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Abstract 

In this paper, we describe the design of radix-3 and radix- 
4 parallel prefix adders, that theoretically ha ve logical 
depths of logsn and logqn respectively, where n is the bit- 
width of the input signals. The main building bloc ksof 
the higher radix parallel prefix adders are identified and 
higher radix structures of K ogge-StoneA dders are pre- 
sented. We show that with the higher radix architectures 
the logic depth can be reduced by 50% and the cell count 
can be reduced as much as 47% for 64-bit adders. Simula- 
tion results indicate that radix-4 adders can be more than 
30% faster than radix-2 realizations. 

1 Introduction 

The addition of tw obinary numbers is one of the most 
important arithmetic function in modern digital VLSI sys- 
tems, taking a major parttM design effort of modern 
digital signal processors and general purpose microproces- 
sors. The maximum operating speed of these processors 
depend largely on how fast the main computation bloc k 
can process data. For a large mmber of applications, the 
speed critical computation block includes adders: either 
as stand-alone blocks or integrated irk0 multiplier archi- 
tectures. As a result, specialized speed optimized adder 
architectures are required for high performance systems. 

The design of faster, smaller and more efficient adder 
architectures has been the focus of many researc h efforts 
and has resulted in a large n u d e r  of adder architec- 
tures. Some architectures like Carry-Skip A dder, Con- 
ditional Sum A dderand Carry Select A dder[] rely on a 
basic ripple carry adder structure that has been modi- 
fied to  shorten carry propagation path. The parallel pre- 
fix adders[2] are a more general form where a netw ork is 
used to  pre-calculate the carry signals. Some well known 
parallel prefix adder architectures using different carry- 
lookahead netw orks are: The Sklansky Binary Tree Adder 
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(31, the Brent Kung Adder [4], and the Kogge-Stone Adder 
[ 5 ] .  Although most of the above mentioned algorithms are 
formulated for an yradii, practical implementations ha ve 
generally been limited to  radix-2 implementations. 

In this paper, w ediscuss the theory ,and feasibilit yof 
implementation of the radix-4 and radix-3 implementa- 
tions of the K ogge-Stone Alder. An introduction to  the 
parallel prefix problem is given in Section-2 of this paper. 
Section-3 defines standard building blocks, and introduces 
tw onew blocks, for building higher radix parallel prefix 
adders. The higher radix realizations of Kogge-Stone par- 
allel prefix architecture is examined in detail in Section-4. 
Finally, Section-5 includes a summary of our results. 

2 Parallel Prefix Problem 
Most of the known adder architectures can be represented 
as a parallel prefix adder structure consisting of three main 
parts : Pre-processing, carry lookahead network and post- 
processing. 

vectors A and B,  the pre- 
processing part extracts tw o special signals propagate b) 
and generate (9) using simple logic circuits. The calcu- 
lation of the Sum is assigned to  the post-processing step, 
which is like the pre-processing step a constant time opera- 
tion. This leaves only the carry propagation (carry looh- 
head) problem, which is a recursiv efunction, to  be ad- 
dressed. The carry propagation problem can be expressed 
in terms of a prefix problem where for a set of binary inputs 
(za : i = 0,1,2,  ..., n) the outputs (ya : i = 0,1,2,  ..., n)  
are defined b y  the help of an associative binary operator 
0 as: 

Assuming tw o binaripput 

Yo = zo (1) 
za Ya-1 

2, 0 2 , -1  0 ' ' ' 0 2 1  0 20 

Ya = 
Ya = 

Since the operator is associative, it can be grouped in 
any order and computed in a number of levels. To express 
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Vdd the sub-products let us introduce the notation yZkj, where 
k is the level of the sub-product and i : J' represent a 
continuous range that this sub-product covers. Fo r  the 
carry propagation problem let us define the sub-product 
couple (G, P )  such that: 

(G,PE:i = (%,Pi) (2) 
(G,  P ) &  = (G,  P)f:i$l  (G ,  P)i.jl 

Where the desired 

Carryi = Gi,o (3) 

regardless of the number of levels necessary to  cover 
the range i : 0. Depending on the algorithm the carry 
propagation net uork will ha vea different structure and 
shape. In general the following observations can be made: 

The maximum levels required to  calculate the final 
Carry signal is referred as the depth of the prefix 
graph, and equals to  the number of logic levels in the 
netw ork.The depth of the carry propagate netw ork is 
a function of the bit-width of th'e input. This number 
relates roughly to  the delay of the network. 

- 
PP3 PP4 - 

Figure 1: Transistor level schematics for the generate block 
of the parallel prefix cells with 3 and 4 inputs. 

3.1 Building Blocks for Radix-4 Parallel 
Prefix Adders 

The pre-processing and post-processing stages of a typical 
parallel prefix adders consist of .simple logic gates. The 
pre-processing stage can be realized by a simple half adder, 
or an AND gate and an OR gate. The post-processing 
stage is merely an XOR gate. The simple, 2-input; prefix 
function can be mapped to  standard logic operations as 
folio ws: 

The total n ~ n h r  of binary associative operations 
within the netw ork determine the actiE area required 
to compute the result. 

Secondary effects like the number of times a sub-range 
is used in subsequent operations (fan-out) and the dis- 
tance betw een operators of an operation (connection 

the system. G,kUb = Gk-' + pj-' . 
length) also contribute to  the overall performance of (G,  P ) i u b  = (G,  P):-l (G, P)t-' (4) 

PjUb = pj-' . p p  

3 Higher Radix Parallel Prefix This function pair can be realized using an AND-OR 

Adder Architectures 
- 

gate and a separate AND gate sharing common inputs. 
We call this basic cell PP2 (parallel prefix-2) and define 

The delay of a parallel prefix adder is directly proportional tw o additional cells P P ~  and P P ~  whim realize the parallel 
to the number of levels in the carry propagation netw prefix function for three and four inputs respectively. The 
stage, The majority of contemporary adder architectures PP3 and PP4  cells realize the following logic functions for 

that have only tw o inputs.The low er bound of the Iumber input AND gate). 

of stages required for such netw orks lie atlogzn where n is 
the bit-width of the input vectors. This lower bound can 
be low ered using more complex blocks that process 3 or 
even 4 inputs to obtain low er bounds oflogan and log4.n. 
respectively. A dders designed using these complex bloks 
can theoretically achiev e higherprocessing speeds at the 
cost of additional area. 

rely on carry propagation net orkxomposed of bloc ks the generate Output. (The propagate structure is a 3 or 4 

( 5 )  
(pz . (G1 + pl , Go)))) (6) 

The transistor level schematics for these functions are 
shown in Figure-1. Simulation results for these blocks 
(Figure-2) indicate that the delay of a PP4 block is only 

G~~~ 
G p p 4  = GJ + (p3 , (Gz + 

= G~ + (pZ . (G' + pl . G ~ ) )  
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Figure 3: Symbols used in the graph representation of 
parallel prefix adders. 

Name Depth Cells PP2  PP3  PP4  Fan-out 

1 

SK2-64 6 192 192 - 32 
RCA-64 64 64 64 - 

Figure 2: Simulation result of PP2, PP3 and PP4 cells 
using a standard 0.8 wm CMOS process a t  3.3 Volts. 

KS2-64 6 321 321 - 2 

KS3-64 4 216 40 176 - 3 

KS4-64 3 171 21 21 129 4 

bloc ks to compute the result of a single PP4 blok, designs 
using radix-4 blocks can work faster, despite the fact that 
more complex basic cells are used. 

4 Higher Radix Kogge-Stone Par- 
allel Prefix Architecture 

Using the newly defined prefix cells, higher radix adder 
structures can easily be designed. We will use a graph 
representation to pro vide a clearer view of the arc hitec- 
ture. Figure-3 shows the main symbols used in the graphs. 
PP4, PP3 and PP2 cells are represented using filled sym- 
bols. The dummy cell shown as a blank diamond, does not 
con tain a y  logic (or only a buffer) and can be considered 
a vacant position. 

Among different parallel prefix adder realizations the 
Sklansky Binary Tree and the Kogge-Stone architectures 
have the least possible n e b  ork depth oflog,n where T is 
the radix and n is the bit-width of the inputs. The main 
advantage of the K ogge-Stonearc hitecture is the maxi- 
mum fan-out, which equals to  the radix T ,  whereas the 
Sklansky Binary T reeadder has a maximum fan-out of 
T n  - Tn--l . Although the Kogge-Stone adder has a much 

respectively. 
We have run transistor l e d  simulations to  compare the 

relativ e performances of radix-4 and radix-2 realizations of 
64-bit Kogge-Stone Parallel Prefix Adders. Figure-5 shows 
a typical simulation result for both adder architectures. It 
can be seen that the Radix-4 architecture is 32.,5% faster 
(3.98 ns for Radix-4, 5.8911s for Radix-2 in a 0.8 p m  CMOS 
design using 3.3V supply voltage.) 

5 Summary and Conclusions 
In this work we have preseded the topologies for Radix-4 
and Radix-3 parallel prefix adders, that have a theoretical 
carry propagation netw ork depth off ogrn which essentially 
doubles the speed of these adder structures. Although 
more complex base cells result in slightly larger delays, we 
have found that on the average the delays can be reduced 
as much as 32.5%. 

T able-lcompares five realizations of 64-bit adders. A 
standard Ripple Carry adder (R CA-64), a Sklansky Bi- 
nary Tree adder (SK2-64) and three realizations of Kogge- 
Stone adders with different radii. The table lists both the 
total number of cells and the brake-do wn irto individual 

low er fan-out, this reduction in fan-out comes a t  a cost of cell categories. It is important to note that the proposed 
increased cell count.The Radix-2 Kogge-Stone Adder can architectures not only reduce the depth of the carry prop- 
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Figure 5: Simulation result comparing 64-bit radix-2 
(5.89ns) and radix-4 (3.98ns) Kogge-Stone realization:<. 

agation netw ork as mch as 50%, but the number of cells 
required also decrease by as much as 47% (for the Radix-4 
K ogge Stone Wder) when compared to  the Radix-2 real- 
izations. 
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Figure 4: K ogge-StoneA dderstructure for (a) Radix-2, 
(b) Radix-3 and (c) Radix-4. 
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