
Full Name:

Smart Grids Technologies

Module 2, Lab 2 - 31/03/2025

Load Flow Analysis

1 Organization

1.1 Objectives

This lab session covers the basics of the load flow analysis, numerical solution
of the load flow problem and its approximations. It is assumed that you are
familiar with the fundamentals of the load flow problem, and that you have
completed lab 2.1 about the admittance matrix calculus.

First, we recall the Newton-Raphson algorithm, which is commonly used
for solving load flow problems. Then, we review several approximation
schemes Ward-Hale, Carpentier and Stott approximations.

You are provided with a MATLAB toolbox, in which the main functions
are already implemented, but a few blocks of code are still missing. You will
be asked to code the missing pieces, perform some load flow simulations,
and interpret the obtained results.

1.2 Report

This report will not be graded; however, its submission is mandatory. The
purpose of the questions within this document is to enhance your compre-
hension of the subject matter. Your acquired knowledge from all three lab-
oratories of Module 2 will be evaluated in Quiz 2, scheduled for Monday,
28 April 2025. The deadline for submission of the reports is Sunday, 6 April
2025, at 23:55. Do not forget to write your full name in the corresponding
box at the top of this page.
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2 Theory

This section of the lab introduces the load flow problem, the Newton-
Raphson method and its approximations for the solution of load flow prob-
lem. If you are already familiar with the topics discussed here, feel free to
skip, and proceed directly to Sec. 3.

2.1 The Load Flow Problem

Consider an electrical grid whose buses are labeled as n P N . Let u P U Ĺ N
be buses where active and reactive power are regulated (typically loads), and
g P G Ĺ N buses where active power and voltage magnitude are regulated
(typically generators), where U XG “ H. In addition, there is one slack bus.
By convention, it is assumed that bus 1 is the slack (i.e., N “ t1u YU YG).
The load flow (LF) problem consists of determining the magnitude Vn and
angle θn of the (phase-to-ground) voltage phasors sEn “ En=θn “ E1

n ` jE2
n

in all buses (i.e., the state of the electrical network) for given active and
reactive power of the loads u P U , and active power and voltage magnitude of
the generators g P G. Let Pn/Qn denote the active/reactive power entering
the electrical network at bus n. The LF equations link the voltage phasors
with the active/reactive power injections. Namely, for n P N

sSn “ Pn ` jQn “ sEnIn “ sEn

ÿ

hPN
Y nhEh (1)

“ pE1
n ` jE2

nq
ÿ

hPN
pGnh ´ jBnhqpE1

h ´ jE2
hq (2)

where sYnh “ Ynh=γnh “ Gnh ` jBnh is the pn, hq-th element of the nodal
admittance matrix sY . In polar coordinates

Pn “ En

ÿ

hPN
YnhEh cospθnh ´ γnhq (3)

Qn “ En

ÿ

hPN
YnhEh sinpθnh ´ γnhq (4)

where θnh “ θn ´ θh. In rectangular (a.k.a. Cartesian) coordinates

Pn “ E1
n

ÿ

hPN

␣

GnhE
1
h ´ BnhE

2
h

(

` E2
n

ÿ

hPN

␣

BnhE
1
h ` GnhE

2
h

(

(5)

Qn “ ´E1
n

ÿ

hPN

␣

BnhE
1
h ` GnhE

2
h

(

` E2
n

ÿ

hPN

␣

GnhE
1
h ´ BnhE

2
h

(

(6)
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Looking more closely at (3)–(4) and (5)–(6), observe that there are two
equations per bus (i.e, active/reactive power), but potentially four variables
per bus (i.e., Pn, Qn, En, θn). Thus, one first needs to identify the known
and unknown variables of the system.

Which variables are known or unknown depends on the type of bus and
the choice of coordinates.

• At load or PQ-buses u P U , the active and reactive power are set to
P ˚
u and Q˚

u, respectively. In polar coordinates

P ˚
u “ Eu

ÿ

hPN
YuhEh cospθuh ´ γuhq (7)

Q˚
u “ Eu

ÿ

hPN
YuhEh sinpθuh ´ γuhq (8)

The unknowns are Eu and θu (i.e., two per bus). In rectangular coor-
dinates

P ˚
u “ E1

u

ÿ

hPN

␣

GuhE
1
h ´ BuhE

2
h

(

` E2
u

ÿ

hPN

␣

BuhE
1
h ` GuhE

2
h

(

(9)

Q˚
u “ ´E1

u

ÿ

hPN

␣

BuhE
1
h ` GuhE

2
h

(

` E2
u

ÿ

hPN

␣

GuhE
1
h ´ BuhE

2
h

(

(10)

The unknowns are E1
u and E2

u (i.e., two per bus).

• At voltage-controlled or PV -buses g P G, the voltage magnitude and
active power are set to E˚

g and P ˚
g , respectively. In polar coordinates

P ˚
g “ Eg

ÿ

hPN
YghEh cospθgh ´ γghq (11)

E˚
g “ Eg (12)

The only unknown is θu (i.e., one per bus). In rectangular coordinates

P ˚
g “ E1

g

ÿ

hPN

␣

GghE
1
h ´ BghE

2
h

(

` E2
g

ÿ

hPN

␣

BghE
1
h ` GghE

2
h

(

(13)

pE˚
g q2 “ pE1

gq2 ` pE2
g q2 (14)

The unknowns are E1
g and E2

g (i.e., two per bus).

• At the slack bus s “ 1, which is considered as the reference bus of
the system, both the voltage magnitude and phase angle are specified.
The active and reactive power are not fixed, as this would mean fixing

3



the network losses, which would imply an overdetermined equation.
Hence, there is no unknown variable for this type of bus. Usually, the
voltage is set to 1 p.u., and the angle to 0. In polar coordinates

Es “ 1 (15)

θs “ 0 (16)

In rectangular coordinates

E1
s “ 1 (17)

E2
s “ 0 (18)

If the LF equations are written in polar coordinates, there are g ` 2u non-
trivial equations1. Conversely, if the LF equations are written in rectangular
coordinates, there are 2g ` 2u nontrivial equations.

Due to the fact that LF equations are nonlinear, numerical methods
have to be used in order to obtain a solution (with an acceptable tolerance).
Such methods are usually iterative, and start from an initial guess of the
voltage profile. The initial voltage profile is chosen so that it favors the con-
vergence of the numerical method towards a physically meaningful solution.
Typically, a “flat start” is used to initialize the NR method (i.e., all voltage
magnitudes equal to 1 p.u., and all phase angles equal to 0 rad).

2.2 The Newton-Raphson Algorithm

The Newton-Raphson (NR) method is frequently used for solving the LF

equations. Starting from an initial voltage profile defined by E
p0q
n and θ

p0q
n

(n P N ), the NR method iteratively finds a solution of the LF equations
(within a given tolerance). In the following, the main steps of the algorithm
are formulated both in polar and rectangular coordinates (the process is also
summarized in the lecture notes).

1An equations is trivial if a variable is simply set to a constant value (e.g., Eg “ E˚
g ).
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2.2.1 Formulation in Polar Coordinates

The steps of the NR algorithm at iteration k ` 1 are the following:

1. Compute the power mismatches ∆P
pkq
n and ∆Q

pkq
n .

∆P
pkq

i “ P ˚
i ´ PipE

pkq

i , θ
pkq

i q, i P U Y G (19)

∆Q
pkq

i “ Q˚
i ´ QipE

pkq

i , θ
pkq

i q, i P U (20)

In other words, active and reactive power mismatches are computed
only for the nodes for which we fixed the active (PQ and PV nodes)
and reactive power (PQ nodes).

2. Compute the Jacobian matrix Jpkq of the LF equations (3)–(4).

Jpkq “

„

JPE JPθ

JQE JQθ

ȷpkq

“

«

BP
BE

BP
Bθ

BQ
BE

BQ
Bθ

ffpkq

(21)

The Jacobian relates power mismatches and voltage corrections in
magnitude and angle:

„

∆P
∆Q

ȷpkq

“

„

JPE JPθ

JQE JQθ

ȷpkq

ˆ

„

∆E
∆θ

ȷpkq

(22)

3. The goal is to solve the system of equations (22) to obtain the correc-
tions in voltage magnitude and angle. For generator (PV) buses and
the slack bus, Ei (@i P G) and Es are already known. In addition, for
the slack bus, θs is also known. Therefore, the corresponding elements
are excluded from the vector of unknowns corrections. Consequently,
we need to reduce the Jacobian matrix and to remove:

(i) The columns which correspond to:

‚ the voltage magnitudes of the generator buses, which are
fixed (i.e., ∆Ei “ 0 @i P G),

‚ the slack bus, which is the reference (i.e., ∆Es “ 0 and ∆θs “

0).

(ii) The rows corresponding to the mismatches for which the power
injections are not fixed. These are:

‚ the active power for the slack bus (i.e., ∆Ps),
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‚ the reactive power for the slack bus and generator buses (i.e.,
∆Qs and ∆Qi @i P G).

Accordingly, the reduced Jacobian matrix is a square matrix of size
p2|U | ` |G|q ˆ p2|U | ` |G|q.

4. Compute the corrections in magnitude ∆E
pkq

i and angle ∆θ
pkq

i .

„

∆E
∆θ

ȷpkq

“

#

„

JPE JPθ

JQE JQθ

ȷpkq
+´1

ˆ

„

∆P
∆Q

ȷpkq

(23)

where ∆Epkq, ∆θpkq, ∆Ppkq, and ∆Qpkq are column vectors composed

of the elements ∆E
pkq

i , ∆θ
pkq

i , ∆P
pkq

i , and ∆Q
pkq

i , respectively.

5. Update the magnitudes and angles with the corresponding corrections.

„

E
θ

ȷpk`1q

“

„

E
θ

ȷpkq

`

„

∆E
∆θ

ȷpkq

(24)

6. If the mismatches are below a given tolerance ε (convergence criterion)

max pmaxp|∆P|q,maxp|∆Q|qq ă ε (25)

then stop. Otherwise, set k “ k ` 1, and go to step 1.

The elements of the Jacobian matrix (21) are the partial derivatives of
the active and reactive powers w.r.t. the voltage magnitudes and angles.
They can be computed from (3)–(4), which yields

BPi

BEj
“

#

YijEi cospθi ´ θj ´ γijq pi ‰ jq

2YiiEi cospγiiq `
ř

h‰i

YihEh cospθi ´ θh ´ γihq pi “ jq (26)

BPi

Bθj
“

#

YijEiEj sinpθi ´ θj ´ γijq pi ‰ jq

´Ei
ř

h‰i

YihEh sinpθi ´ θh ´ γihq pi “ jq (27)

BQi

BEj
“

#

YijEi sinpθi ´ θj ´ γijq pi ‰ jq

´2YiiEi sinpγiiq `
ř

h‰i

YihEh sinpθi ´ θh ´ γihq pi “ jq (28)

BQi

Bθj
“

#

´YijEiEj cospθi ´ θj ´ γijq pi ‰ jq

Ei
ř

h‰i

YihEh cospθi ´ θh ´ γihq pi “ jq (29)
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2.2.2 Formulation in Rectangular Coordinates

The steps of the NR algorithm at iteration k ` 1 are the following:

1. Compute the mismatches w.r.t. active/reactive powers and (squared)
voltage magnitudes.

∆P
pkq

i “ P ˚
i ´ PipE

1
i

pkq
, E2

i
pkq

q, i P U Y G (30)

∆Q
pkq

i “ Q˚
i ´ QipE

1
i

pkq
, E2

i
pkq

q, i P U (31)

∆pE2
i qpkq “ pE˚

i q2 ´ pE
pkq

i q2, i P G (32)

In other words, active/reactive power and (squared) voltage magnitude
mismatches are computed only for the nodes for which we fixed the
active (PQ and PV nodes)/reactive power (PQ nodes) and voltage
magnitude (PV nodes), respectively.

2. Compute the Jacobian matrix of the LF equations (5)–(6).

Jpkq “

»

–

JPR JPX

JQR JQX

JER JEX

fi

fl

pkq

“

»

—

—

–

BP
BE1

BP
BE2

BQ
BE1

BQ
BE2

BE2

BE1
BE2

BE2

fi

ffi

ffi

fl

pkq

(33)

The Jacobian relates active and reactive power and squared voltage
magnitude mismatches with voltage corrections in real and imaginary
parts:

»

–

∆P
∆Q

∆pE2q

fi

fl

pkq

“

»

–

JPR JPX

JQR JQX

JER JEX

fi

fl

pkq

ˆ

„

∆E1

∆E2

ȷpkq

(34)

3. The goal is to solve the system of equations (34) to obtain the correc-
tions of the real and imaginary parts of the nodal voltages. For the
slack bus, E1

s and E2
s are already known. Therefore, we need to reduce

the Jacobian matrix and to remove:

(i) The columns which correspond to the real and imaginary parts of
the nodal voltage of the slack bus (i.e., ∆E1

s “ 0 and ∆E2
s “ 0),

(ii) The rows corresponding to the mismatches for which the power
injections or voltage magnitudes are not fixed and the identity of
the slack bus. These are:

7



‚ active and reactive power for the slack bus (i.e., non-specified
∆Ps, ∆Qs and the identity ∆E2

s “ 0),

‚ reactive power for generator buses (i.e., ∆Qs and ∆Qi @i P G)
‚ voltage magnitude (squared) for PQ buses.

The reduced Jacobian matrix is a square matrix of size p2|U | `2|G|q ˆ

p2|U | ` 2|G|q.

4. Compute the corrections of the real and imaginary parts.

„

∆E1

∆E2

ȷpkq

“

$

’

&

’

%

»

–

JPR JPX

JQR JQX

JER JEX

fi

fl

pkq
,

/

.

/

-

´1

ˆ

»

–

∆P
∆Q

∆pE2q

fi

fl

pkq

(35)

5. Update the real and imaginary parts with the corrections.

„

E1

E2

ȷpk`1q

“

„

E1

E2

ȷpkq

`

„

∆E1

∆E2

ȷpkq

(36)

6. Stop if all mismatches are below the specified tolerance.

max
`

maxp|∆P|q,maxp|∆Q|q,maxp|∆pE2q|q
˘

ă ε (37)

Otherwise, set k “ k ` 1, and go to step 1.

The elements of the Jacobian matrix (33) are the partial derivatives of
the active and reactive powers with respect to the real and imaginary parts
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of the voltage phasors. They can be computed from (5)–(6), which yields

BPi

BE1
j

“

#

GijE
1
i ` BijE

2
i pi ‰ jq

2GiiE
1
i `

ř

h‰i

tGihE
1
h ´ BihE

2
hu pi “ jq (38)

BPi

BE2
j

“

#

´BijE
1
i ` GijE

2
i pi ‰ jq

2GiiE
2
i `

ř

h‰i

tBihE
1
h ` GihE

2
hu pi “ jq (39)

BQi

BE1
j

“

#

´BijE
1
i ` GijE

2
i pi ‰ jq

´2BiiE
1
i ´

ř

h‰i

tBihE
1
h ` GihE

2
hu pi “ jq (40)

BQi

BE2
j

“

#

´GijE
1
i ´ BijE

2
i pi ‰ jq

´2BiiE
2
i `

ř

h‰i

tGihE
1
h ´ BihE

2
hu pi “ jq (41)

BE2
i

BE1
j

“

"

0 pi ‰ jq

2E1
i pi “ jq

(42)

BE2
i

BE2
j

“

"

0 pi ‰ jq

2E2
i pi “ jq

(43)

2.3 References

1. Mario Paolone, “Numerical solution of the Load Flow Problem For-
mulated via the Nodal Analysis”, EPFL (lecture in the course “Smart
Grids Technologies”), 2025.

9



3 Exercises

3.1 Introduction to the MATLAB Toolbox

In the following, a brief tutorial on the MATLAB toolbox for the load flow
computation is given. Download the MATLAB code via the below link:

https://moodle.epfl.ch/mod/folder/view.php?id=1290267

Unzip the folder and open the folder LF and open main.m. The script
consists of five blocks, whose functionality is explained subsequently.

Step 1: In the first step, the nodal admittance matrix as well as the base
power and voltage are imported. These data are provided for a “big” and a
“small” test system. The user has to specify which data shall be loaded:

% ! Define the network to use !

network = ’big’; % either ’small’ or ’big’

Step 2: In the second step, the profiles of the absorbed and injected powers
are imported. The generator sign convention is used: injected powers are
positive, absorbed powers are negative. More precisely, we provide you with
profiles for a single timestep and for an entire day (i.e., 24 hours sampled
every 15 minutes). The user has to specify which profiles shall be loaded:

% ! Define the profile type !

% if network == ’small’ -> ’daily’ or ’single’,

% if network == ’big’ -> ’daily’

profile_type = ’daily’; % either ’single’ or ’daily’

10
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Step 3: In the third step, the load flow simulation is configured. The slack
node (idx.slack), the PQ nodes (idx.pq), and the PV nodes (idx.pv) are
given by the respective test system, and are thus hardcoded in the script.
The user has to specify in which coordinate system (i.e., rectangular or
polar) the load flow problem is formulated, and which initial point is used
for the numerical solution (i.e., a flat start or the solution of a previous
calculation). To this end, the variables coordinate_type and start_type

need to be set accordingly:

% ! Customize the load flow simulation !

% Choose LF formulation either ’rectangular’ or ’polar’.

coordinate_type = ’rectangular’;

% if coordinate_type=’daily’ -> ’flat’ or ’previous’,

% if coordinate_type=’single’ -> ’flat’ or ’bad’

start_type = ’previous’;

Finally, the user needs to set the maximum number of iterations n_max and
the convergence tolerance tol for the NR algorithm:

% ! Enter Newton-Raphson algorithm parameters !

% maximum number of iterations

Parameters.n_max = 100;

% convergence tolerance

Parameters.tol = 1e-7;

Step 4: In the fourth step, the NR algorithm is executed. First, the initial
voltage profile E_0 are set based on the value of the variable start_type.
Then, the functions which implement the NR method in rectangular or polar
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coordinates, which are named NR_rectangular and NR_polar, are called.
Each functions contain a for loop, which performs the NR algorithm as
described in Sec. 2.2.

Step 5: In the fifth and final step, the obtained results are plotted.

3.2 Implementation in MATLAB

Now, it is your turn to write code. You need to complete the functions
NR_polar and NR_rectangular. Both functions have the same interface.
Namely, they take the following inputs

% INPUT

% - Y nodal admittance matrix

% - S_star given complex powers (active/reactive powers)

% - E_star given voltage magnitudes

% - E_0 initial voltages (phasors)

% - idx_slack index of the slack bus

% - idx.pq indices of the PQ buses

% - idx.pv indices of the PV buses

% - Parameters.tol tolerance for convergence criterion

% - Parameters.n_max maximum number of iterations

and return the following outputs

% OUTPUT

% - E solution voltages (phasors)

% - J Jacobian at the solution

% - n_iter number of iterations

Please write/change the code in the places that are marked as follows
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% *****************************************

% ! write your own code here !

% [Instructions]

% *****************************************

by following the set of instructions [Instructions], and leave the rest of the
code untouched – except for the parameters that you are asked to change.

Q1/ Answer the following questions:

1. The key differences between a slack bus, a PQ bus and a PV bus -
which quantities (voltage, active power, reactive power) are fixed or
variable in each bus type?

2. The physical meaning behind these bus types - categorise following
buses with injections as “‘slack”, “PV” or “PQ” bus. i) bus connecting
a big synchronous generator, ii) bus providing electricity to a steel
industry, iii) bus connected to a small hydro power plant through a
synchronous generator iv) bus providing electricity to the distribution
network of EPFL campus v) bus with zero active and reactive power.

[A1]

13



Q2/ Complete the function NR_polar, i.e., the calculation of the mis-
matches, the modifications to correctly compute the Jacobian matrix and
updating load flow solutions, using the instructions given in the code. Paste
only the modifications you added to the original code here (i.e. modified
code lines).

[A2]

Q3/ Complete the function NR_rectangular, i.e., the calculation of the
mismatches, the modifications to correctly compute the Jacobian matrix and
updating load flow solutions, using the instructions given in the code. Paste
only the modifications you added to the original code here (i.e. modified
code lines).
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[A3]

3.3 Validation using EMTP-RV

In order to verify that your implementation is correct, you will now compare
the solutions obtained using your own code and EMTP-RV. EMTP-RV is a
professional software for the simulation and analysis of power systems, both
in steady-state and transient conditions. You can find it installed on the
VM you have already used in Module 1 labs.

Open the file load_flow.ecf in the folder emtp. The network topology
and the location of the loads are already defined, but the active and reactive
powers of the loads need to be specified. If you double-click on the arrow
representing a load, the window shown in Fig. 1 opens. You can enter the
load data into the table. Attention: EMTP-RV considers the values you
enter as balanced three-phase loads, whereas the MATLAB code is based
on an equivalent single-phase network. Therefore, you need to divide the
active/reactive powers by 3 when entering them into the table.

When you have configured loads, press the button StartEMTP (see
Fig. 1, red circle). Once EMTP-RV has finished, press the button Load-
Flow web (see Fig. 1, green circle). This will show LF results in your browser
under Show Node Voltages2. Now, run the MATLAB code once with each
version of the NR algorithm for the small system. For this analysis, set

2Note that the EMTP-RV results are three-phase, whereas your MATLAB code com-
putes a single-phase equivalent. So, you should compare your results with phase a of the
EMTP-RV output.

15



Figure 1: Using EMTP-RV to insert load values at the network buses.

network=’small’, set profile_type=’single’ and start_type=’flat’.

Q4/ EMTP-RV returns phase-to-ground rather than phase-to-phase
voltages, and amplitudes rather than RMS values. Moreover, EMTP works
in absolute units instead of p.u.. How do the results of the MATLAB code
have to be transformed such that they are comparable to those of EMTP?
Do the MATLAB results agree with the EMTP ones?

[A4]
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3.4 Sensitivity Analysis and Performance Evaluation

3.4.1 Impact of the Initial Point on the Solution

Now, you will investigate the impact of the initial point on the solution found
by the NRmethod. To this end, set network=‘small’, profile_type=‘single’
and start_type=‘bad’. The last option initializes the phase angle of the
voltage at bus 3 to ´π{4 instead of 0 (i.e, not a flat start).

Q5/ Run the LF simulation using either the polar or rectangular for-
mulation.

1. Does the NR method converge? If yes, in how many iterations?

2. Does the solution match the one in Q4? If not,

• Comment on whether the obtained voltage magnitudes and phase
angles in Q4 have a physical meaning or not?

• Considering that both simulations in Q4 and Q5 use the same
network and nodal power injections, how can you explain the dif-
ferences between the solutions (i.e. nodal voltages (states) out-
putted from the NR algorithms)?

[A5]

3.4.2 Impact of the Initial Point on the Convergence Speed

Now, you will examine how the initial point affects the convergence speed of
the NR method. Set network=‘big’ and profile_type=‘daily’, so that
the daily profiles are used.

Q6/ Use the rectangular formulation. Run the code two times. First,
set start_type=‘flat’, so that a flat voltage start is used as initial point
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in every timestep. Then, set start_type=‘previous’, so that the solution
from the previous timestep is used instead. For each case, look at Fig. 3
generated by the MATLAB code, which shows the number of iterations
n_iter and the execution time t_exec per timestep. Are there differences
between Figs. 3 of both cases? If yes, how do you explain those differences
(i.e. why is one case converging faster than the other?) ?

[A6]

3.4.3 Rectangular versus Polar Formulation

Now, you will evaluate how the coordinate system in which the load flow
problem is formulated influences the performance of the NR method (i.e.,
in terms of number of iterations n_iter and execution time t_exec). Set
network=‘big’, profile_type=‘daily’ and start_type=‘previous’.

Q7/ Run the code twice, once with the rectangular and once with the
polar formulation. For each case, look at Fig. 3 generated by the MATLAB
code, which shows the number of iterations n_iter and the execution time
t_exec per timestep. Are the results exactly the same? If not, how do you
explain those differences (i.e. why are there different convergence speeds
and number of iterations depending on the formulation?) ?

[A7]
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3.4.4 Interpretation of the Load Flow Results

Finally, you shall interpret the results of the daily simulations. To this end,
keep profile_type=‘daily’, and start_type=‘previous’.

Q8/ Effect of loading: run the LF method for the small network
(network=‘small’). You may use either formulation. Analyse the profiles of
voltage magnitude, and phase angle (i.e., Fig. 2 generated by the MATLAB
code) for following cases. Line 103 in the file main.m, modify the factors
gen_scale, load_scale to study effect of loading on load flow solutions.

1. Zero loading and generation: set the injections per node to 0, i.e.,
gen_scale = 0, load_scale = 0.

2. Increase generation per node by a factor of 5, i.e., gen_scale = 5,

load_scale = 1.

3. Increase load per node by a factor of 5, i.e., gen_scale = 1,

load_scale = 5.

Explain how and why the shape and values of voltage magnitude and phase
angles change from the nominal case (gen_scale = 1, load_scale = 1)
for cases 1, 2 and 3.

[A8]

Q9/ Run the LF method for the big network (network=‘big’) in rect-
angular coordinates. Look at the different subplots in Fig. 2 generated by
the MATLAB code:

1. Look at the subplot PV Nodes - Voltage Magnitudes. Are these values
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correct? If yes, explain why they are not all exactly equal (hint: think
about the NR formulation that is used).

2. As explained in the theory part, the voltage magnitudes at PV nodes
are fixed. How is this achieved physically (i.e. what physical quantity
needs to be controlled)? Which subplot shows this?

3. Compute the sum of the active and reactive powers of all the nodes
(sum(S)) in the network. Explain why the sum (both real and imagi-
nary) is non-zero. How the sum changes for the zero loading case (
i.e., gen_scale = 0, load_scale = 0.)

[A9]

3.5 The Load Flow Approximations

Now, we review and implement different Load flow approximations. They
are (i) Ward-Hale approximation, (ii) Carpentier approximation and (iii)
Stott approximation.. You are provided with a MATLAB toolbox in which
the three main functions are already implemented. You will be asked to
compare the three approximations with the actual solution and interpret
the obtained results.

3.5.1 Ward-Hale

The Ward - Hale approximation is related to the application of the Newton-
Raphson method to the Load-Flow solution using Cartesian rectangular
coordinates.

According to this approximation, we consider the variations ∆P and ∆Q
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of the powers injected into the network in a generic node depending only on
the voltage of that node, i.e.

BPi

BE1
j

“ 0 pi ‰ jq (44)

BPi

BE2
j

“ 0 pi ‰ jq (45)

BQi

BE1
j

“ 0 pi ‰ jq (46)

BQi

BE2
j

“ 0 pi ‰ jq (47)

With this approximation, all the Jacobian submatrices of J in (35) are
purely diagonal, as they contain non-zero elements only on the diagonal
since the matrices JER,JEX were already diagonal.

3.5.2 Carpentier

The Carpentier approximation assumes that the active powers injected into
the nodes depend only on the phases of the voltages and that the reactive
powers depend only on the modules of the voltages (i.e. active-reactive
decoupling). Decoupling between the active power variables (i.e. voltage
phases) and reactive powers (i.e. voltage modules) results in

JPE “ 0; (48)

JQT “ 0; (49)

„

JPE JPθ

JQE JQθ

ȷ

“

„

0 JPθ

JQE 0

ȷ

(50)

3.5.3 Stott

In this approximation, the following assumptions are considered:

• decoupling between the active power variables (i.e. voltage phases)
and reactive powers (i.e. voltage modules), i.e. JPE “ 0 and JQT “ 0.

• Bil cospθilq « Bil since θil are small, i.e. cospθilq « 1

• Gil sinpθilq ăă Bil since the values of Gil are extremely small
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• Qi ăă BiiV
2
i

Due to these simplifications, the partial derivatives can be simplified as
following:

BPi

Bθj
“

"

´BijEiEj pi ‰ jq

´BijE
2
i pi “ jq

ñ ´BijEiEj @j. (51)

BQi

BEj
“

"

´BijEi pi ‰ jq

´BiiEi pi “ jq
ñ ´BijEi @j. (52)

With further assumption of i) approximating Ej “ 1 p.u. for i ‰ j and ii)
neglecting the shunt parameters in (51), (52), the Jacobian can be further
simplified by dividing the active and reactive power deviations with Ei as

J “

„

0 B1

B2 0

ȷ

(53)

where,

B1 “ B2 “ ´B (54)

As a consequence, the NR update for k´th iteration becomes

„

∆E
∆θ

ȷpkq

“

„

0 ´B
´B 0

ȷ´1

ˆ

„

∆P
E
∆Q
E

ȷpkq

(55)

Thanks to the Stott approximation, it can be seen that the Jacobian
matrix J in (55) is a constant and does not need to be updated within the
NR iterations.

3.6 Numerical simulations in MATLAB

Open the folder “LFApproximations” and open the script main.m. The
script consists of six blocks, whose functionality is explained subsequently.

Step 1: In the first step, the line data as well as the base power and
voltage are imported, they are used to compute the admittance matrices.
These line data are provided for a “high voltage”, a “medium voltage” and a
“low voltage” test system. The text file contains the information on topology
in the first two columns, resistances (Ω/km) in the third column, reactances
(Ω/km) in the fourth column, shunts (µS/km) in the fifth column and length
of the lines in the final column.

The user has to specify which data shall be loaded:
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% ! Define the network to use !

network = ’high voltage’; % either ’high voltage’ or

’medium voltage’ or ’low voltage’

The code for computing the admittance matrix is provided. The function
computeY computes the admittance matrix of the system. The input to this
function is text_file where the linedata is saved, and base values of power
and voltages Ab and Vb.

Step 2: In the second step, the profiles of the absorbed and injected powers
are imported. The generator sign convention is used: injected powers are
positive, absorbed powers are negative. More precisely, we provide you with
profiles for a single timestep and for an entire day (i.e., 24 hours sampled
every 15 minutes). The user has to specify which profiles shall be loaded.
We provide “daily” profiles for the first part of the exercise corresponding
to each test system.

Step 3: In the third step, the load flow simulation is configured. The slack
node (idx.slack), the PQ nodes (idx.pq), and the PV nodes (idx.pv) are
given by the respective test system, and are thus hardcoded in the script.
In this exercise we only use PQ nodes.

The user has to specify the approximation of the load flow solver is to
be used.

% ! Customize the load flow simulation !

% Choose LF solver ’wardhale’ or ’carpentier’ or ’stott’ for

% ’profile_type = ’daily’

Finally, the user needs to set the maximum number of iterations n_max and
the convergence tolerance tol for the NR algorithm. We fix to following for
this lab.
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% ! Enter Newton-Raphson algorithm parameters !

% maximum number of iterations

n_max = 100;

% convergence tolerance

tol = 1e-7;

Step 4: In the fourth step, the NR algorithm with different approxima-
tions are executed. The functions implement the NR method while imple-
menting the “wardhale”, “carpentier”, or “stott” approximations.

Step 5: In this step we compare with the “true” load flow solutions com-
puted with NR_polar.m (you can copy the function you implemented
earlier or re-fill the one provided in the template code). The “true”
quantities are saved with variables named as _true.

Step 6: In this step, we visualise the results and compute the error on the
magnitudes and phase of the nodal voltages with different approximations.
We compute root mean square error (rmse) and maximum absolute errors
on the voltage magnitudes and phases.
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Now, run the MATLAB code once with each version of the NR algorithm
for the high voltage system with different LF approximation methods. For
this analysis, set network=’high voltage’, set profile_type=’daily’.

Q10/ Compare the voltage magnitude and phase of all the approxima-
tions with “true” values computed with NR_polar.

1. Report the rmse and max absolute of error in voltage magnitude (in
pu) and phase (deg) for each approximation method using metrics
defined in Step 6 of the main code. Which approximation is the best
performing in terms of error?

2. Report the mean and max number of NR iterations for each approxi-
mation method.

[A10]

3.7 High voltage vs. medium voltage vs. low voltage net-
works

Till now we worked with high voltage transmission network. Now we will
switch to medium and low voltage distribution networks. We will examine
the difference in performances of the Load flow approximations with different
types of the networks.
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Q11/ Here, we compare the solutions obtained by LF approximations
on three different networks.

1. List the three differences in performance of the LF approximation
methods on “medium voltage” and “low voltage” compared to “high
voltage” networks. (hint: differences related to convergence, error on
solutions and NR iterations.)

2. Do the LF approximation methods perform better or poorly on
“medium voltage” and “low voltage” networks? Explain why. (hint:
look at the linedata for “high-voltage,“medium voltage” and “low volt-
age” networks, especially the ratio of resistance to reactance (R/X).)

[A11]
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