

	Author(s) Name(s) Gaia Petrillo, Israel Yepez Lopez	Function Teaching Assistants
	Professor Name Dražen Dujić	Date of Release 10.10.2024

Title EXERCISE 4: THREE-PHASE INVERTER MODELING
Course Name EE-465 Industrial Electronics I

1 INTRODUCTION

A three-phase 2L inverter (see Fig. 1) is connected to the 3ph grid ($V_{RMS,I-I} = 400$ V, 50 Hz) through a RL filter. By appropriately setting the phase and magnitude of the voltage synthesized by the inverter, the power exchange with the AC grid can be modified or set.

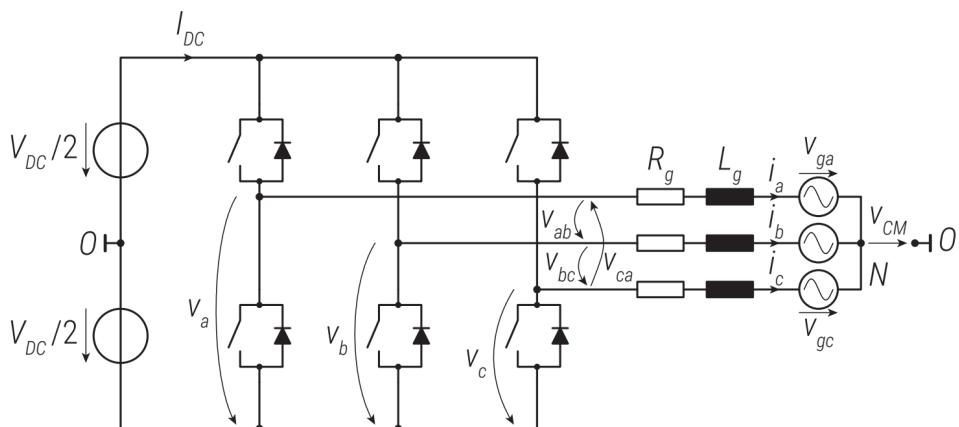


Fig. 1 PV system output stage. The input stage has been replaced by an equivalent voltage source.

2 TASKS DESCRIPTION

1. Create a switched model of the three-phase 2L inverter as seen in the lecture and as illustrated in fig. 1.
 - A few useful elements are already there in the PLECS template file.
 - Use the signals provided from the PWM block to drive the inverter switches.
In the report, show your implementation by taking a capture of your circuit.
2. The Reference signals are modified a few times during the simulation, this is handled by the blocks in the blue frames. Initially, the converter voltage should have the same magnitude as the grid voltage, but with a phase shift of $\pi/4$. At $t = 0.25$ s, the phase shift is set to 0 (converter and grid voltages should be almost identical). At $t = 0.5$ s, the modulation index (m) is increased to 1. Finally, at $t = 0.75$ s the modulation index is increased to 1.5.

In the report, show a capture of the "Converter Voltages & References" scope. Explain what you see and describe what is happening after $t = 0.75$ s.

Show a capture of the "Switched model Voltages and Currents" scope. Explain the behavior of the grid currents for the different converter voltages applied during the sequence.
3. Model the system in $a\beta$ reference frame (c.f. lectures). Use the Clarke transformation to obtain the inverter and grid voltages in $a\beta$ reference frame. In the report, show your implementation (PLECS block diagram) and a scope capture of converter voltages, grid voltages and grid currents in $a\beta$ reference frame.
4. Model the system in dq reference frame (c.f. lectures). Use the Park transformation to obtain the inverter and grid voltage components in dq reference frame. In the report, show your implementation (PLECS block diagram) and a scope capture of converter voltages, grid voltages and grid currents in dq reference frame.
5. Transform the currents obtained with both models into the abc reference frame (using inverse Clarke/Park transformations), and compare them with the switched model. In the report, show a capture of the "Model Comparison" scope. If you see any difference between the models, discuss them.