope: —12.688aM

49.8n

Ffmmm]
B: (51.217n 1.64289)

51.6n

Figure 2: Simulation result of PP2, PP3 and PP4 cells
using a standard 0.8 pwm CMOS process at 3.3 Volts.

1.2 times larger than that of a PP2 bloc kunder similar

a8, a8, a8 a8,
Pra-Processing
Cell
@, ew, e, ewl
PPs pP3 P2
4input 3 Input 2Input ’ D‘;’:{;‘VO
ProfixColl | ProfixCell | ProfixColl | |
el es, el oo

Post-Processing Cb (5
Cell s, s,

Figure 3: Symbols used in the graph representation of
parallel prefix adders.

T able 1: Comparison of 64-bit Adder Architectures.

| Name | Depth [Cells [PP2 | PP3 | PP4 | Fan-out
R CA-64] 64 64 | 64 - - 1
SK2-64 6 192 | 192 | - § 32
KS2-64 6 321 321 - - 2
KS3-64 4 216 | 40 | 176 | -
KS4-64 3 171 | 21 | 21 | 129 4

be seen in Figure-4(a). The Radix-3 and Radix-4 imple-

load conditions. Since a radix-2 design requires tw o PP2 [entations of the adder can be seen in Figure-4(b) and (c)

bloc ks to compute the result of a single PP4 blok, designs
using radix-4 blocks can work faster, despite the fact that
more complex basic cells are used.

4 Higher Radix Kogge-Stone Par-
allel Prefix Architecture

Using the newly defined prefix cells, higher radix adder
structures can easily be designed. We will use a graph
representation to pro videa clearer view of the architec-
ture. Figure-3 shows the main symbols used in the graphs.
PP4, PP3 and PP2 cells are represented using filled sym-
bols. The dummy cell shown as a blank diamond, does not
con tain a1y logic (or only a buffer) and can be considered
a vacant position.

Among different parallel prefix adder realizations the
Sklansky Binary Tree and the Kogge-Stone architectures
have the least possible netw ork depth oflog,n where r is
the radix and n is the bit-width of the inputs. The main
advantage of the K ogge-Stonearchitecture is the maxi-
mum fan-out, which equals to the radix r, whereas the
Sklansky Binary T reeadder has a maximum fan-out of
r™ — r®~1. Although the Kogge-Stone adder has a much

respectively.

We have run transistor lewel simulations to compare the
relativ e performances of radix-4 and radix-2 realizations of
64-bit Kogge-Stone Parallel Prefix Adders. Figure-5 shows
a typical simulation result for both adder architectures. It
can be seen that the Radix-4 architecture is 32.5% faster
(8.98 ns for Radix-4, 5.89ns for Radix-2 in a 0.8 um CMOS
design using 3.3V supply voltage.)

5 Summary and Conclusions

In this work we have preserted the topologies for Radix-4
and Radix-3 parallel prefix adders, that have a theoretical
carry propagation netw ork depth oflogsn which essentially
doubles the speed of these adder structures. Although
more complex base cells result in slightly larger delays, we
have found that on the average the delays can be reduced
as much as 32.5%.

T able-1compares five realizations of 64-bit adders. A
standard Ripple Carry adder (R CA-64),a Sklansky Bi-
nary Tree adder (SK2-64) and three realizations of Kogge-
Stone adders with different radii. The table lists both the
total number of cells and the brake-do wn inio individual

low er fan-out, this reduction in fan-out comes at a cost of cell categories. It is important to note that the proposed
increased cell count.The Radix-2 Kogge-Stone Adder can architectures not only reduce the depth of the carry prop-

V-611

elelelelelelelelelelelelelelele
(®)

18 44 13 42 Mo o0 9 8 7 & 5 4 3 2 1 @

t

l/l(/ : 6<F<r<$<><;>{><j><§>
QQQQQQQQQQQ¢¢QQQ

(c)

Figure 4: K ogge-StoneA dderstructure for (a) Radix-2,

(b) Radix-3 and (c) Radix-4.

84-ba KUGGR SIONE ACUEN
Radie-2 a Rodix—4 8

LT

2n Zin 240 750 260 298
time ()

2SI TESYOET

Figure 5: Simulation result comparing 64-bit radix-2
(5.89ns) and radix-4 (3.98ns) Kogge-Stone realizations.

agation netw ork as mich as 50%, but the number of cells
required also decrease by as much as 47% (for the Radix-4
K ogge Stone Alder) when compared to the Radix-2 real-
izations.

References

[1] J. J. F. Cavannagh, “Digital Computer Arithmetic:
Design and Implementation”, McGraw-Hill, 1984

[2] R. Zimmermann, “Non-heuristic optimization and syn-

thesis of parallel-prefix adders”, in Proc. Int. Workshop
on Logic and Architecture Synthesis, Grenoble, France,
Dec. 1996, pp 123-132.

[3] J. Sklansky, “Conditional Sum A dditionLogic”, IRE
T rans. Electron.Comput, EC-9(6), pp 226-231, June
1960.

[4] R.P. Brent and H.T. Kung, “A Regular Layout for Par-
allel Adders”, in IEEE Trans. on Computers Vol C-31,
No 3, March 1982.

P.M. Kogge and H.S. Stone, “A Parallel Algorithm for
the Efficient Solution of a General Class of Recurrence
Equations”, IEEE Trans. on Computers, Vol. C-22, No
8, August 1973.

[5

—

V-612

