Phasor Measurement Units

Discrete Fourier Transform
=|X|-eV =A-e¥ =A-[cos(P) +jsin(Y)]

= A = ’XRGZ + XImZ

e arg(X) =y =tan"?! ();I—m)

Re

- IXI

N-1
2
2 —Z wE)xW 0 <k <N—1

ow(n)

X (k)

. Normohzohon factor B = ¥N-
« Twiddle factor Wy = e=/2%/N

I|oDFT - Rectangular Window
wr(n) =1, € [0,N —1]

. X (K + €]
= X k)| + (X (ke + ©)]

o« e==1=sign(| Xk, + D| — | Xk, — DD
fo = (ki +8)0f

Ao = X (o) | |2

o~ m sin(nS)

Po = 2X (k) — )

loDFT - Hann Window

27N
1 cos(

el ) ,n€[0,N—1]

wy(n) = >

s 20X + )| =

|X (k)
|X (k)| + 1 X (ki + )

o

o e=+1=sign(|X(ky, + D| — |X(k,, — D)

fo = (km+8)Af

Ao = X (k)

52 -1
sm( 5)" |

Do = £X(kp) — )

Error Metrics
FE = |fmeas _ftruel

d d
RFE = |(%)meas_(d_j;)true

Xre—Xre)? + Xim — Xim)?
TVE = ( Re Re)2 ( ;m Im)
XRe + XIm

+ Estimated phasor Xge+j Xim
* True phasor Xz, + jXim

Time Synchronization
Time error: At(t) =a+b-t+ D, -§+ e(t)

* a-—initial time error

* b = AF¢/Fs — normalized frequency error

« D, - frequency drift constant
* €(t) — noise

PTP offset (o) and propagation delay (d)

— (tsl _tml)_(tmz _tSZ)

2
d= (tsl _tml)+(tm2 _tsz)
2
* ts1, tmy — SYNC message timestamps
sty tme — delay_req message timestamps



Nodal Admittance Matrix and Per-Unit

Y = ALY Ay + Yy

Single—Phose Case s A, - per-phase base power
> > > > + V, — phase-to-ground base voltage
Van = Ve, + Zop=tno) Vo + Sty Vo, MEN) b PRERE 199 RS
], =—b —_b_’b
v, = —Yp (k= (m,n) or 3¢ = (n,m)) A P, T A
me (otherwise)
(mneN,m+n) I Zsc I n:1 (ideal) I
+ Ag-incidence matrix with elements i i
+1 (if ¢ = (n,") € L) B Y B B
© agn ={-1(ftx=(,n) € L)
0  (otherwise) ¢ - °

Y. =diagy e (¥, ) — primitive branch
admittance matrix . " D D (omt mim—1)2 D 5
Yy = diag, er (¥, ) — primitive shunt
admittance matrix

+ Y, —branch admittances > °
* Y, -shunt admittances B (Vm)‘l
« N -set of nodes B/

* L-setoflines « Z, — short-circuit impedance

« Y, — no-load admittance
Three-Phase Case

« Ag-incidence matrix with elements
+1, (if & = (n,") € L)
Agyn =14 —I3 (if x = (Ln) € L)
0 (otherwise)

Y, = diagy e (Y, ) — primitive shunt admittance (block) matrix
Y; = diags, er(Yz, ) — primitive shunt admittance (block) matrix

* Y, —3x3 branch admittance matrix Vogaa Yegap  Voac]
* Y. —3x3 shunt admittance matrix Y, =17 Y

« N -set of three-phase (a,b,c) nodes
« L -set of three-phase (a,b,c) lines

=Yoo pa Yoop Yo e
_Y{’k,ca Yfk,cb Y{’k,cc_

Yt aa }_/t ab Yt ac-
« A, —three-phase power base power _ v v v

* 1, - phase-to-phase base voltage Ye, = |Yewba  Yeop {fn'bc
Ap vy 45 | Yenca Yenop Yegec]

—'Z = —=
\/?—)Vb b \/§Ib Ab

Ib:



Numerical Solution of the Load-Flow
Polar

V.=Ve" -voltage at the i-th node, s - number of nodes
Y, =Ye" -elementil of the admittance matrix [ Y]
)
P=SVVY, cos (9 -9, -, (v+1) )
! 2 v ”COS( o V,,) JPV JPﬁ AV AP
0 = JVVY,sin (8 -0, -7,) Jov  Jos AG AQ
oP, oP, .
a_V:= iz‘/;cos(ﬂi_ﬁz_}/iz) (")19( =Y;z Vlen(ﬂi_ﬂt_%z)
Jpy - oP Ipy oP
—L= cosy”+EYVcos (9,-9,-7,) —L= EYVsm 9,-9,-7,)
av, a9, p=,
t;!t (=i
99, _ Y, V.sin(89,-9,-7,) 9 _ ~Y,VV,cos(d, -9, -7,)
v, 90,
Jov 90, Joo
—=—2YVsmy” +EY V,sin(9, -9, -v,) EYV cos(9 -9, -7,)
l i#zl z=1
Cartesian
= oP, S 0P o
V =V +jV' -voltage at the i-th node; AR av, =BGl
S a . . Jon: s oy S
Y, =G, + /B, - element il of the PR 6_1’,»'=2G'_V‘+E(vav_3_v-v) " oG v+ (BY,+G,V,)
admittance matrix [ Y] av, L v, i
(=i =l
; . a0, ‘ } (90, ‘ .
‘ : B , . & _BV +GV Zi_ GV -BV
P=V H(G,,V, -BV)+V, Z](Bwvl +GV) oV Vi + GV oV Vi =BV,
. s Jor : Jox - 5
QI = _Vx‘ E(Bwvz +G[‘V[")+VI"E(G”V; _Bizvtﬂ) ” % = _2Bqu E(B”V; +GithH) - % -2B;V, +E(G V.-B)Y, )
=1 e=1 i (=1
(#l 2
T )
e Ipx (v+1) AP —~=0 -0
AV av, v,
or Jox x = AQ Jyr ) oy : ‘
" 2
AV 2 a(v )=2V' v )—2V"
Jvr VX A(V ) v, i av, S
Mixed
S v)
- - _ (v+1) )
Pi = VllZl Vl(Gil Ccos 19il + Bil Sll’l'l9il) 19” - 191 - 19l JPV ‘]Pl() |: AV ] vr B AP
A
Q; = Viz Vi(Gy sindy — By cos 9y;) Jov Jor AY Q
=1
oF =V.(G,cos 9, +B,sin®,) [ 9 _ V,(G, sin9, - B, cos 9,
] v, a9,
PV ] .
oP, Py
W_ZG V+EV(G cos®, + B, sind,) —=—V2V G,sind, - B, cos 9, )
L (=i (=i
[ 90, =V,(G,sin9, - B, cos ) [ a0,
oy \Gesint = By i ﬁ=—Vin(G” cost}, +B,sin,)
4
Jovi 7 a0 Joo: 1 ..
u . 09"
SO = 2B+ YV.(Gsin®, - B,cosd, ) VEV (G, cos 9, +B, sin®,)
i (=i
— (=i




Branch Flow Model Sij = Zijlzy = Yivi = Vv, +5 =Z§jk

vy = vit|Zy [ iz, — 2R(2; Sy — Vo)

V; _ V;
< B 7. <
zk:s’“ " S — _’ZSJ" Zskl+sl=
 I—
r TP
= J = . = . ;= . =
5; Y; Y; §J Vi |Vl|'v1 |VJ| andlzij IZij
— - 2
[Sij = Yivil
= = T T

arg(V;) + arg(V;) = arg (vl Zij (gij —7i|7i|2)>

Load Flow Approximations

| Ward-Hale | Carpentier i Stott i
' Hypothesis: | Hypothesis: : Hypothesis: ]
. 9P, P, : E aP] [aQ] |
! —_— —— = [ ! " —| =0 — | =0 !
o a0 PR 9] _ o lov 36 |
. 0Q;i _ 0Q: _ 0 %l i ?)I(/g i Bj cos 0y ~ By '
CLA . [ﬁ] ~ 0 Gy sin 0y < By |
i E Qi K BV
DC load flow
- active power through the branch il is
1
Py = Eeil
L
- the injection of power in a generical node i is:
_ O Ois
Pp=)YpP =2+
= xil Xis
P; = ( 1 + 1 )9 ! 6 ZB 6
i Xi1 Xis i ;x” l & itY1
L#i
[P] = [B]x[6]
[B] - the “susceptance matrix”
Linearized load flow
. N —set of PQ buses, H — set of slack buses, Tl = [Yabel - [Vapel
{12, . ,st=HUN, KON =0
_ Nodal voltage module sensitivities:
1oy = oV, V.V + v v %Y Kl vl 1 iR(V aVi)
i=l} — gV jTr . ij = — = D —
ap JEHUN lje]\f 0 L By aPl IVLI =t agl
aVl- - — 617] 6|V| 1 < aVl>
—j 1y = — P A * L — Kl —=?93 Vi=—
Thi=0 =55 IR VES DRI l T2, T W \Faa

JEFOUN jen



. . [oP. P |
State Estimation FrTs
. P, P,
Weighted Least Squares =5 o
The non-linear case By Wy
20 oV
Zf =h(Xt)+Vt H= aQﬂow aQﬂow
00 aV
Z= [Pinj,Pflow,Qinj,Qflow,» Iman, Vmag, ) 6] o, O,
G(x,) = HT(®)R;H(%,) - Gcin matrix B k14
~kel ok YNE A - A anagn anagn
R =%+ [GED] B ()R] [z, -4 (x!)] T
6
) 200 oV
The linear case ) )
z=Hx+v p(v)~N(0.R) H - 8] [v]
o R - diag(o},....0) Y| [g] [n]
x=G'H'R'z T
. X=I:I/l,re""’l/s,re”I/l,im""’l/s,im:l o
with , B lif i=¢
G=H'R'H z :[ZV’ZI:I 0if i=¢
H ZV =I:I/l,re’""le,re’I/l,im""’le,im] where: U=C=O
H — v _ 1 l](‘ i= é
H, Z, = [[l,re"'°’Idz,re’]1,im""’[d2,im] = 0if i=t
Ii,re = E(Gﬂr/t,re _Bill/é,im) G —B
Bad data processing H, - [6.] [-.]
. 1, =GV, +BY,) 18] [6.]
r =z — Hx - Residuals gy e e
Q = cov(r) =R - HG 'HT
TiN — Iril - Normalized residuals
v Qi
Discreet Kalman Filter
Prediction Equations Estimation Equations At =E[é¢/]
Prediction of the state: (1) Computation of the Kalman ~t = E[étéf]
-~ A Gain: -
X, =AX,,+Bu,, K =PH (HPH’ +R)’ € =x -%
P=AP_A"+Q (2) Estimation of the state 6 =x —%
% =% +K (z,-HX,) o
. : time-step P =(-KHF

: prediction error covariance maitrix ;
: "*Kalman gain” ;

A T

: estimation error covariance matrix ;



Linear regression

p
Y = 2,3]]3(15) + €
j=1

Where f;(t) are known functions of time, ¢, is
iid* white noise V' (0, 62) beingiid (i.e.,
independent and identical distributed) and
[)’]- are the regression coefficients, namely the
unknowns of the problem.

Theorem #1
1. The pXxp matrix X7 X is invertible.

2. The maximum likelihood estimator of B is
B=X"X)"X"y

3. Let us define the i residual ¢; = (?i - Xiﬁ)
(where X; is the it" row of X). Residuals are
zero-mean Gaussian and are correlated
with a covariance g2 (Id,, — H) where H =
X(X"X)~1XT, 1d,, is the identity matrix of
ordern and 62 can be estimated as g2 =
s? = ﬁzi e’ (i.e., the rescaled sum of

residuals).

4. The distribution of B is Gaussian with mean
B and covariace o?(XTX) ™!

Auto Correlation and
Partial Auto Correlation
Function

Covariance:

Given a time series Y, ... Y,,, the covariance of a
fime series is defined as:
Y — E(Y)
Qy,y, = cov(Y;,Y;) = E [—
: Y, - E(Y;)
Avutocorrelation function:
The autocorrelation between two observations
distanced by alag his:

where:

Partial autocorrelation function:
The partial autocorrelation of Y; with Y; , where
j >igiventhat Yy, ..., Y-, are known:

~Tij

r. . —
where 1;; is the generic element of 07!

Digital filters

Impulse response of a filter:

The impulse response of a filter satisfies the
following equation:

hi )= Fs,
hy—1
Where §,, is the Dirac sequence of length n

Backshift operator:

X, 0
B XZ = Xl
XTl Xn—l

Differencing filter:

X, =Y, =Y, -Y_,t=1,..,n,

where A, is the differencing filter at lag 1 and , ¥; =
0forj<ao.

Deseasonalizing filter:

The deseasonalizing filter Rt maps the time series
Y into a time series X = R;Y, such that

Xe=YisoYik,t=1,..,n,Y,=0forj<0
Commutative property of filters:

X =RRjY =RR;Y
AR and MA processes

Auto-regressive process

An auto-regressive process AR(p) is described by:
Xy = Z?=1AiXt—i + €,

where 44, ... ,Ap are parameters and ¢; is iid white.

Moving average process:

A moving average process MA(q) is described by:
Xe=ut+e+ Z?:I Cieris

where C}, ..., Cq are parameters, u is the expectation of

X; and €, ... €,_4 are iid white.

ARMA process:
A zero-mean ARMA(p, q) process X; is a process that
satisfies fort = 1,2, ... a difference equation such as;

Xt + AlXt—l + A + ApXt—p
= Et + Clet_l + .-
+ Cy€r—q Where €, isiid ~N(0,0°)

Unless otherwise specified, X_, ., = --* = Xy = 0.

ARIMA process

ARIMA(p, d, q) can be also written as

1-B)*(1+A4,B + -+ A,BP)Y
=(1+CB+--+C;BY)e

where B is the backshift operator.
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Optimal Power Flow

T g . . . .
. Stochastic Optimization
(8),Pgy (D09, ©) Qgg(t)ZZCi J0)
S.t. glellr} Ed(c(urF(u' d))

_ _ s.t.P(Flu,d) eX)>1—¢
S.(t) = Vi(t)zzi(t)xij,i 1.5
=1

Si(t) = (P, (6) +jQg,(®) + (P, (®) +jQ,(®)), Robust Optimization
i ='1, vy S rlr}é?/ I{}gx c(u, F(u,d))
P < Py (6) < B i=1,..,9 s.t.(F(u,d) € X)

QI < Qq, () < Q% i=1,..,9
7.|=1pu, arg(7,) = 0
mm = |V (t)l max i=2..,58

7y (Vi) - V,@)| s i j =1

Quantifiers in Constraints

Removal of ¥ and 3: whenever Expr does not depend on d:

[vd € D,Expr < f(d)] & [Expr < miggD(d)] min f(d) f(d) max f(d)
i
[vd € D,Expr > f(d)] & [Expr > max f (d)] Expr
deD
, d
[3d € D,Expr < f(d)] & [Expr < maxf(d)] mlr: f(d) f( ) mai( f(d)
 J

[3d € D,Expr = f(d)] & [Expr > min f(d)]

£(d) Expr
Removal of 3 with supplementary variables min f(d) max f(d)

min ¢ (u) s.t. {ad ECI?('If)(u’ 2 | E:c o I

can be addressed by solving

deD
m1n o(u) s.t. C(u,d)
C'(u)



