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SMART GRIDS TECHNOLOGIES
MODULE 2, LAaB 1 - 21/03/2025
ADMITTANCE MATRIX CALCULUS

1 Organization

1.1 Objectives

This lab session covers the basics for the calculation of the network admit-
tance matrix. It is assumed that you are already familiar with the basic
concepts of the nodal admittance model. The goal of the lab is to provide
you with a tutorial as well as with a documented toolbox to be used later on
in the course. First, you will be asked to compute by hand the admittance
matrix of a small-scale electrical network. Then, you will be requested to
verify your calculations using MATLAB, in order to familiarize yourself with
the provided toolbox.

1.2 Report

This report will not be graded; however, its submission is mandatory to
unlock access to Quiz 2. The purpose of the questions within this document
is to enhance your comprehension of the subject matter. Your acquired
knowledge from all three laboratories of Module 2 will be evaluated in
Quiz 2 scheduled for Monday, April 28. The deadline for submission of this
report is Sunday, March 30 at 23:55. Do not forget to write your full name
in the corresponding box on top of this page.



2 Theory

This section briefly recapitulates the basics of the per-unit system and nodal
admittance matrix calculus. If you are already familiar with these topics,
feel free to skip it, and proceed directly to Sec. 3.

2.1 Per-Unit System

Introduction The analysis of complex power systems can be simplified
using the concept of per-unit systems. A per-unit system system is obtained
by selecting a common set of base values, and expressing all parameters with
respect to these. That is, the analysis is performed in relative units, or per
unit (p.u.), rather than absolute units. The definition of any quantity (e.g.,
power, voltage, current, impedance) in the per-unit system is

Quantity (absolute units)

tit L) = ’ L
Quantity (p.u.) Associated base value (absolute units) M)

Observe that the arguments of complex powers S, voltages V, currents I,
impedances Z, etc. are not affected by this conversion. One advantage of
per-unit systems is that electrical networks with different voltage levels (i.e.,
which contain transformers) can be represented using impedances only.

Once the base power Ay (i.e., P or Q) and the base voltage V; are selected,
the base current I and the base impedance Zy (or base admittance Yp) can
be calculated.
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Figure 1: Base values in an electrical network with transformers.

Selection of Base Values In the presence of transformers, a network is
devided into subnetworks at different voltage levels (see Fig. 1).



e The base voltages on each side of a transformer (each subnetwork) are
selected.

e The base power is the same for the entire network under study.

e All the other base values (current, impedance, admittance), for each
subnetwork, are derived from chosen base voltages and the base power.

First, consider a single-phase system. Let Ay 1p be the single-phase base
power, and V;, 1N the line-to-neutral base voltage. Then, the base current I,
and the base impedance Z; can be calculated as follows

Ap1p
I, = ——, 2
b Vb, LN @
VAN
Ly = ——. 3
’ Ap1p )

Now, consider a three-phase system. Let A, sp be the three-phase base
power, and Vj 11, the line-to-line base voltage. Then, the base current I,
and the base impedance Z, can be calculated as follows

Ap 3p
I = —=>—, (4)
V3VhLL
VL
7y = 5
" Ayap (5)

Change of Base Let A;, V; and A}, V) define two different bases. The
following relations can be used to perform a change of base

S’ (p-u.) _ Ap (6)
S” (pu.) A}

V' (pu.) _ w 7)
V7 (pu) VY

{_’ (p-u.) _ Lg _ igﬁ (8)
I’ (puw) I, AV

Z' (p.u.) _ Zy _ (Vb”>2Ag (9)
Z" (pu.) 2 vy ) Al

Y (pu) _ Y _ <Vb/>2 Ay (10)
Y” (pu) Y V) A



Further Information If you still have doubts regarding the use of relative
units, please check the exercise on per-unit calculus on moodle.

2.2 Nodal Admittance Matrix

Nodal Analysis Consider an electrical network whose nodes are labeled
asneN ={1,---,N}, and the ground as g € G := {0}. Furthermore, let
l, e LS N x N be the branches and t,, € T = N x G the shunts. A branch
Uy = (i,§) (1,7 € N) is associated with a branch admittance gy, = y;j, and a
shunt t; = (i,0) with a shunt admittance J;, = 0. Let V; the nodal voltage
phasor at i, and I; the nodal current phasor at i (i.e., the net current injected
by the generators / absorbed by the loads connected to i). The electrical
network is described by the following system of linear equations

[ L] [ Yu - Y, oo YN || W]
Tn = ?nl e ?nn e }_/nN Vn (11)
| fN | | YNl ?Nn YNN 1L VN ]

or in matrix form

I=YV (12)

Y is called the nodal admittance matriz. Tts entries are calculated as follows.
The diagonal elements Y;; are the sum of the admittances of all branches
and shunts connected to the node i (i.e., starting or ending in 7). That is

Yi=0io+ ), Jut D, Urir (13)

(3,x)eLl (z,0)el

The off-diagonal elements Y;j (i # j) are the negative of the corresponding
branch admittance (if there exists a branch between i and j). That is

o | -wy if(i,j) el
Yij = { 0 otherwise (14)

For small electrical networks, Y can be constructed using (13)-(14).

Automated Construction For large electrical networks, Y can be con-
structed in an automated manner. Namely

Y = A%?gA% + ?7' (15)

where



branch/node | 1 2 3 4 5
©) 0=(1,2) |+1 -1 0
A
6 5 =13 [+1 0 -1 0 0
1 ts3=(1,4) |41 0 0 -1 0
@.L@_, =15 |41 0 0 0 -1
2 ls = (2,3) 0 +1 -1 0 0
o 4 g lg = (2,4) 0 +1 0 -1
v lr=(3,5 | 0 +1 0 -1
(5) ls=(4,5) | 0 0 +1 -1
(a) Graph diagram. (b) Incidence matrix in table form.

Figure 2: Example for the construction of Agy.

e Y is the primitive branch admittance matriz, which is given by

Y = diagye (Ue,) = diag(, nye (Ymn)- (16)
e Y7 is the primitive shunt admittance matriz, which is given by

Y7 = diag, o7 (i1,) = diag(, o)e7(Fno)- (17)

o Ay is the incidence matriz of the branch graph B = (N, L), which is

given by
+1 iflp=(n, ) el
AxB : Akn = -1 if gk = (,n) el (18)
0 otherwise

An example of Ay can be found in Fig. 2. Note that we can choose
directions of the graph branches arbitrarily.



Model of a Transformer Transformers allow stepping the voltage up
or down. In this lab, we will see how such devices can be incorporated into
the nodal admittance matrix. A transformer can be modelled by an ideal
transformer with a ratio 1 : n in series with a short-circuit impedance Z,.
(here in the secondary side), as shown in Fig. 3. Here, we neglected the
Vn,2

n,1

!

transformer’s shunt admittance, Y. Recall that, in this case, n =

L 1:n I Zsc
Vi % % vy Vs

Figure 3: Model of a transformer. The short-circuit impedance Zs. is re-
ferred to the secondary side.

As discussed in the lecture on the per-unit method, the complexity of
the transformer model depends on the choice of the base voltages V4 ; and
Vp2 on the primary and secondary side, respectively. If the base voltages
are chosen so that their ratio is equal to the nominal transformer ratio

Vi,2

b2 _ 19
Vi (19)

the per-unit equivalent circuit shown in Fig. 4 is obtained (i.e., a branch
element Y. = Zs_cl only). Note that the p.u. short-circuit admittance ys. is
obtained using chosen base values of the secondary side of the transformer.

Ysc

O O

Figure 4: Using two base voltages such that Vo = nV; ;.



Conversely, in the case when

Vb2
—= £ n, 20
Vit (20)

the per-unit equivalent circuit shown in Fig. 5 is obtained (i.e., a complete
m-section equivalent) where

()
Vb1 '

MyYsc

O

Figure 5: Using two base voltages such that Vo # nV; ;.

O

Property. In per-unit, short-circuit impedances z., and z7, referred to the
primary and secondary side of a transformer with ratio % = n, respec-
tively, are related as Y
e = e
m

(22)
@) !
Vo1 )
Proof. Short-circuit impedance seen from primary and secondary sides, Z’
and 2"

where m is the per-unit transformer ratio, m = n (
o, Tespectively, in absolute units are related as:

Zl. =

1 7!
sc EZSC' (23)
erefore, in per-unit, wi ase voltages V1 and Vo and base power Ap
Therefore, in p t, with b Itages Vj, d V, d base p Ay,
one reads:
71! 71 1 —7n

gl e o e L L g (g

O Zy Ve Veu Ve n2 (Ye2 e m2e

Ay Ay V2 Vo1



Corollary. If the base voltages ratio is equal to the transformer’s ratio,

% = n, the per-unit short-circuit impedances referred to the primary and

secondary side are equal:
Z. =20 (25)

sc

Proof. 1t follows directly from (24), since for % = n the per-unit trans-

former ratiois m =1. B

Note that the property holds for arbitrary base power, Ay > 0. If we choose
Vog = Vi and Vo = V9, then obviously, both per-unit short-circuit
impedances, referred to primary and secondary sides, are equal. That is the
reason why on the nameplate of a transformer, it is usually not specified
which side the short-circuit per-unit impedance is referred to.

2.3 References

1. John J. Grainger and William D. Stevenson, “Power System Analysis”,
McGraw-Hill, 1994.

2. Leon O. Chua and Pen-Min Lin., “Computer-Aided Analysis of Elec-
tronic Circuits: Algorithms and Computational Techniques”, Prentice-
Hall, 1975.



3 Exercises

3.1 Calculation by Hand

In this part of the lab, you will compute the nodal admittance matrix of the
small-scale power grid shown in Fig. 6. It consists of six buses B1-B6, which
are connected by five lines L1-L5. The nominal voltage is 4.16 kV (line-
to-line, RMS). The lines are represented by m-section equivalents, which are
characterized by the transmission line parameters R', X', and B’ along with
the line length [. These parameters are listed in Tab. 1.

B3
L2
B1 B2 B4 B6
| L1 L3 L5 I
L4 BS

Figure 6: Topology of the small-scale power grid.

Table 1: Electrical parameters of the small-scale power grid.

Line From To R (&) X' (&) B (&) 1(km)
L1 Bl B2 0.151 0.2908  1.196-107¢ 1.2
L2 B2 B3 0.122 0331  1.231-1076 14
L3 B2 B4 0.143 0.324 1.215-107% 1.1
L4 B2 B5 0.169 0.254  1.137-107% 0.7

L5 B4 B6 0.173 0.325 1.225- 1076 2




Q1/ Construct the incidence matrix Ag of the power grid. In doing so,
respect the numbering of the buses and lines according to Fig. 6. How many
different matrices Ag can we construct for such numbering?

[A1]

Q2/ Consider the per-unit base given by 4y = 6 MVA and Vj, = 4.16 kV.
Calculate the following quantities for the power grid (all in p.u.):
i. The primitive branch admittance matrix Y .
ii. The primitive shunt admittance matrix Y.
iii. The nodal admittance matrix Y. Here, you are encouraged to use

(13)~(14).

For the sake of simplicity, list only the non-zero elements of these matrices
(i.e., the diagonal elements of Y, and Y7, and the non-zero elements of Y).

[A2]

Suppose that the operating voltage of only line L5 needs to be increased
in order to augment its power transfer capacity. More precisely, the nom-
inal voltage shall be increased from 4.16 kV to 4.50 kV. To this end, two
transformers are installed at the ends of the line as shown in Fig. 7. The
electrical parameters of the transformers are listed in Tab. 2.

10
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Figure 7: Modified topology with added transformers.

Component Parameters
TF1 A, =10 MVA, V,, 1 = 4.16 kV, V,, 2 = 4.50 kV,
2se = 6%, cos g = 0.22
TF2 A, =10 MVA, V,, 1 =420 kV, V,, 2 = 4.50 kV,
Vi = 5%, Paw — 140 kW

Table 2: Electrical parameters of the two transformers.

Q3/ The new topology is given in Fig. 7.

(a) Construct the new incidence matrix Ag (respect the numbering of the
buses and lines according to Fig. 7).

(b) The transformers now introduce different voltage levels in the grid.
Which conditions must be satisfied such that the transformers in the
p-u. system can be represented by the simple model shown in Fig. 47
How many different solutions for (V4,1, Vj 2, V4.3) can you propose?

(c) Taking into account the conditions from (b), if we set V;; = 4.16 kV,
what are the values of V}, 2 and Vj, 37

11



[A3]

Consider the base values Ay = 6 MVA and V,; = 4.16 kV, and V; 5 and
Vp,3 determined in the previous question.

Q4/ Calculate the equivalent circuit parameters of TF1 and TF2.

[A4]

12



Q5/ Calculate the following quantities for the modified power grid (all
in p.u.):

i. The primitive branch admittance matrix Y .
ii. The primitive shunt admittance matrix Y.

iii. The nodal admittance matrix Y.

As before, list only the non-zero elements of these matrices.

[A5]

13



3.2

Calculation using MATLAB

In this part of the lab, you will compute the nodal admittance matrix using
a simple MATLAB toolbox'. Download the MATLAB source code from

https://moodle.epfl.ch/mod/folder/view.php?id=1288651a94

The folder contains the following items:

The script main.m, which calculates the nodal admittance matrix Y.

Two configuration files data_lines.txt and data_transformers.txt,
where you will have to specify the electrical parameters of the grid.

Two template functions build_lines.m and build_transformers.m,
where you will have to write code to construct the equivalent circuits
of the lines and transformers.

Two auxiliary functions build_parameters.m and print_matrix.m,
which you do not need to edit.

The calculations are done in 4 steps, which are briefly explained now.

Step 1: Electrical Parameters

In the first step, the electrical parameters of lines and transformers are read
from data_lines.txt and data_transformers.txt, respectively.

Each row in data_lines.txt corresponds to a line of the power grid,
and contains the following entries (separated by tabulators):

. Index of the bus where the line starts.
. Index of the bus where the line ends.
. Per-unit-length resistance R’ in Q/km.

1
2
3
4.
5
6

Per-unit-length reactance X’ in Q/km.

. Per-unit-length susceptance B’ in S/km.

. Length [ in km.

1For those who are not familiar with Matlab, a general tutorial is available online under
https://ch.mathworks.com/help/index.html.

14
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7. Base voltage Vj, for the line in V.

Each row in data_transformers.txt corresponds to a transformer in
the power grid, and contains the following entries (separated by tabulators):
Index of the bus where the primary side is connected.

Index of the bus where the secondary side is connected.
Nominal power A,.

Nominal voltage V1 on the primary side.

Nominal voltage V, 2 on the secondary side.
Short-circuit resistance 7. in p.u.

Short-circuit reactance x,. in p.u.

Base voltage V}, 1 on the primary side in V.

© 0 NS e W

Base voltage V}, 2 on the secondary side in V.

One line is already configured in the files provided with the template code.

Step 2: Per-Unit Models

In the second step, the per-unit models of lines and transformers are built.
The base power A; needs to be specified:

% !'!! put the correct base value here !!!
A_b = 6e6; % base value for the power in VA
P

The w-section equivalent circuits of lines and transformers are constructed
by the functions build_lines and build_transformers, respectively. Each
function builds an array of structs with the following fields (see Fig. 8)

e i: the start node of the line.

e j: the end node of the line.

e Y_ij: the branch admittance between start node ¢ and end node j.

Y_i_ij: the shunt admittance on the side of the start node .

Y_j_ij: the shunt admittance on the side of the end node j.

15
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Figure 8: m-section equivalent in the MATLAB script.

In the files provided with the template code, only the function interfaces, as
well as some basic functionality, are given. You will be asked to implement
the rest later on. Please add your own code only where indicated by:

Yo kK ok ok k ok ok k
% '!! write your own code here !!!
% kkokokokokokokokok

Step 3: Incidence Matrix & Primitive Admittance Matrices

In the third step, the incidence matrix Ay and the primitive admittance ma-
trices Y7 and Y are built from the 7-section equivalents. This is done by
the auxiliary function calculate_parameters. You do not need to change
anything here, but you can of course take a look at the code if you like.

Step 4: Nodal Admittance Matrix

In the fourth step, the nodal admittance matrix is computed using (15):

Y=A" *xYL=x*xA+ YT,

16



Furthermore, the diagonal elements of Y, Y7, and nonzero upper di-
agonal elements of Y are printed to the console using the auxiliary function
print_matrix.

Now, it is your turn to write some code and to perform some analyses.
First, finish the code that builds the m-section equivalents:

Q6/ Complete the functions build_lines and build_transformers
where indicated, and paste your code here.

[A6]

Then, configure the original power grid as specified in Fig. 6 and Tab. 1:

Q7/ Complete the file data_lines.txt with the missing lines L2-L5,
and paste the content of the completed file here. Run the script main.m and
observe the console output in step 4. Are the results in accordance with
what you have obtained in Q27

[A7]

Do the same for the modified power grid treated in Q3 and Q5:

Q8/ In order to equip line L5 with transformers (see Sec. 3.1), modify
the file data_lines.txt and complete the file data_transforers.txt, and
paste the contents of the updated files here. Run the script main.m again,
and observe the console output in step 4. Are the results in accordance with
what you have obtained in Q57

17



[A8]

Finally, let’s analyse the results when only one base voltage is used for
the modified grid.

Q9/ Modify the files such that unique base voltage V3, = V1 = 4.16 kV
is used for the entire grid. Run the script main.m again. Observe the dif-
ferences in Y., Y7, and Y. How many elements of each of these matrices
differ from the corresponding elements of matrices from the previous ques-
tion? List them (including numerical values).

[A9]

After the coding part, three theoretical questions conclude the lab.

Q10/ Consider a network with K voltage levels. Is it always possible to
set base voltages (V,1,..., Vs k), such that all the transformers are repre-
sented by simple models in per unit system (refer to transformer models in
Fig. 3 and Fig. 4) if the network is

(a) radial
(b) meshed?

18



[A10]

Q11/ To establish a coherent per-unit system, in power system analysis,
one usually chooses arbitrarily base power A, for the entire system and a
base voltage V4, for each voltage level, and then derives all the other base
quantities (I, Zp, ¥3). What other possibilities could exist, and how many
alternatives do we have? For instance, can we arbitrarily choose Ay and Z,
and derive all the other base quantities?

[A11]

19



Q12/ Is it possible to fully reconstruct (i.e., obtain all the elements) ad-
mittance matrix Y € CN*N_ N > 2, by knowing only its diagonal elements
Yi1,...,Ynyy and the primitive shunt admittance matrix Y7 (the incidence
matrix Ag is unknown)? If not, what is the minimum number of additional
non-diagonal elements necessary to reconstruct it? Detail your reasoning.

[A12]

20
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