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CARRIER BASED PWM

Carrier Based PWM for 3-phase 2-level converter has been characterized by:
▶ Fundamental low frequencymodulating signals
▶ Zero-sequence signal that can be added tomodify fundamental signals
▶ High frequency carrier signal (e.g. triangular signal)

Modulation index has been defined as:

M = Vm

VDC/2
Zero sequence signal injection can improve DC bus utilisation (linear region):

▶ SPWMMmax = 1

▶ THIPWMMmax = 2√
3
≈ 1.15

PWMpulses are obtained as result of comparison ofmodulating and carrier signal

Resulting PWMpulses are directly applied to the inverter legs

Continuous PWM - two commutations per leg in every switching period

Discontinuous PWM - absence of any commutations in one of the legs

Linear region⇒Overmodulation region⇒ Six-stepmode

Figure 1 Carrier Based PWMprinciples.
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Figure 2 PWM resulting pattern (single shot).
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SPACE VECTORS

To simplify analysis of three-phase systemswe can use space vectors defined as

v = 2
3
(va + αvb + α

2
vc)

Where:
▶ va, vb, vc are balanced sinusoidal set of signals (e.g. voltages)

▶ the operatorα is defined asα = e
j2π/3 = −

1
2
+ j

√
3
2

Three-phase abc system is represented in another set of variablesαβ0:

vαβ0 = [Tαβ0] ⎡⎢⎢⎢⎢⎢⎢⎢⎣
va
vb
vc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = 2
3

⎡⎢⎢⎢⎢⎢⎢⎢⎣
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√
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Inbalanced three-phasesystem (va+vb+vc = 0), wecanomit zero-sequencecomponent

Clarke Transformation is used to represent variables in terms ofαβ components:

vαβ = [Tαβ ] ⎡⎢⎢⎢⎢⎢⎢⎢⎣
va
vb
vc
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Figure 3 αβ plane.
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Figure 4 Resulting space vector inαβ plane.
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SPACE VECTORS OF A 2-LEVEL 3-PHASE INVERTER (I)

Considering that:
▶ there are 3 converter legs with 6 switches in total
▶ two switches of the same leg cannot conduct simultaneously

There is only eight possible switching states of the 2-level 3-phase converter

n = 2
3 = 8

The switching state of each inverter leg can be expressed binary:
▶ 1 when the upper device is ON and the lower device is OFF
▶ 0when the upper device is OFF and the lower device is ON

Possible switching combinations and inverter leg voltages are:

A B C vA vB vC
V0 0 0 0 0 0 0
V1 1 0 0 VDC 0 0
V2 1 1 0 VDC VDC 0
V3 0 1 0 0 VDC 0
V4 0 1 1 0 VDC VDC

V5 0 0 1 0 0 VDC

V6 1 0 1 VDC 0 VDC

V7 1 1 1 VDC VDC VDC

A B C
T1

T2

T3

T4

T5

T6

N

Figure 5 2-level 3-phase inverter.

N N N
N

0 0 0

Figure 6 Possible load connections.
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SPACE VECTORS OF A 2-LEVEL 3-PHASE INVERTER (II)

Different switching combinations have different effect on load:
▶ Configurations 000 and 111 effectively short circuit the load
▶ Other six configurations actively drive current in the load

Each of the switching configurations produces instantaneous phase voltage
▶ Assuming per phase load impedance ofZ
▶ Simple voltage divider withZ andZ/2 can be seen

From here instantaneous phase voltages can be easily calculated as:

A B C va vb vc
V0 0 0 0 0 0 0
V1 1 0 0 2VDC/3 −VDC/3 −VDC/3
V2 1 1 0 VDC/3 VDC/3 −2VDC/3
V3 0 1 0 −VDC/3 2VDC/3 −VDC/3
V4 0 1 1 −2VDC/3 VDC/3 VDC/3
V5 0 0 1 −VDC/3 −VDC/3 2VDC/3
V6 1 0 1 VDC/3 −2VDC/3 VDC/3
V7 1 1 1 0 0 0

A B C
T1

T2

T3

T4

T5

T6

N

Figure 7 2-level 3-phase inverter.

N N N
N

0 0 0

Figure 8 Possible load connections.
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SPACE VECTORS OF A 2-LEVEL 3-PHASE INVERTER (III)

Using definition for the space vectors:

V = 2
3
(VA + αVB + α

2
VC )

Wecan determine inverter space vectors as:
▶ V0 = 2

3 (0 + 0 + 0) = 0

▶ V1 = 2
3 (VDC + 0 + 0) = 2

3VDC

▶ V2 = 2
3 (VDC + VDC ⋅ ej2π/3 + 0) = 2

3VDC ⋅ ejπ/3
▶ V3 = 2

3 (0 + VDC ⋅ ej2π/3 + 0) = 2
3VDC ⋅ ej2π/3

▶ V4 = 2
3 (0 + VDC ⋅ ej2π/3 + VDC ⋅ ej4π/3) = 2

3VDC ⋅ ej3π/3
▶ V5 = 2

3 (0 + 0 + VDC ⋅ ej4π/3) = 2
3VDC ⋅ ej4π/3

▶ V6 = 2
3 (VDC + 0 + VDC ⋅ ej4π/3) = 2

3VDC ⋅ ej5π/3
▶ V7 = 2

3 (VDC + VDC ⋅ ej2π/3 + VDC ⋅ ej4π/3) = 0

There are:
▶ Two zero space vectors: V0 andV7

▶ Six active space vectors: V1 ,V2 ,V3 ,V4 ,V5 ,V6

V1 vα

vβ

V2V3

V4

V5

V0

V6

V7

Figure 9 Space vectors of a 2-level 3-phase inverter.
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REFERENCE SPACE VECTORS AND SECTORS

Wecan easily identify:
▶ Hexagon connecting tips of active space vectors
▶ αβ plane being split into six sectors
▶ Each sector spans 60 deg inαβ plane
▶ There are active space vectors at vertices of each sector
▶ Two zero space vectors at the origin

Considering desired output voltage and fundamental set of modulating signals:

v
⋆
a = M

VDC
2

cos(ωt)
v
⋆
b = M

VDC
2

cos(ωt − 2π/3)
v
⋆
c = M

VDC
2

cos(ωt − 4π/3)
Similar to inverter space vectors, we define reference space vector as:

v
⋆
αβ = [Tαβ ] ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
⋆
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3
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Figure 10 Space vectors and sectors inαβ plane
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NORMALIZATION

Having everything transformed intoαβ plane, we have:
▶ eight stationary space vector of an inverter
▶ rotating reference space vector (θ = ωt)

To simplify further calculations, wewill normalize active space vectors with VDC
2

▶ V1 = 4
3

▶ V2 = 4
3 ⋅ ejπ/3

▶ V3 = 4
3 ⋅ ej2π/3

▶ V4 = 4
3 ⋅ ej3π/3

▶ V5 = 4
3 ⋅ ej4π/3

▶ V6 = 4
3 ⋅ ej5π/3

Similarly, reference space vector can be normalized:

v
⋆
αβ = Me

jθ

V1 vα

vβ

V2V3

V4

V5

V0

V6

V7

vαβ
*

ϑ

Figure 11 Reference space vector inαβ plane
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SVPWMPRINCIPLES

For the analysis it is enough to consider reference space vector in sector s = 1

Reference space vector being definedwith:

v
⋆
αβ = Me

jθ

can have in general:
▶ Anymagnitude, defined byM
▶ Any angular position, definedwith θ = ωt

Wecan arbitrarily define desired switching frequency and thus, switching periodTs

Reference space vector represents desired inverter output voltage

To realize reference space vector over the periodTs we can use active space vectors

Normally two adjacent active space vectors are used, and problem can be described as:

v
⋆
αβ ⋅ Ts = V1 ⋅ T1 +V2 ⋅ T2

Our task is to find the application times (T1 ,T2) of active space vectors

Wewill average reference space vector with two inverter active vectors

vα

vβ

ϑ V1

V2

vαβ
*

V0 V7

Figure 12 Reference space vector in sector s = 1.
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APPLICATION TIMES (I)

To calculate application times, we can decompose complex equation into two real ones:

v
⋆
αβ ⋅ Ts = V1 ⋅ T1 +V2 ⋅ T2

This can be easily done by finding vector projections on theαβ axes:

α → M cos(θ)Ts = 4
3
⋅ T1 +

4
3
cos(π/3) ⋅ T2

β → M sin(θ)Ts = 0 ⋅ T1 +
4
3
sin(π/3) ⋅ T2

Application times can be easily determined as:

T1 = M
4
3
sin(π/3) sin(π/3 − θ) ⋅ Ts

T2 = M
4
3
sin(π/3) sin(θ) ⋅ Ts

or after further simplification as:

T1 = M

√
3
2

sin(π/3 − θ) ⋅ Ts

T2 = M

√
3
2

sin(θ) ⋅ Ts

vα

vβ

ϑ V1

V2

vαβ
*

V0 V7

Figure 13 Reference space vector in sector s = 1.
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APPLICATION TIMES (II)

Calculated application timeswould normally be smaller than the switching periodTs

The remaining time is allocated to zero-space vectors (ZSV):

TZSV = Ts − T1 − T2

While this time can be split in manyways, normally it is equally shared:

T0 = T7 = TZSV
2

Resulting:
Ts = T1 + T2 + T0 + T7

Another normalization can be obtained by dividing calculated timeswithTs :

δ1 = T1

Ts
, δ2 = T2

Ts
, δ0 = T0

Ts
, δ7 = T7

Ts
, 1 = Ts

Ts

This allow to operate with duty cycles instead of application times:

δ1 = M

√
3
2

sin(π
3
− θ)

δ2 = M

√
3
2

sin(θ)
δ0 = δ7 = 1

2
−M

√
3
4

cos(π
6
− θ)

vα

vβ

ϑ V1

V2

vαβ
*

V0 V7

Figure 14 Reference space vector in sector s = 1.
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APPLICATION TIMES (III)

With duty cycles calculated according to:

δ1 = M

√
3
2

sin(π
3
− θ)

δ2 = M

√
3
2

sin(θ)
δ0 = δ7 = 1

2
−M

√
3
4

cos(π
6
− θ)

Wecan evaluate their values, taking sector 1 as an example:
▶ δ2 at the begging of the sector is zero sincev⋆

αβ is alignedwithV1 , (θ = 0)

▶ δ1 at the end of the sector is zero sincev⋆
αβ is alignedwithV2 , (θ = π/3)

▶ Increasing themodulation indexM reduced the duty cycles of zero space vectors
▶ At someM , duty cycles of zero space vectors would become zero
▶ DCbus utilisationwill be covered soon
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Figure 15 Duty cycles in sector s = 1,M = 0.5.
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Figure 16 Duty cycles in sector s = 1,M = 1.
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SWITCHING PATTERN SYNTHESIS (I)

So far we have determined (focusing on sector s = 1):
▶ Wecan average reference space vector with two space vectorsV1 andV2

▶ Remaining time is allocated to zero space vectorsV0 andV7

▶ n = 4 inverter space vectors would be applied over the switching period

The question is now: In which order we should apply these space vectors?

Withn = 4 space vectors, we haven! = 24 combinations
▶ V0 −V1 −V2 −V7

▶ V0 −V1 −V7 −V2

▶ ...
▶ V7 −V2 −V1 −V0

Normally, symmetrical switching sequence is selected for implementation:
▶ Aim is tominimize number of commutations (e.g. two per leg)
▶ Symmetry exist with respect to half of the switching period
▶ Sequence start and finish with zero space vectorV0

▶ Zero space vectorV7 is placed in themiddle of the sequence
▶ OK→ V0 −V1 −V2 −V7 −V2 −V1 −V0

▶ NOTOK→ V0 −V2 −V1 −V7 −V1 −V2 −V0

Ts

mA

mB

mC

V0 V1 V2 V7 V2 V1 V0

Figure 17 Optimal switching pattern in s = 1.

Ts

mA

mB

mC

V0 V1V2 V7 V2V1 V0

Figure 18 Suboptimal switching pattern in s = 1.
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SWITCHING PATTERN SYNTHESIS (II)

Analysing sequences in all sectors, it can be determined, that for odd sectors:
▶ s = 1 → V0 −V1 −V2 −V7 −V2 −V1 −V0

▶ s = 3 → V0 −V3 −V4 −V7 −V4 −V3 −V0

▶ s = 5 → V0 −V5 −V6 −V7 −V6 −V5 −V0

▶ Imagine that sector starts with space vectorVX and endswith vectorVY

▶ Sequence is alwaysV0 −VX −VY −V7 −VY −VX −V0

While for the even sectors:
▶ s = 2 → V0 −V3 −V2 −V7 −V2 −V3 −V0

▶ s = 4 → V0 −V5 −V4 −V7 −V4 −V5 −V0

▶ s = 6 → V0 −V1 −V6 −V7 −V6 −V1 −V0

▶ Sector still starts with space vectorVX and endswith vectorVY

▶ But the sequence is alwaysV0 −VY −VX −V7 −VX −VY −V0

For the implementation it is important to distinguish odd from even sectors!

V1 vα

vβ

V2V3

V4

V5

V0

V6

V7

vαβ
*

ϑ

Figure 19 Reference space vector inαβ plane
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SWITCHING PATTERN SYNTHESIS (III)

Odd sectors

V0

V7

I
V1

V2 A B C
V0 0 0 0
V1 1 0 0
V2 1 1 0
V7 1 1 1

A

B

C

0 T

V0 V1 V2 V7 V7 V2 V1 V0

V0

V7

III

V3

V4

A B C
V0 0 0 0
V3 0 1 0
V4 0 1 1
V7 1 1 1

A

B

C

0 T

V0 V3 V4 V7 V7 V4 V3 V0

V0

V7

V

V5 V6

A B C
V0 0 0 0
V5 0 0 1
V6 1 0 1
V7 1 1 1

A

B

C

0 T

V0 V5 V6 V7 V7 V6 V5 V0
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SWITCHING PATTERN SYNTHESIS (IV)

Even sectors

V0

V7

II

V2V3 A B C
V0 0 0 0
V3 0 1 0
V2 1 1 0
V7 1 1 1

A

B

C

0 T

V0 V3 V2 V7 V7 V2 V3 V0

V0

V7
IV

V4

V5

A B C
V0 0 0 0
V5 0 0 1
V4 0 1 1
V7 1 1 1

A

B

C

0 T

V0 V5 V4 V7 V7 V4 V5 V0

V0

V7
VI

V6

V1 A B C
V0 0 0 0
V1 1 0 0
V6 1 0 1
V7 1 1 1

A

B

C

0 T

V0 V1 V6 V7 V7 V6 V1 V0
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DC BUS UTILIZATION

DCbus utilization of the SVPWMcan be easily determined from theαβ plane:
▶ increasing theM brings tip of the reference space vector closer to the hexagon
▶ linear modulation region is defined by inscribed circle inside the hexagon
▶ further increase ofM would take the tip outside the hexagon - overmodulation
▶ at limit, reference space vector (circle) will touch hexagon at θ = π/6 (sector 1)
▶ at limit, time of application of zero space vectors will be zero
▶ in the six stepmode, only active space vectors are used

Simple trigonometry yields:

Mmax−SV PWM = 4
3
cos(π/6) = 4

3

√
3
2

= 1.1547

DCbus utlisation of the SVPWM is identical to that of harmonic injection CB-PWM
▶ SPWMMmax = 1

▶ THIPWMMmax = 2√
3
= 1.1547

▶ SVPWMMmax = 2√
3
= 1.1547

V1 vα

vβ

V2V3

V4

V5

V0

V6

V7

Figure 20 Inscribed circle in theαβ plane
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GENERALIZATION

Presentation so far has been focused on sector s = 1

It is easy to generalize duty cycle calculations to take into account different sectors

Assuming that sector s has been somehowdetermined:

δ1 = M

√
3
2

sin(sπ
3
− θ)

δ2 = M

√
3
2

sin(θ − (s − 1)π
3
)

δ0 = δ7 = 1
2
−M

√
3
4

cos((2s − 1)π
6
− θ)

Sector can be easily determined from the argument of the reference space vector:

v
⋆
αβ = Me

jθ

▶ s = 1 if (θ > 0 and θ < π/3)
▶ s = 2 if (θ > π/3 and θ < 2π/3)
▶ s = 3 if (θ > 3π/3 and θ < π)
▶ etc

V1 vα

vβ

V2V3

V4

V5

V0

V6

V7
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II

III

IV
V

VI

Figure 21 Space vectors and sectors inαβ plane
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SVPWMVERSUS CARRIER BASED PWM (I)

If we analyse fundamental modulating signals (SPWM) over the fundamental period

v
⋆
a = M cos(θ)
v
⋆
b = M cos(θ − 2π

3
)

v
⋆
c = M cos(θ − 4π

3
)

One can conclude
▶ every θ = π/3 order of modulating signals changes!
▶ e.g. for 0 < θ < π/3we have v⋆c < v

⋆
b < v

⋆
a

▶ e.g. forπ/3 < θ < 2π/3we have v⋆b < v
⋆
a < v

⋆
c

▶ resulting PWM is having duty of pulses in the same order
▶ this is identical to sector s = 1 of the SVPWM

Injection of zero-sequence signal does not change order of modulating signals

Howmuch are then duty cycles applied to each leg?

Where are the space vectors of the inverter?
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Figure 22 CBPWM - fundamental sinusoidal signals
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Figure 23 CBPWM - v⋆
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a .
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SVPWMVERSUS CARRIER BASED PWM (II)

Duty cycles of SPWMcan be easily related to fundamental modulating signals:

δA = 1
2
(1 + v

⋆
a)

δB = 1
2
(1 + v

⋆
b )

δC = 1
2
(1 + v

⋆
c )

FromCBPWMswitching pattern that corresponds to case 0 < θ < π/3 or v⋆c < v
⋆
b < v

⋆
a

▶ these duty cycles are directly determinedwithout considering inverter space vectors
▶ duty cycles of inverter legs are related as: δC < δB < δA
▶ this is identical to the one discussed for SVPWMand sector s = 1

▶ we can easily verify that switching pattern is:
V0 −V1 −V2 −V7 −V2 −V1 −V0

To calculate duty cycles of these space vectors we need to solve:

δ7 = δC

δ2 = δB − δC

δ1 = δA − δB

δ0 = 1 − δA
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Figure 24 CBPWM - fundamental sinusoidal signals
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Figure 25 CBPWM -v⋆
c < v

⋆
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SVPWMVERSUS CARRIER BASED PWM (III)

Duty cycles of space vector activated by CBPWM - SPWM:

δ7 = 1
2
(1 +M cos(θ − 4π/3))

δ2 = M

√
3
2

sin(θ)
δ1 = M

√
3
2

sin(π/3 − θ)
δ0 = 1

2
(1 −M cos(θ))

Few important observations:
▶ SPWMduty cycles of active space vectors δ1 and δ2 are identical as for SVPWM
▶ SPWMduty cycles of zero space vectors δ0 and δ7 are not the same
▶ for SVPWMwemade a choice for δ0 = δ7 = TZSV /2
▶ however, for both SPWMand SVPWM it is still valid δ0 + δ7 = 1 − δ1 − δ2

The same applies for harmonic injection CBPWM - THIPWM

Injection of zero-sequence signal only modifies duty cycles of zero space vectors

Triangular (min-max) zero sequence signal is analogue equivalent of SVPWM

This can be easily checkedwith basic trigonometric calculations...
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 26 ZSV duty cycles in sector 1
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SVPWM IMPLEMENTATION

Implementation steps of the SVPWMcould be summarized as:

1. determine the sector where the reference space vector is in theαβ plane

2. calculate duty cycles for active space vectors

3. calculate duty cycles for zero space vectors

4. assemble the switching pattern based on the current sector

5. send the PWMsignals out

Regarding step 4, and implementation ofmodulating signalsmA,mB ,mC .

In sector s = 1, and similarly in other odd sectors (use correct vectors!)
▶ s = 1, leg signalmA has a duty cycle of δA = δ7 + δ2 + δ1
▶ s = 1, leg signalmB has a duty cycle of δB = δ7 + δ2
▶ s = 1, leg signalmC has a duty cycle of δC = δ7

In sector s = 2, and similarly in other even sectors (use correct vectors!)
▶ s = 2, leg signalmA has a duty cycle of δA = δ7 + δ2
▶ s = 2, leg signalmB has a duty cycle of δB = δ7 + δ2 + δ3
▶ s = 2, leg signalmC has a duty cycle of δC = δ7

Regarding step 5, it may required that you use carrier for actual PLECS implementation

Ts

mA

mB

mC

V0 V1 V2 V7 V2 V1 V0

Figure 28 Switching pattern in s = 1.

Ts

mA

mB

mC

V0 V3 V2 V7 V3 V1 V0

Figure 29 Switching pattern in s = 2.
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SVPWMVERSUS CARRIER-BASED PWM

Carrier-Based PWM:
▶ implemented in abc frame
▶ simple implementation
▶ provides duty cycles for inverter legs
▶ degree of freedom - zero sequence signal
▶ the sameDC bus utilization
▶ DPWMcan be achievedwith suitable zero sequence signal

Ts

mA

mB

mC

V0 V1 V2 V7 V2 V1 V0

Figure 30 Switching pattern: SVPWM, SPWM, THIPWM.

Space Vector PWM:
▶ implemented inαβ frame
▶ slightly more involved implementation
▶ provides duty cycles for switching configuration (space vectors)
▶ degree of freedom - switching pattern, zero space vectors
▶ the sameDC bus utilization
▶ DPWM through switching patternmodifications

V1 vα

vβ

V2V3

V4

V5

V0

V6

V7

vαβ
*

ϑ

Figure 31 Reference space vector and inverter vectors inαβ plane
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