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EE-465 -W10

So far, we have covered:
▶ Converter modeling for the purpose of control
▶ PI and PR regulators in s- and z-domain
▶ Tuning methods

To establish connection between PV source and grid, we need to consider:
▶ Maximum Power Point Tracking (MPPT) algorithm
▶ PQ definitions in different reference frames
▶ DC link voltage controller for 2-level 3-phase VSI
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Figure 1 PV double-stage grid connected converter.
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MPPT
Maximizing power extraction from the renewable energy source...
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MAXIMUM POWER POINT TRACKING - MPPT

MPPT algorithm tasks is:
▶ to determine the panel operating voltage that allows maximum power output
▶ this may not be always easy, especially in case of large number of PV panels connected to single MPPT controller
▶ we will consider simple case of a small PV panel cluster connected to our converters
▶ PV panel output is not constant and it depends on irradiation, temperature and load

Avoiding to use MPPT controller with PV panels, may results in:
▶ wasted power, since PV panels are not utilized efficiently
▶ costly installation, since more panels would have to be installed to get desired power out

As the PV panel output voltage is typically low, several structures are used: central inverter, string inverter, module (micro) inverter
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Figure 2 PV structures (from left to right): central inverter, string inverter (with AC and DC bus) and module (micro) inverter.
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PV PANEL CHARACTERISTICS

PV panel output characteristic is influenced with:
▶ Irradiation - output current increases with higher irradiation - I-V characteristic up-shift
▶ Temperature - open circuit voltage increases with lower temperatures - I-V characteristic right-shift

Typical PV panel shows:
▶ vOC - open circuit voltage (the maximum panel output voltage when no power is drawn)
▶ iSC - short circuit current (the maximum panel output current)

Figure 3 PV panel I-V characteristic under different irradiation. Figure 4 PV panel P-V characteristics.
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MPPT - PERTURB ANDOBSERVE

Perturb and Observe algorithm is relatively simple method for implementation:
▶ perturbation is introduced in the panel operating voltage: vPV

▶ power is calculated after perturbation: PPV (kTs)
▶ and compared with power before perturbation: PPV (kTs − Ts)
▶ based on this voltage vPV is adjusted accordingly to reach MPP
▶ decreasing voltage while on the right side of MPP, increases output power
▶ increasing voltage while on the left side of MPP, increases output power
▶ once MPP is reached, algorithm oscillates around MPP value

For Perturb and Observe algorithm, panel output voltage and current must be measured

▶ fixed voltage step ∆vPV can be used to increase or decrease voltage
▶ size of voltage step determines the size of oscillation around MPP
▶ smaller voltage step reduce oscillations, but slow down tracking
▶ bigger voltage steps speed up tracking, but increase oscillations (power loss)
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v(kTs+Ts) = v(kTs) - ∆Vv(kTs+Ts) = v(kTs) + ∆V

Figure 5 MPPT - Perturb and Observe Algorithm

PV output power is compared considering different instants in time:

vPV (kTs)iPV (kTs) = PPV (kTs) ⇔ PPV (kTs − Ts) = vPV (kTs − Ts)iPV (kTs − Ts)
Sampling frequency for MPPT algorithm will be rather low, compared to other control parts
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MPPT - INCREMENTAL CONDUCTANCE

Incremental Conductance algorithm use the facts that power curve derivative is:

dPPV

dvPV
= 0 ⇒ atMPP ⇒

∆iPV
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= −

iPV
vPV

dPPV

dvPV
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> −
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vPV
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dvPV
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The power derivative can be expressed as:

dPPV

dvPV
= diPV vPV

dvPV
= iPV

dvPV

dvPV
+ vPV

diPV

dvPV
= iPV + vPV

diPV

dvPV

iPV + vPV
diPV

dvPV
≈ iPV + vPV

∆iPV
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We compare the incremental conductance ∆iPV

∆vPV
with instantaneous conductance iPV

vPV

Depending on the results, vPV is either increased or decreased until MPP is reached

Once MPP is reached, Incremental Conductance algorithm stops modifying vPV
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Figure 6 MPPT - Incremental Conductance Algorithm

▶ ∆vPV (kTs) =
vPV (kTs) − vPV (kTs − Ts)

▶ ∆iPV (kTs) =
iPV (kTs) − iPV (kTs − Ts)

▶ ∆PPV (kTs) =
PPV (kTs) − PPV (kTs − Ts)
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SEQUENCE DECOMPOSITION
Dealingwith unbalanced grid conditions
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SYMMETRICAL COMPONENTS (I)

To analyse unbalanced polyphase networks, Fortescue has proposed method of symmetrical components

Steady-state phasors of an unbalanced (3-phase) system can be decomposed into:
▶ Positive-sequence components
▶ Negative-sequence components
▶ Zero-sequence components

For an unbalanced 3-phase system, different sequence phasors of phase a can be calculated as:

V(a)+−0 = [T+−0]Vabc

where steady-state phasors and transformation matrix T are (Fortescue operator is α = e
j2π/3 = 1∠120◦):

Vabc =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
V a

V b

V c

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Va∠ϕa

Vb∠ϕb

Vc∠ϕc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , V(a)+−0 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
V a+
V a−
V a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
Va+∠ϕa+
Va−∠ϕa−
Va0∠ϕa0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , [T+−0] = 1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 α α

2

1 α
2

α
1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The phasor sequence components for phases b and c are:

V b+ = α
2
V a+; V b− = αV a−

V c+ = αV a+; V c− = α
2
V a−

Inverse Transformation T −1 (phase a as example) is:

Vabc = [T+−0]−1 V(a)+−0, [T+−0]−1 = 1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1

α
2

α 1

α α
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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SYMMETRICAL COMPONENTS (II)

Example: Application of Fortescue transformation on an unbalanced 3-phase system:

Figure 7 Unbalanced 3-phase system: a) instantaneous voltage waveforms; b) phase voltage phasors

Figure 8 Sequence components of unbalanced 3-phase system: a) positive-sequence phasors; b) negative-sequence phasors; c) zero-sequence phasors
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SYMMETRICAL COMPONENTS IN TIME DOMAIN (I)

Fortescue work has been extended by Lyon and applied in time domain:

vabc =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
va
vb
vc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = v
+
abc + v

−
abc + v

0
abc = V

+
⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos(ωt)
cos(ωt − 2π/3)
cos(ωt + 2π/3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ + V
−
⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos(ωt)
cos(ωt + 2π/3)
cos(ωt − 2π/3)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ + V
0
⎡⎢⎢⎢⎢⎢⎢⎢⎣
cos(ωt)
cos(ωt)
cos(ωt)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Application of Fortescue transformation to above signals gives instantaneous values as:

v+−0 = [T+−0] vabc ⇒ v+−0 =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
v
+

v
−

v
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 V

+
e
jωt + 1

2 V
−
e
−jωt

1
2 V

+
e
−jωt + 1

2 V
−
e
−jωt

V
0
cos(ωt)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Normally, Lyon Transformation considers different scaling ratio:

[T ′

+−0] = √
3 [T+−0] = 1√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 α α

2

1 α
2

α
1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Resulting vectors can be characterized as:

▶ two complex elements v+ and v
− and one real element v0

▶ v
+ and v

− can be understood as two space vectors of the same amplitude rotating in opposite direction
▶ v

+ and v
− should not be mistaken or confused with positive- and negative-zero sequence voltage vectors v+abc and v

−
abc

▶ the real element v0 is directly related to zero-sequence component of original 3-phase voltage vector

EE-465 November 11, 2024 Power Electronics Laboratory | 11 of 22



SYMMETRICAL COMPONENTS IN TIME DOMAIN (II)

To calculate positive- and negative-sequence voltage vectors v+abc and v
−
abc :

▶ operator α must be translated from the frequency domain to time time domain
▶ for a well known frequency of sinusoidal signal this is performed by time-shifting
▶ α = −1/2 + j

√
3/2 and 90

◦ phase shifting is required to mimic operator j
▶ this can be done using second-order low-pass filter

LPF (s) = ω
2
m(s + ωm)2

Filter is tuned to the input frequency ωm = 2πf , and damping factor is ξ = 1

Operator α2 is realized by multiplying LPF output signal by −1

Instantaneous positive- and negative-sequences of vabc can be calculated as:

v
+
abc = [T+] vabc ⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
v
+
a

v
+
b

v
+
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 α α

2

α
2

1 α

α α
2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
va
vb
vc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
v
−
abc = [T−] vabc ⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
v
−
a

v
−
b

v
−
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 α

2
α

α 1 α
2

α
2

α 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
va
vb
vc

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ka

−
−Kb w

s+w
w
s+w

in

out

Figure 9 α-operator PLECS implementation,
Ka = 0.5, Kb =

√
3, ω = 2πf .

Ka

−
+Kb w

s+w
w
s+w

in

out

Figure 10 α
2-operator PLECS implementation,

Ka = 0.5, Kb =
√
3, ω = 2πf .
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COMPONENTS αβ0 IN THE STATIONARY REFERENCE FRAME

Complex components v+ and v
− :

▶ are not independent from each other
▶ three independent real components can be found among the elements

▶ a possible set can be defined as [R(v+), I(v+), v0], while other combinations are also possible

Real transformation matrix can be defined as: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
R(v+)
I(v+)
v
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 R(α) R(α2)
0 I(α) I(α2)
1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
va
vb
vc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Similar proposal was made by Clarke [Tαβ0]−1 = [Tαβ0]T :

vαβ0 = [Tαβ0] vabc⎡⎢⎢⎢⎢⎢⎢⎢⎣
vα
vβ
v0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
√
2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 −1/2 −1/2
0

√
3/2 −

√
3/2

1/√2 1/√2 1/√2
⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
va
vb
vc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Scaling factor will define relation between powers in abc and αβ0 frames
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CLARKE TRANSFORMATION - SCALING

Depending on the objectives Clarke Transform scaling can be adjusted accordingly:

Power Invariant form -K =
√
2
3

Amplitudes are not the same in abc and αβ0 frames

∣vαβ0∣ = √
3
2
v
peak
abc , ∣iαβ0∣ = √

3
2
i
peak
abc

Powers are identical in abc and αβ0 frames

Pαβ0 = Pabc

Clarke Transform form is:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
vα
vβ
v0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
√
2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −

1
2

−
1
2

0

√
3
2

−
√
3
2

1√
2

1√
2

1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
va
vb
vc

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Power Non-Invariant form -K = 2
3

Amplitudes are the same in abc and αβ0 frames

∣vαβ0∣ = v
peak
abc , ∣iαβ0∣ = i

peak
abc

Powers are not identical in abc and αβ0 frames

Pαβ0 = 2
3
Pabc

Clarke Transform form is:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
vα
vβ
v0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = 2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −

1
2

−
1
2

0

√
3
2

−
√
3
2

1
2

1
2

1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
va
vb
vc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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COMPONENTS dq0 IN THE ROTATIONAL REFERENCE FRAME

Any voltage vector rotating on the αβ plane can be expressed on a rotational dq reference frame using Park Transform:
The transformation matrix ([Tdq0]−1 = [Tdq0]T ) is defined as:

vdq0 = [Tdq0] vαβ0⎡⎢⎢⎢⎢⎢⎢⎢⎣
vd
vq
v0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
vα
vβ
v0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
We can combine Clarke and Park Transform ([Tθ]−1 = [Tθ]T ) and obtain directly:

vdq0 = [Tθ] vabc⎡⎢⎢⎢⎢⎢⎢⎢⎣
vd
vq
v0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
√
2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(θ) cos(θ − 2π/3) cos(θ − 4π/3)
−sin(θ) −sin(θ − 2π/3) −sin(θ − 4π/3)

1√
2

1√
2

1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
va
vb
vc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Again, used scaling factor will result in powers being identical in abc and dq0 frames

For balanced 3-phase system, we will not consider zero-sequence part

Figure 11 Graphical representation of the αβ0 plane.

Figure 12 Graphical representation of the dq0 plane.
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INSTANTANEOUS POWER
THEORY

Active and Reactive powers in different reference frames
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THE P-Q THEORY (I)

While there are several definitions for powers, we will consider instantaneous power theory (Akagi)

For a given phase-to-neutral voltage and currents in abc domain, we can apply Clarke Transform:

vαβ0 = [Tαβ0] vabc, iαβ0 = [Tαβ0] iabc
where: vαβ0 = [vα, vβ , v0]T and iαβ0 = [iα, iβ , i0]T
The following instantaneous power are defined in αβ0 frame as:⎡⎢⎢⎢⎢⎢⎢⎢⎣

pαβ

qαβ

p0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = [Mαβ0] iαβ0, ⇒ [Mαβ0] = ⎡⎢⎢⎢⎢⎢⎢⎢⎣
vα vβ 0
−vβ vα 0
0 0 v0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Terms are defined as:

▶ pαβ = vαiα + vβiβ - instantaneous real power (instantaneous active power)
▶ qαβ = vαiβ − vβiα - instantaneous imaginary power (instantaneous reactive power)
▶ p0 = v0i0 - instantaneous zero-sequence power

The addition of pαβ and p0 gives instantaneous active power delivered collectively by 3-phases of a system

p3−phase = pαβ + p0 = vαiα + vβiβ + v0i0 = vaia + vbib + vcic

Care should be taken about scaling since in abc domain we work with RMS values, while with magnitude values in αβ and dq frames

Use Clarke Transform scaling carefully...
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THE P-Q THEORY (II)

Further interpretation of these definitions can be extended considering that they contain both constant and oscillatory terms:

pαβ = p̄αβ + p̃αβ

qαβ = q̄αβ + q̃αβ

p0 = p̄0 + p̃0

This can be interpreted as:
▶ pαβ and qαβ - are result of interactions of voltage and currents with positive- and negative-sequences
▶ p0 - is a result of a single phase v0 and i0 interactions giving rise to power oscillations p̃0 and can have p̄0 different from zero
▶ v0 and i0 - zero-sequence voltage and current components do not contribute to pαβ and qαβ

▶ p̄αβ and q̄αβ - (the constant terms) result from the interaction between positive- and negative-sequence voltage and currents with
the same frequency and sequence

▶ p̃αβ and q̃αβ - (the oscillatory terms) result from the interaction between positive- and negative-sequence voltage and currents with
either different frequency or sequence

▶ p3−phase - is always result of the sum of the real power pαβ and zero-sequence power p0
▶ qαβ - does not contribute to energy transfer in the system at any time
▶ qαβ - however, it represents the energy that is exchanged between phases of the system
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THE P-Q THEORY (III)

By inversion of matrix [Mαβ0], it is possible to find currents to be injected, to achieve desired instantaneous active and reactive powers

For a given phase-to-neutral voltage and currents in abc domain, we can apply Clarke Transform:

i
∗
αβ0 = [Mαβ0]−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p
∗
αβ

q
∗
αβ

p
∗
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ⇒ [Mαβ0]−1 = 1

v2α + v2β

⎡⎢⎢⎢⎢⎢⎢⎢⎣
vα −vβ 0
vβ vα 0
0 0 1/v0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
By removing zero-sequence injection (forcing it to zero), we simplify to (dq frame is also added):

i∗αβ = [i∗α
i
∗
β
] = 1

v2α + v2β
[vα −vβ
vβ vα

] [p∗αβ

q
∗
αβ

] ⇒ i∗dq = [i∗d
i
∗
q
] = 1

v2d + v2q
[vd −vq
vq vd

] [p∗dq
q
∗
dq

]
Power definitions are preserved with change of a reference from αβ to dq:

▶ pdq = vdid + vqiq - instantaneous real power (instantaneous active power)
▶ qdq = vdiq − vqid - instantaneous imaginary power (instantaneous reactive power)

By orienting dq frame in such a way that d-axis is perfectly aligned with grid voltage space vector (vq = 0), we have:
▶ pdq = vdid - instantaneous active power is proportional to id - we can control it in this axis
▶ qdq = vdiq - instantaneous reactive power is proportional to iq - we can control it in this axis

Previous power expressions assume Clarke scaling of K =
√
2/3.

For Clarke scaling with K = 2/3, power expressions are: pdq = 3
2
(vdid + vqiq ); qdq = 3

2
(vdiq − vqid)
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DC LINK VOLTAGE CONTROL (I)

Introduction of these power definitions allow us to interface correctly Boost converter and 3-Phase VSI controllers:
▶ MPPT set the input voltage reference vPV for the Boost converter
▶ Boost voltage controller receives this as input, acts on it, and set the reference for Boost current controller
▶ Boost current controller receives the current reference from boost voltage controller and regulate the boost inductor current
▶ we have established that grid current control of the VSI can be done in many ways
▶ predominantly we are interested into PI controllers in dq frame and PR controllers in αβ frame
▶ however, DC link voltage of VSI has to be controlled as well
▶ this is achieved, similar to Boost, through the control of AC grid current
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VDC
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Input stage (DC/DC) Inverter stage
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Grid filter

GridPCC

RB

PWM

MPPT
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BCC
PWMfast

slow

fast
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Figure 13 PV double-stage grid connected converter.
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DC LINK VOLTAGE CONTROL (II)

Plant relevant for the DC link voltage control has been already identified as:

Gv (s) = vDC

iboost − iDC
= 1
sCDC

▶ iboost - is the output current of the Boost converter
▶ iDC - is the DC link current of the VSI: iDC = iboost − iCDC

▶ vDC - is the DC link voltage of the VSI

Considering instantaneous real powers of interest, we have;

▶ pdq = 3
2
(vdid + vqiq ) - VSI AC side power

▶ pDC = vDC iDC - VSI DC side power

Neglecting losses, instantaneous input-output power balance in dq frame is:

vDC iDC = 3
2
(vdid + vqiq )

Again, with d-axis perfectly aligned with grid voltage space vector (vq = 0), we have:

vDC iDC = 3
2
vdid

DC link voltage controller of a VSI will act in d-axis - instantaneous active power
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SUMMARY

PV system of interest is now having two converters connected together:
▶ Boost converter extracts maximum amount of power from PV panel
▶ VSI converter transfer that power to the grid (active power)
▶ power theory provides hints for control implementation
▶ we have considered ideal grid conditions, but this is not the case in real world
▶ advanced PLL concepts are needed to deal with grid unbalances
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Figure 14 PV double-stage grid connected converter.
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