SMART GRIDS TECHNOLOGIES
MoODULE 1, LAB 1 - 24/02/2025
DFT-BASED SYNCHROPHASOR ESTIMATION:
DFT, ALIASING AND SPECTRAL LEAKAGE

1 Organization of the lab

This laboratory session will cover the fundamentals of DFT-based syn-
chrophasor estimation, including DFT computation, aliasing and spectral
leakage. The laboratory will be divided into two parts. Part A will expand
on Lecture #1 and #2, exploring the following topics:

e The meaning of the Discrete Fourier Transform (DFT);

e How to select the DFT parameters (i.e., the sampling rate F and the
window length T') to analyse voltage and current waveforms typical of
power systems;

e How to avoid/reduce aliasing.
Part B relates to Lecture #3 and focuses on the following topics:
e How to apply special window functions to DFT;

e How special window functions can reduce the effects of spectral leak-
age;

e How to select the most-suited window function.

At the end of this laboratory session you will develop instruments and prac-
tical knowledge that will be used during the next lab sessions.



This report will not be graded; however, its submission is mandatory.
The purpose of the questions within this document is to enhance your com-
prehension of the subject matter. Your acquired knowledge from all three
laboratories of Module 1 will be evaluated in a quiz scheduled for Mon-
day, March 17th from 9:15 to 10:00. The deadline for submission of the
reports is Sunday, March 16th at 23:55.

2 Theoretical Background

2.1 Signal sampling and aliasing

As discussed in Lecture #1 and #2, in order to implement signal processing
algorithms, the analog signal representing a generic power system quantity
has to be converted into its digital equivalent by sampling. The sampled
signal is ideally represented by an array of equally-spaced samples by the
discrete sampling time Ts = 1/Fj.

To be able to reconstruct the analog signal based on the acquired sam-
ples, the signal has to be sampled correctly. In particular, the main source
of error related to sampling is called aliasing which may cause the frequency
replica of the spectrum image to overlap. Based on Nyquist-Shannon sam-
pling theorem, in order to prevent aliasing, the input signal needs to be
sampled with a sampling frequency that is at least 2 times higher than the
maximum frequency component of the signal (Lecture #2):

F, > 2F,, (1)

2.2 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a method used to determine the
frequency content of a discrete signal sequence, obtained by periodic sam-
pling of a continuous signal in time-domain. As covered by Lectures #1 and
#2, the DFT implements a Fourier transform at a discrete set of frequencies
based on the choice of 2 parameters:

e the sampling rate F
e the window length T

In particular the DFT elements are separated by the frequency interval A f,
also called frequency resolution (Lecture #2):
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being N the number of samples per window and T the sampling time.
The DFT for frequency bin k is computed as follows (Lecture #2, slide

10):
N

Z ) - WK k€ [0,N —1] (3)

where z(n) is the sampled 51gnal under analysis, w(n) is the discrete window-
ing function, k and n are the indexes of the frequency bins and time-domain
samples, respectively, B is the normalization factor:
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and Wy is the twiddle factor:
Wy = e 927/N = cos(2n/N) — jsin(2r/N) (5)

Whr = e 72N — cos(2mkn/N) — j sin(2rkn/N) (6)

Note that the DFT can be expressed in terms of the real and imaginary
components as follows:
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2.3 Signal windowing

When you use the DFT to measure the frequency content of your data, you
will have to base the analysis on a finite set of data that can be properly
processed by existing computers. Windowing is a technique used to section
the measurement data into finite-length portions, and you will learn more
about it in Lecture #3.

The DFT assumes both the time domain and the frequency domain
representations as circular topologies, meaning that the two endpoints of
the time waveform are interpreted as though they were connected together.
However, the finiteness of the sampling record may result in a truncated
waveform with different spectral characteristics from the original continuous-
time signal, and the finiteness can introduce discontinuities into the mea-
sured data. To minimise their effect, we can apply a special windowing



function to the measured signal in the time domain. This will make the
endpoints of the waveform meet and therefore result in a continuous wave-
form without sharp transitions.

There are different types of window functions available, each with their
own advantages and preferred application. Most windows are bell-shaped,
beginning and ending at zero and rising to unity in the middle. Generally,
the narrowest windows in the time domain have the widest main lobes in
the frequency domain, and vice-versa. During this laboratory we will use
the rectangular window, defined as:

w(n)=1, ne[0,N —1] 9)
and the Hanning (Hann) window defined as:
w(n) = 0.5 (1 —cos(2mn/N)), ne€[0,N —1] (10)

Based on the convolution theorem, the DFT of the windowed signal ex-
hibits a pair of scaled, shifted and rotated versions of the DF'T of the window
function: the so-called positive image shifted up to the tone frequency fo,
the so-called negative image shifted down to — fo (Lecture #3):

X(k) =X (k) + X (k) (1)

2.4 Spectral leakage

The DFT assumes that the signal is coherently sampled, that is to say
that the finite data set under analysis contains an integer number of periods
of a periodic signal. When this condition is not met (this happens almost
all the time) spectral leakage arises. You will learn more about it in Lecture
#3.

In the case of incoherent sampling, the sampling process is not syn-
chronised with the fundamental tone under analysis (fo/Af ¢ N) and, there-
fore, the DFT bins are not aligned with the signal frequency. This impacts
the DFT values of the main lobe (i.e., scalloping loss) and results in nonzero
DFT components for all frequency values (i.e., long range spectral leakage).
The tails of the negative image of the spectrum tones also leak into the
positive frequency range and bias the DFT bins used to perform any sig-
nal processing technique (for instance, interpolation). In case of multi-tone
signals, this spectral interference is even more severe as it is replicated for
each tone in the signal. Therefore, the negative and the positive images of
all tones may overlap.



To minimize the effects of spectral leakage, we can apply a special win-
dowing function to the acquired signal in the time domain in order to min-
imize the window’s edge effects. The advantage is that in the frequency-
domain the tails of every tone image will be smaller, therefore long range
spectral leakage effect will be minimized. The drawback is that the main
lobe of every tone image will become wider which might make it challenging
to distinguish two adjacent tones.

2.5 References (in Additional Material)

e Chapter 3 “DFT-based synchrophasor estimation processes for Pha-
sor Measurement Units applications: algorithms definition and perfor-
mance analysis”, in the book “Advanced Techniques for Power System
Modelling, Control and Stability Analysis” edited by F. Milano, IET
2015.

3 LabVIEW Coding

From Moodle, download and extract the folder “SGT-PMUs - Lab1” and
open the LabVIEW project called “SGT-PMUs.luproj”. At MyComputer
level, this project includes a VI called “Labl.vi”, whereas at MyComputer/
Dependencies level it includes VIs called “DFT_bin.vi” and “Windowing.vi”.

TASK 1 - DFT bin computation: Open the subVI called
“DFT_bin.vi”. Use the preconfigured input/output layout to imple-
ment a subVI that computes the k-th DFT bin of the spectrum of
a signal using a set of samples representing a portion of an acquired
waveform.

TASK 2 - Windowing: Open the subVI called “Windowing.vi”.
Use the preconfigured input/output configuration to implement a

subVI that produces the rectangular and the Hanning window pro-
files.



4 Exercises

4.1 Part A

Open the VI called “Labi.vi”. For Part A, let us only consider the Analyze
signals tab and the rectangular windowing function. For part A, focus on
the rectangular window (blue). Fix the sampling rate at 500 Hz.

Q1/ Generate 100 ms of a single-tone signal at 50 Hz. Describe the
spectrum and explain its relevant properties (Af, phase, etc.)

Note that, although a continuous line is used to show the spectrum, the
spectrum is discrete and only yields spectral coefficients at specific
sampled frequencies (see the point markers).

The magnitude of the DFT spectrum is characterized by two peaks,
[A1] centered at 50 and -50 Hz. The 2 maxima can be interpreted as the
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Q2/ Generate 100 ms of a multi-tone signal with a fundamental tone at
50 Hz and a 10% harmonic tone at 100 Hz. Describe the spectrum and its
relevant properties.

A new tone (positive and negative image) with lower (10%) amplitude
has appeared in the spectrum at +-100 Hz.

Both tones are coherently sampled (each tone is an integer multiple of
Delta_f) so there is no spectral leakage present. The maximum
[A2] frequency is f_h=100 Hz<F_s/2 so no aliasing is present.




Q3/ Generate 100 ms of a multi-tone signal with a fundamental tone at
50 Hz and a 10% harmonic tone at 400 Hz. a) Describe the spectrum and
explain why there is a tone at 100 Hz. What phenomena is present? b) How
can this analysis be improved?

A tone (positive and negative image) with lower (10%) amplitude is still
present in the spectrum at +-100 Hz.

This is caused by the Aliasing effect. Since our sampling rate does not
satisfy the Nyquist-Shannon theorem, the spectrum copies due to
sampling are overlapping and interfering each other. Specifically, the
[A3] image at 100 Hz, corresponds to the 400 Hz tone of the next spectral
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Q4/ Generate a 50 Hz single-tone signal and change the window length
in the range (20:dt:200) ms where dt=20 ms. How does the window length
affect the spectrum?

By enlarging the window length, we enhance the Delta_f. However,
since the signal is always coherently sampled (each window length
contains an integer multiple of cycles of f0), its energy is exactly
centered in two well-distinguished bins, characterized by 1 p.u.
amplitude. With a signal exactly at 50 Hz, there is no benefit in
[A4] increasing the window length.

4.2 Part B

In Part B, we will compare the performance of the rectangular (blue) and
of the Hanning (red) windowing functions. Set the sampling frequency
to 5 kHz and the window length to 100 ms. Run the vi and compute
the DFT spectra of the two window functions.

Now open the Window function tab. As you can see in the block diagram
of “Labl.vi”, the window length IV is increased by appending to the window
function 10- N zeros. This operation is called “zero-padding” and enables us
to increase the frequency resolution of the DFT spectrum for visual appeal
(the spectrum is not actually improved as no new information is added).



Q5/ Describe the differences between the two windows. How do you
suspect these differences will affect the DFT analysis?

The Hanning window is the best in terms of spectral leakage

suppression because it has the lower side lobe amplitude (which

attenuates the edge discontinuities when analyzing incoherently

sampled signals). By contrast, the rectangular can be considered the

best in terms of its capability to distinguishing nearby tones, as it has the
narrowest main lobe.

[A5]

Now switch back to the Analyze signals tab. Set the window length
to 60 ms. Note that the magnitude of the three highest amplitude bins is
provided in the bottom-left table. When answering the following questions,
focus on the magnitude rather than on the phase.

Q6/ Generate a single-tone signal at 50 Hz. Describe the differences in
the spectra and report the values of the highest bin for each window. In this
situation, is there an advantage to use one window over the other? Justify
your answer.

The signal at 50 Hz is coherently sampled with a 60 ms window,
therefore, no spectral leakage occurs for both windows. The frequency
resolution is 16.67 Hz. The bin values for the rectangular window are
[0,1,0]. For the Hanning window they are [0.5,1,0.5]. Both windows are
equivalent in this case. The presence of honzero side bins for the

[A6] Hanning window (magnitude 0.5) do NOT represent spectral leakage
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Q7/ Generate a single-tone signal at 51.8 Hz. Describe the differences
in the spectra and report the values of the highest bin for each window.
In this situation, is there an advantage to use one window over the other?
Justify your answer.

The signal is not coherently sampled, therefore, all the frequencies will
exhibit a non-zero projection on the entire basis set. The majority of the
spectrum energy will be concentrated around the third bin.

Moreover, long-range spectral leakage occurs as the tails of the
negative image of the 51.8 Hz tone leak into the positive frequency DFT
bins. This phenomenon is more evident in the case of using the
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Q8/ Generate a single-tone at 47.9 Hz. Change the window length to
20, 60, and 100 ms. Describe the differences in the spectra and discuss the
impact of the window length and the windowing function.

The higher the window length, the finer the frequency resolution. This
allows for the tones to be better distinguished. However, none of the
selected windows leads to coherent sampling, so spectral leakage
always occurs.

[Ag] Comparing it to the 51.8 Hz, in this (47.9 Hz) case the effect of spectral
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Q9/ Generate 60 ms of a multi-tone signal with a fundamental tone
at 47.9Hz and a 10% inter-harmonic tone at 80 Hz. Describe the spectra.
Which window is better for this analysis? Justify your answer.

The signal is not coherently sampled because the window contains a
non-integer number of cycles of both tones in the signal so spectral
leakage is present.

With the Rectangular window, it is possible to detect the two tones,
because of its narrower main lobe.

\Alith tho Hanninawwindowe it ic harvdar ta idantifiz tha hain tonac ac a
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Q10/ Generate 60 ms of a multi-tone signal with a fundamental tone at
47.9 Hz and a 10% inter-harmonic tone at 25 Hz. Which window is better
for this analysis? How does the spectrum change compared to Q9?7 Give an
explanation.

The signal is not coherently sampled because the window contains a
non-integer number of cycles of both tones in the signal so spectral
leakage is present.

This is a particularly challenging signal to analyze. While the rectangular
window is generally preferred to distinguish between two tones, the fact

that tha tanac ara claca ta tha NC comnanant and ara incnharanthy
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What are the take-home messages you have learned during this labo-
ratory session regarding the practical implementation of DFT-based signal
processing tools, with respect to the following phenomena?

Q11/ Aliasing.

Aliasing is caused due to the presence of components characterized by

frequencies higher than the Nyquist-Shannon frequency. Its effect is that
the spectrum copies overlap in the frequency domain and the signal can
not therefore be accurately reconstructed in the time domain.

[Al11]
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Q12/ Incoherent sampling.

Incoherent sampling means that the frequency of the tone under
analysis is not an integer multiple of the frequency resolution.

Incoherent sampling determines two effects:
1. Scalloping loss, that can be mitigated by interpolation (see IpDFT

lactiira)
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Q13/ Windowing.

Windowing is a technique used to:
- shape the time portion of your measurement data;
- minimize the edge effects that cause the spectral leakage.

] When you use the DFT to measure the frequency content of data, you

will havia tn haca tha analvucic An a finita cat nf data Tho DET acciimaoc

[A13

Q14/ Spectral leakage.

Spectral leakage is typically visible when the sampling process is not
synchronised with the fundamental tone of the signal under analysis
(non-coherent sampling) and the DFT is computed over a non-integer
number of cycles of the input signal.

[A14]
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	[A1]: Note that, although a continuous line is used to show the spectrum, the spectrum is discrete and only yields spectral coefficients at specific sampled frequencies (see the point markers).

The magnitude of the DFT spectrum is characterized by two peaks, centered at 50 and -50 Hz.  The 2 maxima can be interpreted as the positive and negative image of the Fourier spectrum of the 50 Hz tone. In the two bins, the phase is -pi/2 and +pi/2, respectively. These values are due to the fact that we are generating a sinusoidal signal with 0 phase, that can be interpreted as a cosinusoidal signal with -pi/2 phase. (Indeed, if we generate a sinusoidal signal with phase pi/2, the phase of the two peaks is 0). The DFT phase is relative to a cosine wave which corresponds to the real part. When applying the DFT, we are observing the correlation of the input signal x(t) with exp(-jwt)=cos(wt)-j sin(wt). Since X(w)=sum[x(t) cos(wt)]-j sum[x(t) sin(wt)], if we input x=sin(wt) it will be fully correlated to the second term while the first term will be 0. Therefore, the result will be complex: -j=exp(-j pi/2) which corresponds to a -90 degrees phase shift.
The rest of the bins are characterized by zero amplitude and random phase (the phase of a zero-amplitude complex number is undefined).
Since the window length is 100 ms, the frequency resolution (Delta_f) is 10 Hz. 
DF = 1/T = 1/0.1 s = 10 Hz
	[A2]: A new tone (positive and negative image) with lower (10%) amplitude has appeared in the spectrum at +-100 Hz. 

Both tones are coherently sampled (each tone is an integer multiple of Delta_f) so there is no spectral leakage present. The maximum frequency is f_h=100 Hz<F_s/2 so no aliasing is present.
	[A3]: A tone (positive and negative image) with lower (10%) amplitude is still present in the spectrum at +-100 Hz. 
This is caused by the Aliasing effect. Since our sampling rate does not satisfy the Nyquist-Shannon theorem, the spectrum copies due to sampling are overlapping and interfering each other. Specifically, the image at 100 Hz, corresponds to the 400 Hz tone of the next spectral copy. 
500 Hz - 400 Hz = 100 Hz 
By properly tuning the Sampling rate Fs, we could control the spectrum bandwidth and therefore remove the aliasing effect. In this case, the minimum sampling rate Fs that would avoid aliasing and respect the Nyquist-Shannon limit is 400*2=800 Hz. Typically a good approach is to take a sampling frequency one order of magnitude bigger than the maximum analyzed frequency component. 

Note the phase values obtained in this case compared to Q2.
	[A4]: By enlarging the window length, we enhance the Delta_f. However, since the signal is always coherently sampled (each window length contains an integer multiple of cycles of f0), its energy is exactly centered in two well-distinguished bins, characterized by 1 p.u. amplitude. With a signal exactly at 50 Hz, there is no benefit in increasing the window length.
	[A5]: The Hanning window is the best in terms of spectral leakage suppression because it has the lower side lobe amplitude (which attenuates the edge discontinuities when analyzing incoherently sampled signals). By contrast, the rectangular can be considered the best in terms of its capability to distinguishing nearby tones, as it has the narrowest main lobe. 
	[A6]: The signal at 50 Hz is coherently sampled with a 60 ms window, therefore, no spectral leakage occurs for both windows. The frequency resolution is 16.67 Hz. The bin values for the rectangular window are [0,1,0]. For the Hanning window they are [0.5,1,0.5]. Both windows are equivalent in this case. The presence of nonzero side bins for the Hanning window (magnitude 0.5) do NOT represent spectral leakage but are a consequence of the windowing function,i.e. its wider main lobe.
	[A7]: The signal is not coherently sampled, therefore, all the frequencies will exhibit a non-zero projection on the entire basis set. The majority of the spectrum energy will be concentrated around the third bin. 
Moreover, long-range spectral leakage occurs as the tails of the negative image of the 51.8 Hz tone leak into the positive frequency DFT bins. This phenomenon is more evident in the case of using the rectangular window.
For the Hanning window, the effects of long range leakage are less evident, because the tails of the negative image are smaller since they are attenuated by the low sidebands of the Hanning window.
	[A8]: The higher the window length, the finer the frequency resolution. This allows for the tones to be better distinguished. However, none of the selected windows leads to coherent sampling, so spectral leakage always occurs. 

Comparing it to the 51.8 Hz, in this (47.9 Hz) case the effect of spectral leakage coming from the tails of the negative image of the tone is more evident because the distance between the negative and the positive images is smaller (the tone is closer to DC) therefore the tails of the negative image have a greater impact on the main tone of the positive image. 
With the larger window lengths, the Hanning window reduces the long-range spectral leakage better than the rectangular window (observe how the frequency bins for the Hanning window are close to zero). However, a Hanning window of 20 ms is characterized by a non-zero |X(kmax-1)| positive image bin which corresponds to DC. Also, the non-zero |X(kmax+1)| of the negative image bin corresponds to DC. Therefore, this window shape results in a strong DC component, that is not actually present in the signal. The rectangular window, characterized by a narrower main lobe, mitigates this effect.  
	[A9]: The signal is not coherently sampled because the window contains a non-integer number of cycles of both tones in the signal so spectral leakage is present. 

With the Rectangular window, it is possible to detect the two tones, because of its narrower main lobe.
With the Hanning window, it is harder to identify the two tones as a result of the wider main lobe. On the other hand it better attenuates the long range spectral leakage.
	[A10]: The signal is not coherently sampled because the window contains a non-integer number of cycles of both tones in the signal so spectral leakage is present.

This is a particularly challenging signal to analyze. While the rectangular window is generally preferred to distinguish between two tones, the fact that the tones are close to the DC component and are incoherently sampled means that the influence of the negative spectrum from long-range leakage is significant. The two tones are therefore difficult to detect accurately for both windows. 
	[A11]: Aliasing is caused due to the presence of components characterized by frequencies higher than the Nyquist-Shannon frequency. Its effect is that the spectrum copies overlap in the frequency domain and the signal can not therefore be accurately reconstructed in the time domain.

To avoid this effect, the sampling frequency should be at least 2x the largest frequency component in the given signal. Alternatively, anti-aliasing filters can be used to remove any frequency tones above the Nyquist limit.
	[A12]: Incoherent sampling means that the frequency of the tone under
analysis is not an integer multiple of the frequency resolution. 

Incoherent sampling determines two effects: 
1. Scalloping loss, that can be mitigated by interpolation (see IpDFT lecture)
2. Long range spectral leakage, that can be mitigated by using special windowing functions. 

In case of incoherent sampling, the peak value of the continuous spectrum of the tone under analysis will not correspond to a specific DFT bin, but will be located between two consecutive DFT. However, we can only compute the DFT at specific frequencies. Based on these DFT bins, we should use techniques (for instance interpolation) to detect what is the actual location of the peak of the continuous spectrum. 

Furthermore, incoherent sampling results in long-range spectral leakage where the tails of the negative image of the spectrum main tone leak into the positive frequency range and bias the DFT bins used to perform the interpolation. We can mitigate this effect by using bell-shaped windowing functions and therefore mitigate the effect of the tails of the tones under analysis. 
	[A13]: Windowing is a technique used to:
 - shape the time portion of your measurement data;
 - minimize the edge effects that cause the spectral leakage.

When you use the DFT to measure the frequency content of data, you will have to base the analysis on a finite set of data. The DFT assumes that the finite data set contains an integer number of periods of a periodic signal. For the DFT, both the time domain and the frequency domain are circular topologies, so the two endpoints of the time waveform are interpreted as though they were connected together. 
Therefore, the finiteness of the sampling record may result in a truncated waveform with different spectral characteristics from the original continuous-time signal, and the finiteness can introduce discontinuities into the measured data. To minimize their effect, we can apply a special windowing function to the measured signal in the time domain. This will make the endpoints of the waveform meet and therefore result in a continuous waveform without sharp transitions.
There are different types of window functions available, each with their own advantage and preferred application. In particular most windows are bell-shaped, beginning and ending at zero and rising to unity in the middle. Generally, the narrowest windows in the time domain have the widest main lobes in the frequency domain, and vice-versa. 
	[A14]: Spectral leakage is typically visible when the sampling process is not synchronised with the fundamental tone of the signal under analysis (non-coherent sampling) and the DFT is computed over a non-integer number of cycles of the input signal. 

The consequences of this are 1) scalloping loss and 2) long-range spectral leakage.
1) Scalloping loss is the impact on the computed DFT value of the main  tone which no longer corresponds to the true magnitude of the tone as its frequency lies somewhere between the computed frequency bins. This can be fixed using interpolation techniques.

2) Long-range spectral leakage refers to the fact that, in the case of incoherent sampling, all frequencies will exhibit non-zero projections on the entire basis set. The resulting tails of the images (positive and negative) of any tone can overlap in the frequency domain and bias the spectrum.



