
Phasor Measurement Units

X = X ⋅ e!" = A ⋅ e!" = A ⋅ cos ψ + j sin ψ

• X = A = X#$% + X&'%

• arg X = ψ = tan() *!"
*#$

𝑋 𝑘 ≜
2
𝐵 7
+,-

.()

𝑤 𝑛 𝑥 𝑛 𝑊.
/+ , 0 ≤ 𝑘 ≤ 𝑁 − 1

• Normalization factor 𝐵 = ∑+,-.()𝑤(𝑛)
• Twiddle factor 𝑊. = 𝑒(0%1/.

𝑤3 𝑛 = 1, 𝑛 ∈ [0, 𝑁 − 1]

I𝛿 = 𝜀
𝑋(𝑘4 + 𝜀)

𝑋(𝑘4) + 𝑋(𝑘4 + 𝜀)

• 𝜀 = ±1 = 𝑠𝑖𝑔𝑛( 𝑋 𝑘4 + 1 − 𝑋 𝑘4 − 1 )

I𝑓- = (𝑘4+ I𝛿)Δ𝑓

I𝐴- = 𝑋(𝑘4)
𝜋 I𝛿

sin 𝜋 I𝛿
T𝜑- = ∠𝑋 𝑘4 − 𝜋 I𝛿

𝑤5 𝑛 =
)(678 %&'

(
% 	,	𝑛 ∈ [0, 𝑁 − 1]

I𝛿 = 𝜀
2 𝑋(𝑘4 + 𝜀) − 𝑋(𝑘4)
𝑋(𝑘4) + 𝑋(𝑘4 + 𝜀)

• 𝜀 = ±1 = 𝑠𝑖𝑔𝑛( 𝑋 𝑘4 + 1 − 𝑋 𝑘4 − 1 )

I𝑓- = (𝑘4+ I𝛿)Δ𝑓 

I𝐴- = 𝑋(𝑘4)
𝜋 I𝛿

sin 𝜋 I𝛿
I𝛿% − 1

T𝜑- = ∠𝑋 𝑘4 − 𝜋 I𝛿

IpDFT - Rectangular Window

IpDFT - Hann Window

𝐹𝐸 = 𝑓49:; − 𝑓<=>9

𝑅𝐹𝐸 = (
𝑑𝑓
𝑑𝑡)49:;−(

𝑑𝑓
𝑑𝑡)<=>9

𝑇𝑉𝐸 =
( _𝑋39−𝑋39)% + ( _𝑋?4 − 𝑋?4)%

𝑋39% + 𝑋?4%

• Estimated phasor _𝑋39+𝑗 _𝑋?4
• True phasor 𝑋39 + 𝑗𝑋?4

Time error: ∆t t = a + b c t + D@ c
A%

% + ϵ(t)
• a – initial time error
• b = ∆F8/F8 – normalized frequency error
• D@ – frequency drift constant
• ϵ t  – noise

PTP offset (𝑜) and propagation delay (𝑑)

• 𝑡;), 𝑡4) − sync message timestamps
• 𝑡;%, 𝑡4% − delay_req message timestamps

Discrete Fourier Transform

o =
ts1 − tm1( )− tm2 − ts2( )

2

d =
ts1 − tm1( )+ tm2 − ts2( )

2

Error Metrics

Time Synchronization

1



Nodal Admittance Matrix and Per-Unit

i𝑌++ = i𝑌𝓉) + ∑ℓ*,(+,⋅) i𝑌ℓ* + ∑ℓ*,(⋅,+) i𝑌ℓ*  (𝑛 ∈ 𝒩)

i𝑌4+ = l−
i𝑌ℓ*
0

(∃ℓH= 𝑚, 𝑛 or ∃ℓH = 𝑛,𝑚 )
(otherwise)  

(𝑚, 𝑛 ∈ 𝒩, 𝑚 ≠ 𝑛) 
• 𝐀𝔅 – incidence matrix with elements

•  𝑎/+ = u
+1
−1
0

(if ℓH = (𝑛,⋅) ∈ ℒ)
(if ℓH = (⋅, 𝑛) ∈ ℒ)

(otherwise)

• xYℒ = diagℓ*∈ℒ i𝑌ℓ*  – primitive branch 
admittance matrix

• xY𝒯 = diag𝓉)∈𝒯 i𝑌𝓉)  – primitive shunt 
admittance matrix

• i𝑌ℓ*  – branch admittances 
• i𝑌𝓉)– shunt admittances
• 𝒩 – set of nodes 
• ℒ – set of lines 

• 𝐴M – per-phase base power
• 𝑉M – phase-to-ground base voltage

𝐼M =
𝐴M
𝑉M
, 𝑍M =

𝑉M
𝐼M
=
𝑉M%

𝐴M

!𝐘 = 𝐀𝔅" !𝐘ℒ𝐀𝔅 + !𝐘𝒯

Single-Phase Case

Three-Phase Case
• 𝐀𝔅 – incidence matrix with elements

• 𝐀𝔅,HN = u
+𝐈O
−𝐈O
0

(if ℓH = (𝑛,⋅) ∈ ℒ)
(if ℓH = (⋅, 𝑛) ∈ ℒ)

(otherwise)
i𝐘ℒ = diagℓ*∈ℒ i𝐘ℓ*  – primitive shunt admittance (block) matrix

i𝐘𝒯 = diag𝓉)∈𝒯 i𝐘𝓉)  – primitive shunt admittance (block) matrix

• i𝐘ℓ* 	– 3x3 branch admittance matrix
• i𝐘𝓉) – 3x3 shunt admittance matrix
• 𝒩 – set of three-phase (a,b,c) nodes 
• ℒ – set of three-phase (a,b,c) lines 

• 𝐴M – three-phase power base power
• 𝑉M – phase-to-phase  base voltage

𝐼M =
𝐴M
3𝑉M

, 𝑍M =
𝑉M
3𝐼M

=
𝑉M%

𝐴M

i𝐘ℓ* =

i𝑌ℓ*,:: i𝑌ℓ*,:M i𝑌ℓ*,:P
i𝑌ℓ*,M: i𝑌ℓ*,MM i𝑌ℓ*,MP
i𝑌ℓ*,P: i𝑌ℓ*,PM i𝑌ℓ*,PP

i𝐘𝓉) =

i𝑌𝓉),:: i𝑌𝓉),:M i𝑌𝓉),:P
i𝑌𝓉),M: i𝑌𝓉),MM i𝑌𝓉),MP
i𝑌𝓉),P: 𝑌𝓉),PM i𝑌𝓉),PP

𝑚 = 𝑛
𝑉!"
𝑉!#

$"

• 𝑍̅;P − short-circuit impedance
• i𝑌- − no-load admittance
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Numerical Solution of the Load-Flow

JPR JPX
JQR JQX
JVR JVX

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )

× ΔV '

ΔV ''

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν+1)

=
ΔP
ΔQ

Δ V 2( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )

JPR :

∂Pi
∂Vl

' =GilVi
' +BilVi

''

∂Pi
∂Vi

' = 2GiiVi
' + GilVl

' −BilVl
''( )

l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

JPX :

∂Pi
∂Vl

'' = −BilVi
' +GilVi

''

∂Pi
∂Vi

'' = 2GiiVi
'' + BilVl

' +GilVl
''( )

l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

JQR :

∂Qi

∂Vl
' = −BilVi

' +GilVi
''

∂Qi

∂Vi
' = −2BiiVi

' − BilVl
' +GilVl

''( )
l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

JQX :

∂Qi

∂Vl
'' = −GilVi

' −BilVi
''

∂Qi

∂Vi
'' = −2BiiVi

'' + GilVl
' −BilVl

''( )
l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

JVR :

∂ Vi
2( )

∂Vl
' = 0

∂ Vi
2( )

∂Vi
' = 2Vi

'

⎧

⎨

⎪
⎪

⎩

⎪
⎪

JVX :

∂ Vi
2( )

∂Vl
'' = 0

∂ Vi
2( )

∂Vi
'' = 2Vi

''

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Cartesian

Mixed

JPV JPϑ
JQV JQϑ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(ν )

× ΔV
Δϑ

⎡

⎣
⎢

⎤

⎦
⎥

(ν+1)

=
ΔP
ΔQ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν )

JPV :

∂Pi
∂Vl

=YilVi cos ϑ i −ϑ l −γ il( )

∂Pi
∂Vi

= 2YiiVi cosγ ii + YilVl cos ϑ i −ϑ l −γ il( )
l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

JPϑ :

∂Pi
∂ϑ l

=YilViVl sin ϑ i −ϑ l −γ il( )

∂Pi
∂ϑ i

= −Vi YilVl sin ϑ i −ϑ l −γ il( )
l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

JQV :

∂Qi

∂Vl

=YilVi sin ϑ i −ϑ l −γ il( )

∂Qi

∂Vi
= −2YiiVi sinγ ii + YilVl sin ϑ i −ϑ l −γ il( )

l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

JQϑ :

∂Qi

∂ϑ l

= −YilViVl cos ϑ i −ϑ l −γ il( )

∂Qi

∂ϑ i

=Vi YilVl cos ϑ i −ϑ l −γ il( )
l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Polar

∂Pi
∂Vl

=Vi Gil cosϑ il +Bil sinϑ il( )

∂Pi
∂Vi

= 2GiiVi + Vl
l≠i
∑ Gil cosϑ il +Bil sinϑ il( )

∂Pi
∂ϑ l

=ViVl Gil sinϑ il −Bil cosϑ il( )

∂Pi
∂ϑ i

= −Vi Vl
l≠i
∑ Gil sinϑ il −Bil cosϑ il( )

∂Qi

∂Vl

=Vi Gil sinϑ il −Bil cosϑ il( )

∂Qi

∂Vi
= −2BiiVi + Vl

l≠i
∑ Gil sinϑ il −Bil cosϑ il( )

∂Qi

∂ϑ l

= −ViVl Gil cosϑ il +Bil sinϑ il( )

∂Qi

∂ϑ i

=Vi Vl
l≠i
∑ Gil cosϑ il +Bil sinϑ il( )

𝐽QR:

𝐽SR:

𝐽QT:

𝐽ST:

Yil =Yile
jγil

- voltage at the i-th node, 𝑠 - number of nodes

- element il of the admittance matrix Y[ ]

Vi =Vi
' + jVi

''

Yil =Gil + jBil

- voltage at the i-th node;

- element il of the
admittance matrix Y[ ]

JPV JPϑ
JQV JQϑ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(ν )

× ΔV
Δϑ

⎡

⎣
⎢

⎤

⎦
⎥

(ν+1)

=
ΔP
ΔQ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν )

Pi = ViVlYil cos ϑ i −ϑ l −γ il( )
l=1

s

∑

Qi = ViVlYil sin ϑ i −ϑ l −γ il( )
l=1

s

∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

Pi =Vi
' GilVl

' −BilVl

''( )+Vi
'' BilVl

' +GilVl

''( )
l=1

s

∑
l=1

s

∑

Qi = −Vi
' BilVl

' +GilVl

''( )+Vi
'' GilVl

' −BilVl

''( )
l=1

s

∑
l=1

s

∑

⎧

⎨
⎪

⎩
⎪

𝑃+ = 𝑉+X
,-.

/

𝑉,(𝐺+, cos 𝜗+, + 𝐵+, sin 𝜗+,)

𝑄+ = 𝑉+X
,-.

/

𝑉,(𝐺+, sin 𝜗+, − 𝐵+, cos 𝜗+,)
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Vi =Vie
jϑ i

𝜗de = 𝜗d − 𝜗e



Branch Flow Model 𝑆%& −𝑍%&𝑖'01 −𝑌%𝑣% −𝑌&𝑣& +𝑠& =-
(

𝑆&(

𝑣& = 𝑣%+ 𝑍%&
#
𝑖'01 −2ℜ 𝑍%& 𝑆%& −𝑌%𝑣%

-
(
𝑆(% +𝑠% = 𝑆%&

𝑣% = 𝑉%
#
, 𝑣& = 𝑉&

#
	and	𝑖'01 = 𝐼'01

#

𝑖'01 =
𝑆%& −𝑌%𝑣%

#

𝑣%

𝑎𝑟𝑔 𝑉% +𝑎𝑟𝑔 𝑉& = 𝑎𝑟𝑔 𝑣% −𝑍%& 𝑆%& −𝑌% 𝑉%
#

!!"

"! ""

#! #"
$!"

%!
&#!"

%"

'$$!
$

'$"$
$

Load Flow Approximations

Ward-Hale
Hypothesis:

!"!
!#"#

= !"!
!#"##

= 0						' ≠ )

!*!
!#"#

= !*!
!#"##

= 0						' ≠ )

Carpentier
Hypothesis: 

!"
!#	 ≈ 0
!*
!,	 ≈ 0

Stott
Hypothesis: 

!"
!#	 ≈ 0														 !*!,	 ≈ 0

-!" ./0 ,!" ≈ -!"
1!" 0'2 ,!" ≪ -!"
*! ≪ -!!#!$

DC load flow
- active power through the branch 𝑖𝑙 is

𝑃%) =
1
𝑥%)
𝜃%)

- the injection of power in a generical node 𝑖 is:

𝑃% =-
)*%

𝑃%) =
𝜃%"
𝑥%"

+⋯
𝜃%+
𝑥%+

𝑃% =
1
𝑥%"

+⋯
1
𝑥%+

𝜃% −-
),"
)*%

+
1
𝑥%)
𝜃) =-

),"

+

𝐵%)𝜃)

𝑃 = 𝐵 × 𝜃
[𝐵] - the “susceptance matrix”

Linearized load flow
• 𝒩− set of PQ buses, ℋ	− set of slack buses, 

1,2,… , 𝑠 = ℋ∪𝒩, ℋ∩𝒩 = ∅
E𝑰𝒂𝒃𝒄 = G𝒀𝒂𝒃𝒄 ⋅ G𝑽𝒂𝒃𝒄

Nodal voltage module sensitivities:

𝐾0,2%) =
𝜕 E𝑉%
𝜕𝑃)

=
1
E𝑉%
ℜ 𝑉%

𝜕 E𝑉%
𝜕𝑃)

𝐾3,2%) =
𝜕 E𝑉%
𝜕𝑄)

=
1
E𝑉%
ℜ 𝑉%

𝜕 E𝑉%
𝜕𝑄)

𝟏 %,) =
𝜕𝑉%
𝜕𝑃)

-
&∈ℋ∪𝒩

E𝑌%& E𝑉∗& + 𝑉∗ % -
&∈𝒩

E𝑌%&
𝜕 E𝑉&
𝜕𝑃)

−𝑗𝟏 %,) =
𝜕𝑉%
𝜕𝑄)

-
&∈ℋ∪𝒩

E𝑌%& E𝑉∗& + 𝑉∗ % -
&∈𝒩

E𝑌%&
𝜕 E𝑉&
𝜕𝑄)
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State Estimation

𝛀 = cov 𝐫 = 𝐑 − 𝐇𝐆PQ𝐇R

The non-linear case
Weighted Least Squares

z t = h(x t )+ v t

x̂ t
k+1 = x̂ t

k + G(x̂ t
k )⎡

⎣
⎤
⎦
−1
HT x̂ t

k( )R t
−1 z t − h x̂ t

k( )⎡
⎣

⎤
⎦

𝐆 "𝒙𝒕 = 𝐇𝑻 "𝒙𝒕 𝐑𝒕%𝟏𝐇 "𝒙𝒕

𝐳 = 𝑃STU,𝑃VWXY,𝑄STU,𝑄VWXY,, 𝐼Z[\, 𝑉Z[], , 𝛿
H =

∂Pinj
∂δ

       
∂Pinj
∂V

∂Pflow
∂δ

     
∂Pflow
∂V

∂Qinj
∂δ

      
∂Qinj
∂V

∂Qflow

∂δ
    

∂Qflow

∂V
∂Imagn
∂δ

     
∂Imagn
∂V

∂Vmagn
∂δ

   
∂Vmagn
∂V

  ∂δ
∂δ

        ∂δ
∂V

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

- Gain matrix

The linear case

Bad data processing

x = V1,re ,...,Vs,re ,,V1,im ,...,Vs,im⎡⎣ ⎤⎦
T

zT = zV ,z I⎡⎣ ⎤⎦
zV = V1,re ,...,Vd1,re ,V1,im ,...,Vd1,im

⎡
⎣

⎤
⎦

z I = I1,re ,..., Id2 ,re , I1,im ,..., Id2 ,im
⎡
⎣

⎤
⎦

z =Hx + v     
p v( ) ∼ N 0,R( )

 

H =
HV

HI

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ii ,re = GilVl ,re − BilVl ,im( )
l=1

s

∑

Ii ,im = GilVl ,im + BilVl ,re( )
l=1

s

∑

HV =
β⎡⎣ ⎤⎦ υ⎡⎣ ⎤⎦

ζ⎡⎣ ⎤⎦ η⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

where

β =
1 if  i = l
0 if  i ≠ l

⎧
⎨
⎩

υ =ζ = 0

η =
1 if  i = l
0 if  i ≠ l

⎧
⎨
⎩

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

HI =
Gil⎡⎣ ⎤⎦ −Bil⎡⎣ ⎤⎦

Bil⎡⎣ ⎤⎦ Gil⎡⎣ ⎤⎦

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x̂ =G−1HTR−1z
with
G =HTR−1H

R = diag σ1
2 ,…,σ m

2( )

- Residuals𝐫 = 𝐳 − 𝐇2𝐱

𝑟_ =
r^
𝛀^^

- Normalized residuals

Discreet Kalman Filter

• 𝑡    : time-step

•      : prediction error covariance matrix ;
• K   : “Kalman gain” ;

•      : estimation error covariance matrix ;

!Pt

P̂t

!et ≡ x t − !x t
êt ≡ x t − x̂ t

     
!Pt ≡ E[!et !et

T ]
    P̂t ≡ E[êtêt

T ]
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Linear regression

𝑌% ='
&'(

)

𝛽&𝑓& 𝑡 + 𝜖%

Where 𝑓2 𝑡  are known functions of time, 𝜖3  is 
iid* white noise 𝒩 0, 𝜎4  being iid (i.e., 
independent and identical distributed) and 
𝛽2  are the regression coefficients, namely the 
unknowns of the problem.

Theorem #1

1. The 𝑝×𝑝 matrix 𝑋5𝑋 is invertible.

2. The maximum likelihood estimator of 𝛃 is 
3𝛃 = 𝐗5𝐗 6𝟏𝐗5𝑦

3. Let us define the ith residual 𝑒8 = 𝑦+ − 𝐗𝒊3𝛃  
(where 𝐗𝒊 is the ith row of 𝐗). Residuals are 
zero-mean Gaussian and are correlated 
with a covariance 𝜎4 𝐈𝐝: − 𝐇  where 𝐇 =
𝐗 𝐗5𝐗 6𝟏𝐗5, 𝐈𝐝: is the identity matrix of 
order 𝑛 and 𝜎4  can be estimated as 𝜎4 ≅
𝑠4 = .

:6;
∑+ 𝑒+4  (i.e., the rescaled sum of 

residuals).

4. The distribution of 3𝛃 is Gaussian with mean 
𝛃 and covariace 𝜎4 𝐗5𝐗 6𝟏

Digital filters
Impulse response of a filter:

The impulse response of a filter satisfies the 
following equation:

ℎ<
ℎ.
…
ℎ:6.

= 𝐹𝛿:

Where 𝛿:  is the Dirac sequence of length n

Backshift operator:

𝐵
𝑋.
𝑋4…
𝑋:

=
0
𝑋.…
𝑋:6.

Differencing filter:

𝑋3 = Δ.𝑌 3 = 𝑌3 − 𝑌36., 𝑡 = 1,… , 𝑛,

where Δ.  is the differencing filter at lag 1 and , 𝑌2 =
0 𝑓𝑜𝑟 𝑗 ≤ 0.

Deseasonalizing filter:

The deseasonalizing filter 𝑅5  maps the time series 
𝑌 into a time series 𝑋 = 𝑅5𝑌,	such that

𝑋3 = ∑=-<56. 𝑌36= , 𝑡 = 1,… , 𝑛, 𝑌2 = 0 𝑓𝑜𝑟 𝑗 ≤ 0

Commutative property of filters:

𝑋 = 𝑅+𝑅2𝑌 = 𝑅2𝑅+𝑌

Auto Correlation and 
Partial Auto Correlation 
Function
Covariance:

Given a time series Y., … Y>, the covariance of a 
time series is defined as:

Ω?!?" = cov Y8, Y@ = 𝔼
Y8 − 𝔼 Y8
Y@ − 𝔼 Y@

Autocorrelation function:
The autocorrelation between two observations 
distanced by a lag h is:

UρA =
BC#
BC$

,
where:

UγA =
1
n
Y
@-.

>6A

Y@DA − Y Y@ − Y

Partial autocorrelation function:
The partial autocorrelation of Y8 with Y@ , where 
j > i given that Y8D., … , Y@6. are known:

r8,@ =
6F!,"
F!,!F","

,

where τ8,@	is the generic element of Ω6. 

AR and MA processes
Auto-regressive process
An auto-regressive process AR(p) is described by:

𝑋3 = ∑+-.
; 𝐴+𝑋36+ + 𝜖3,

where 𝐴., … , 𝐴;  are parameters and 𝜖3  is iid white.

Moving average process:
A moving average process MA(q) is described by:

𝑋3 = 𝜇 + 𝜖3 + ∑+-.
G 𝐶+𝜖36+,

where 𝐶., … , 𝐶G  are parameters, 𝜇 is the expectation of 
𝑋3  and 𝜖3 , … 𝜖36G  are iid white.

ARMA process:
A zero-mean 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process 𝑋3  is a process that 
satisfies for 𝑡 = 1,2,… a difference equation such as;

𝑋3 + 𝐴.𝑋36. +⋯+ 𝐴;𝑋36;
= 𝜖3 + 𝐶.𝜖36. +⋯
+ 𝐶G𝜖36G 𝑤ℎ𝑒𝑟𝑒 𝜖3 𝑖𝑠 𝑖𝑖𝑑 ~𝒩 0, 𝜎4

Unless otherwise specified, 𝑋6;D. = ⋯ = 𝑋< = 0.

ARIMA process
𝐴𝑅𝐼𝑀𝐴 𝑝, 𝑑, 𝑞  can be also written as

1 − 𝐵 H 1 + 𝐴.𝐵 +⋯+ 𝐴;𝐵; 𝑌
= 1 + 𝐶.𝐵 +⋯+ 𝐶G𝐵G 𝜖

where B	is the backshift operator.
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Optimal Power Flow
min

!IJ " ,…,!II " ,%IJ " ,…,%II "
7
"&'

(

7
)&'

*

𝐶) 𝑃*0 𝑡

𝑠. 𝑡.

𝑆) 𝑡 = 𝑉) 𝑡 7
+&'

,

𝑉+ 𝑡 𝑌)+ , 𝑖 = 1, … , 𝑠

𝑆) 𝑡 = 𝑃*0 𝑡 + 𝑗𝑄*0 𝑡 + 𝑃-0 𝑡 + 𝑗𝑄-0 𝑡 ,

𝑖 = 1, … , 𝑠

𝑃*0
.)/ ≤ 𝑃*0 𝑡 ≤ 𝑃*0

.01, 𝑖 = 1, … , 𝑔

𝑄*0
.)/ ≤ 𝑄*0 𝑡 ≤ 𝑄*0

.01, 𝑖 = 1, … , 𝑔

𝑉' =1𝑝𝑢, arg 𝑉' = 0;

𝑉.)/ ≤ 𝑉) 𝑡 ≤ 𝑉.01, 𝑖 = 2, … , 𝑠

𝑌)+ 𝑉) 𝑡 − 𝑉+ 𝑡 ≤ 𝐼),+.01, 𝑖 ≠ 𝑗 =, 1… , 𝑠

Quantifiers in Constraints

Robust Optimization

min
2∈4

𝔼5(𝑐(𝑢, 𝐹(𝑢, 𝑑))
𝑠. 𝑡. ℙ 𝐹 𝑢, 𝑑 ∈ 𝑋 ≥ 1 − 𝜀

Stochastic Optimization

min
2∈4

max
5∈6

𝑐(𝑢, 𝐹(𝑢, 𝑑))
𝑠. 𝑡. 𝐹 𝑢, 𝑑 ∈ 𝑋

Removal of ∀ and ∃: whenever Expr	does not depend on 𝑑:

∀𝑑 ∈ 𝐷, Expr ≤ 𝑓 𝑑 	⇔ Expr ≤ min 𝑓 𝑑
5∈6

∀𝑑 ∈ 𝐷, Expr ≥ 𝑓 𝑑 	⇔ Expr ≥ max𝑓 𝑑
5∈6

∃𝑑 ∈ 𝐷, Expr ≤ 𝑓 𝑑 ⇔ Expr ≤ max𝑓 𝑑
5∈6

∃𝑑 ∈ 𝐷, Expr ≥ 𝑓 𝑑 ⇔ Expr ≥ min 𝑓 𝑑
5∈6

Removal of ∃ with supplementary variables

min
2
𝜑(𝑢) 	𝑠. 𝑡. l

∃𝑑 ∈ 𝐷, 𝐶(𝑢, 𝑑)
𝐶′(𝑢) 

can be addressed by solving

min
2,5

𝜑(𝑢) 	𝑠. 𝑡. u
𝑑 ∈ 𝐷
𝐶(𝑢, 𝑑)
𝐶′(𝑢) 

𝑓(𝑑)min 𝑓(𝑑) max 𝑓(𝑑)

𝐸𝑥𝑝𝑟

𝑓(𝑑)min 𝑓(𝑑) max 𝑓(𝑑)

𝐸𝑥𝑝𝑟

𝑓(𝑑)min 𝑓(𝑑) max 𝑓(𝑑)

𝐸𝑥𝑝𝑟
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