Midterm Exam
EPFL EE-452 — Network Machine Learning — Spring 2024 /2025

Name: SCIPER:

Instructions:
e You have 2 hours to complete the exam. Do not start before the teaching team
gives you permission.

e The midterm is open-book: you can use any printed or handwritten resources.
Electronic devices are not permitted.

o Multiple Choice Questions should be answered with only one option. Selecting
more than one option leads to 0 credit for that question. No negative points are
assigned to wrong answers.

e In the Open Questions, justify your answers to receive full credit.

o The exam will be graded out of 30 points in total, with 14 points allocated to the
Multiple Choice Questions and 16 points to the Open Questions.

e Good luck!



Part A: Multiple Choice Questions (14 points)

A.1 (1 point): A graph without any cycles is called a forest. How many edges does a
forest with N vertices and C' connected components have?

O N1+1/C).

O N1+ C).

O N-C.

02N +C.
Solution: The forest graph can be seen as C' different connected acyclic graphs, meaning

they are trees. The number of edges in one of the tree T; is n; — 1, where n; is the number
of nodes in tree T;. Then if you sum up all edges: 3.5, (n; — 1) =n — C

A.2 (1 point): The betweenness centrality for a node v € V is defined as: g(v) =
Yo LotteV U‘:S(:’), where o4 is the number of shortest paths from s to ¢ and og(v) is
the number of shortest paths from s to ¢ going through v. Which one of the following
statements is always true?

[ The betweenness centrality of nodes in a complete graph follows a Poisson distri-
bution with parameter A = 1/N.

[0 To compute the betweenness centrality of a given node, it is enough to run BFS on
this node only.

[J The betweenness centrality of a node can be interpreted as the probability that the
node lies on the shortest path of any two other randomly sampled nodes.

[J Removing a node with non-zero betweenness centrality increases the average short-

est path distance.

Solution: The true answer is the third, directly from the definition. The first answer
is false because all nodes will have a centrality value of zero. The second is false because
you need to compute the shortest paths among all nodes in the graphs. A BFS on one
node will only give you the shortest path starting from this node. The last answer is
false, think of graph with four vertices connected as a square.

A.3 (1 point): Given a graph G with vertex set V' = {vy,...,v,}, we define the degree
sequence of G to be the list d(vy),...,d(v,) of degrees in decreasing order. Select the
degree sequence corresponding to an undirected, unweighted graph without self-loops.

[3,3,2 2 2 1.

07,3322 1.

00 6,6,6, 4, 4,3, 3.

06,6, 6, 4, 4, 2, 2.

Solution: The true answer is the third. You can proceed by elimination. The first



answer is false because the number of nodes with odd degree should be even. The second
is wrong because the first degree in the sequence is higher than the number of nodes. The
last answer is wrong, because having three nodes with degree 6 would require all other
nodes to have a degree of at least three, which is not the case.

A.4 (1 point): Given a graph on N nodes, which of the following is always an eigenvalue
of the combinatorial Laplacian?

O N
O 2
0 1/N
o

Solution: 0 is always an eigenvalue for the constant eigenvector.



A.5 (1 point): Let y» be the eigenvector of the second smallest eigenvalue Ay of the
combinatorial Laplacian of the graph in Figure 1. Which of the following statements
about the entries corresponding to nodes 1 and 10 is always true?

Figure 1: An unweighted and undirected graph. Numbers represent node IDs.
[1 They are both positive.

[1 They are both negative.
[J They have opposite signs.
[J They are equal.
Solution: They have opposite signs, as they are the farthest nodes in the graph and y»

corresponds to the signal with the smoothest variation on the graph, orthogonal to the
constant vector.

A.6 (1 point): Using the PageRank algorithm on the graph from Figure 1, which node
would get the highest ranking?

[J Node 1.

[J Node 2.

[ Node 9.

[J Node 10.

Solution: Node 2 has the highest PR ranking.
A.7 (1 point): Let us define a smoothness function F(fg, G) = fLLfg, where fg

denotes a function defined over the graph G, whose combinatorial Laplacian is denoted
by L. Then, the following holds:

O If F(hg,G) = F(ga, G) =0, then hg = g over G.
O If F(hg,G) > F(gg,G), then hg varies more smoothly than gg over G.



O Let y be a noisy graph signal. he, defined as hg = argmin,, . ||y —he|3+AF(ha, G),
corresponds to a high-pass filtered version of .

[J None of the above.
Solution:

o False. It only means that both and hg and gg are constant, but they can be
different.
o False. The opposite relation, go varies more smoothly than h¢.

« False. hisa low-pass version filter.

e True. From above.



A.8 (1 point): Consider the three graphs Gy, G1, and G represented below. The signal
defined over each graph is given by the numbers inscribed in its nodes.

Gy el G
O 0 O
© @ @ D 0‘0
©) @ & @ 9‘9
O ® <) OO ® © OO ® @ ©

Which of the following combinations correctly matches each graph to the corresponding
plot of the magnitude of its Graph Fourier Transform (GFT) coefficients?

A B C
N 26 N
‘2 = ‘2
&b &b &b
o = o
=14 =4 =1
3| | e e
= [ = = I
S o/ ! S o] ! ! o T T
0 2 1 6 8 0 2 1 6 8 0 2 1 6 8
Graph frequency index

Graph frequency index Graph frequency index

O Go— A, Gi— B, Gy—C

0 Gy—B, Gi—C, Gy— A

O G —C, Gi—A, Gy— B

O Go—B, Gi—A Gy—C
Solution: Between Gy and GG;: In G, the edges contributing between nodes of signal 3
do not have any variation, but there is one extra link (comparatively with G) connecting

nodes of signal 2 and -2 (A = 4). In contrast, Gy has two edges connecting nodes with
different values of nodes, but just with A = 1. Thus, G; will contain stronger high

frequency components than Gj.

Between G and Gy: In GGy, the edges that differ from Gy have A = 1, while the ones
from Gy have A = 3. Thus, G, will contain stronger high frequency components than

Gi.

Considering these, we necessarily have the correspondence: Go — B, G — C, Gy —
A (Option B).



A.9 (1 point):

Figure 2: Various graph structures.

Figures 2a and Figure 2b each show two graphs with node features indicated by the
numbers inside the nodes. From the perspective of node v, which statement accurately
describes the ability of the Mean, Max, Min, and Standard Deviation (STD) aggregators
to distinguish the neighborhood of v7

[J STD fails both in Figure 2a and 2b.
[J Min fails in Figure 2a but can differentiate in Figure 2b.
[ Max fails in Figure 2a but can differentiate in Figure 2b.
[1 Mean fails both in Figure 2a and 2b.
Solution: In Figure 2a, Mean and STD fail whereas Max and Min are able to dif-

ferentiate the neighborhood of v. In Figure 2b, only STD is able to differentiate the
neighborhood of v. Hence, the correct option is that Mean fails in both cases.



A.10 (1 point):

Xa Xa Xa).
. 4
- (:b’) \:'ba Qbb my, my;
Xp «——Cue X R & e @
v\‘V ............ /V \‘ _________
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Xd Xe Xq X, X, -@
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JEN; JEN; ~

Figure 3: An illustration of different GNN layers. Each node i has a node feature x;
and a node embedding after the GNN layer denoted as h;. The set N; denotes the direct
neighbors of node i. The operator € indicates a permutation-invariant aggregation. The
functions ¥ and ¢ are learnable transformations. c;; denote fixed convolutional weights
whereas a(x;,x;) are learned attention weights.

Which of the following statements correctly describes the relative representational power
of the GNN layers in Figure 37 The notation architecture X C architecture Y means
that every function that can be represented by architecture X can also be represented by
architecture Y.

[] attentional C message-passing C convolutional

[] message-passing C convolutional C attentional

[] convolutional C attentional C message-passing

[] attentional C convolutional C message-passing

Solution: As seen in Figure 3, a convolutional layer updates the embedding h; as
h; = ¢(Xz’, @ Cijw(xj))
JEN;
Here, ¢;; is a fixed weight. One can also see that an attention layer updates the embedding
h; as
by = o (i, €D alxix,)0/ (%))
JEN;

Since a(x;,x;) depends on node features, the model can adaptively weight each neighbor,
and any convolutional layer can be recovered by choosing

a(xz-, Xj) = Cij

Formally,
(e, 1,0) 3(al),¢,¢) such that h{*" = h{™

(2 7



Hence, convolutional C attentional. Similarly, a message-passing layer is defined as
h; = ¢* <Xi7 @ w* (Xi7 Xj))
JEN;

The term a(x;, x;)¢’ (Xj) in the attentional layer is one particular way of defining * (xi, xj)
in the message-passing layer. Formally,

V(a(-),¥',¢") 3", ¢*) such that h(mP) — pattn)

7 7

Hence, attentional C message-passing. Therefore the correct answer is convolutional C
attentional C message-passing.



A.11 (1 point):

(a) (b)

Figure 4: Various graph structures.

Consider the graphs in Figure 4, where all the nodes have 1-dimensional initial feature
vector x; = [1]. Assume that there is a simplified GNN version with no nonlinearity,
no learned linear transformation, and sum aggregation. Specifically, at every layer, the
embedding of node i is updated as the sum over the embeddings of its neighbors (N;),
and its current embedding h¥ to get h**!. This simple GNN computes node embeddings
for the black nodes in each graph. How many message-passing layers are needed to
distinguish these black nodes, i.e., to have different GNN embeddings?

2
03
04
L5

Solution: We need three layers. Observe that after the first layer, the black nodes will
both have a feature vector of [2]. After the second layer, they will both have a feature
vector of [6]. However, after the third later, 4a will have a feature vector of [18], whereas
4b will have a feature vector of [19].

A.12 (1 point): Oversquashing is a problem in graph neural networks where information
from distant nodes is overly compressed as it passes through narrow parts (bottlenecks)
of the graph. Consider the following graph scenarios. Three scenarios typically suffer
from oversquashing, and one does not. Identify the scenario that does NOT typically
experience oversquashing.

[0 A large communication graph among students from three universities (i.e., a net-
work with dense connections within the same university and highly sparse interac-
tions between different universities).

[0 A hierarchical organization graph with many management layers (i.e., a tree graph,
with several intermediate levels between the root and lead nodes).

O A grid-structured graph for image segmentation tasks (i.e., a 2D lattice graph where
nodes represent pixels and edges encode spatial adjacency).

10



O A protein structure graph characterized by a long sequential chain (i.e., a graph
with a linear backbone and possible short-range side-chain connections).

Solution: (A) In the student communication graph, interactions are dense within each
class but sparse between classes, causing bottlenecks at inter-class edges. (B) Hierarchical
organization chart: tends to have oversquashing, as decisions require information flow
across multiple hierarchical layers. (C) Grid-like image segmentation graph: usually does
not experience oversquashing because predictions mainly depend on immediate neighbors.
(D) Protein chain graph: prone to oversquashing, as node interactions frequently depend
on distant residues along the chain. The correct answer is (C).

11



A.13 (1 point): Oversmoothing in GNNs refers to the phenomenon where increasing
the number of layers leads to homogeneous node representations. Multiple strategies have
been developed to overcome the oversmoothing problem in graph neural networks. From
the definition above, please select the method that is the most effective in addressing
oversmoothing.

[0 Add random noise to node features at each layer.
[J Increase the number of hidden GNN layers.
[0 Add random edges between distant nodes to improve information flow.

[1 Perform graph sparsification by deleting edges that do not influence the core prop-
erties of the graph.

Solution: (A) (B) Adding random noise and increasing layers generally do not miti-
gate oversmoothing. Noise addition may degrade embedding quality, while more layers
exacerbate the smoothing effect. (C) Adding random edges will increase information ag-
gregation, which leads to more severe over-smoothing. (D) Graph sparsification reduces
unnecessary neighborhood averaging, thus preserving distinct node features. The answer

is (D).

A.14 (1 point): Graph rewiring is a preprocessing or structural modification technique
used in GNNs. Virtual nodes are an example of rewiring, where an additional node is
introduced and connected to all existing graph nodes to enhance message passing. Based
on the definition above, which of the following correctly describes the primary purpose
of adding virtual nodes?

[J Decrease oversmoothing by adding more edges to encourage wider information ag-
gregation.
[0 Avoid oversquashing by improving information flow.
[] Increase computational efficiency by removing all redundant nodes from the graph.
[J Convert directed graphs into undirected graphs to simplify the training of GNNs.
Solution:  Graph rewiring aims to enhance information propagation efficiency and

address bottlenecks such as oversquashing by structurally adjusting the original graph.
The other choices describe incorrect or unrelated objectives. The correct answer is (B).

12



Part B: Open Questions (16 points)

B.1 (4 points): Consider a triangle graph with nodes A, B, and C. Each node i €
{A, B,C'} is associated with a scalar feature hz(»o) € R at the initial iteration (I = 0). For
each iteration [ > 0, the feature of each node is updated by taking the average of its
neighbors’ features from the previous iteration. Explicitly, for [ > 0:

1
1+1 l l
I+1 1. a !
hg )= §(h(A) + h(c)),
1
hg«+1) 5 (h(l) + h(l))

Answer the following questions.

1. (1 point) Prove that the average value of the node features remains constant, i.e.,

By +nY) + 0 B+ nY 4 nY

= vl
3 3

2. (1 point) Prove that the difference between any two node features decreases by a
factor of % at each iteration. For example, for node A and node B, we have:

th“) _pt|l =

l l
( B0 — 0

L
o BEL B

3. (1 point) Deduce the final stable value of each node as [ — oo.

4. (1 point) Interpret the results.

Solution:

PG+ G R = |G + hD) + (B + h) + (1Y) + B

1
2
1
= 5289 + 2n + 208
= 1Y +hY) + hd
Thus, the sum is invariant to [ and the average,
hY + h + hY
3 Y

remains constant. By induction, we have the results.

Grading: 0.5 points for invariant sum and 0.5 points for induction.

13



h%-!—l) l+1 h(l)+h )

h — )
(1)

By applyting the absolute value on both sides of the equality and proceeding similarly
for the differences hg) — h(é) and hg) — hg), we retrieve the intended result.

(hff + h((f?)

l\DIHl\DI»—‘
l\DI»—t

-4
-

Grading: 1.0 point for proving the relation between any 2 pairs of nodes.

3. Since the differences between any two node features decay geometrically (by a factor
of % per iteration), we have

lim (b — AY)) = lim (b — hY) = lim (hY — ) =0.

l—o00 l—00 l—00

Thus, as [ — oo, the node features converge to a common value L. By the invariance of
the sum from part (a):
3L =hY + 1 + 1Y,
which implies
WY +n) +nY
3
Hence, every node converges to the average of the initial features.

L —

Grading: 1 point for either giving the convergence value of feature distance or for giving
the convergence value of feature value.

4. This result highlights that repeated averaging (or message passing) leads to all
nodes becoming indistinguishable from one another, which is typically referred to as the
over-smoothing phenomenon in literature.

Grading: 1 point for any interpretation related to over-smoothing, information vanish-
ing, or GNN’s limitation. 0.5 points for other reasonable interpretations.

14
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B.2 (4 points): Let z € R™ be a graph signal defined on a graph with symmetric
Laplacian matrix L € R™*". The Graph Fourier Transform of x is defined as:

t=U"z,

where U € R™"™ is the matrix of eigenvectors of L, assumed to be orthonormal.

1.

2.

3.

(1 point) Derive the inverse Graph Fourier Transform (expression) under the as-
sumption that U is an orthonormal matrix.

(2 points) Describe one scenario where this inverse formulation does not hold,
and briefly explain why.

(1 point) Provide an example graph for the scenario described above. You may
draw the graphs or describe them clearly.

Solution: Let L € R"*" be a symmetric matrix and U € R™*" its matrix of orthonormal
eigenvectors, so that U = U1

(a)

Inverse Graph Fourier Transform:

Given the Graph Fourier Transform:
i=U'uz,
and using the fact that U" = U™}, we recover z by:

x=Uz. (1)

This follows directly from:
Ui =UU"z = Iz = (2)

Grading: 0.5 points for Equation (2) and 0.5 points for Equation (1).

The previous inverse formulation is not valid when it is impossible to find an or-
thonormal basis of eigenvectors for the Laplacian. The Spectral Theorem guar-
antees that any real symmetric matrix admits a complete orthonormal basis of
eigenvectors. Consequently, the absence of such a basis may only occur when the
Laplacian is not symmetric, as in the case of directed graphs, where asymmetric
edges yield a non-symmetric Laplacian matrix.

Grading: 1 point for an invalid setting and 1 point for the justification.

Directed graph (asymmetric Laplacian): A simple directed graph with two nodes:
(1) = (2)

01 10 1 -1
a=lo ol =g o] rmo-a=ly ]

16

Hence:



L is not symmetric and does not have a orthonormal eigenbasis.

Grading: 1 point for a valid example.

17
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B.3 (4 points): This question aims to investigate the expressive power of GNNs for
learning simple graph algorithms. Consider breadth-first search (BFS), where at each
step, all nodes that are connected to already visited nodes become visited. Suppose that
a GNN is used to learn to execute the BFS algorithm and that the embeddings are 1-
dimensional. Initially, all nodes have input feature 0, except a source node which has
input feature 1. At every BFS step, all nodes that are directly connected to a visited
node should become visited (i.e. get an embedding of 1), and nodes that have not been
reached should remain at 0. Describe a message function, an aggregation function, and
an update rule for the GNN such that it learns the task perfectly. Note that the input
to the message function should be the current node embeddings and the output of the
update rule should be the updated node embeddings.

Solution: We define the following components for the 1-dimensional GNN to simulate
BFS.

Message Function: For each edge (j,7), define the message to be
mj; = P(x;) = x;

Since z; € {0,1} (0 for not visited, 1 for visited), the message indicates whether or not
node j is visited.

Aggregation Function: For node i, aggregate messages from all its direct neighbors
N; by taking the maximum:

m; = @mq- = max ;
JEN;

This aggregation function is permutation invariant and ensures that if at least one neigh-
bor is visited, i.e., has value 1, then m; = 1.

Grading: 2 points for correctly identifying the message and the aggregation functions.
If confusion exists regarding the message function, 0.5 points are deducted.

Update Rule: Update the node 2’s embedding by combining its current state with the
aggregated message:
T = qb(xi,mi) = max(xi, m,)

This rule guarantees that once a node becomes visited, it remains visited in subsequent
iterations. In this way, after a sufficient number of iterations, the GNN exactly mimics
the BF'S process by marking all nodes reachable from the source as 1. Thus, the described
message function, aggregation operator, and update rule allow the GNN to learn the BFS
algorithm perfectly.

Grading: 2 points for correct update rules.
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B.4 (4 points): A graph G = (V, E) is bipartite if it has two set of vertices V;, Va such
that Vi UV, = V and Vi NV, = (0, and all edges of the graph go from V; to V5, i.e.
Ve = (v1,v2) € E. Given an undirected bipartite graph G, show that for any eigenvalue
A of the adjacency matrix A, —\ is also an eigenvalue, and describe the relationship
between the corresponding eigenvectors.

Solution: Let the nodes be ordered so that the first rows of A correspond to the IV,
nodes in V7, and the last ones to the Ny nodes in V5. By definition of a bipartite graph,

we can write -
On, x . A
A — 1 2 0 , 3
[ Ao Onyxny } (3)

where Ag has size N1 X N, and represents the connections between V; and V5. Then, let
u be an eigenvector of A, with Au = A\u, it follows that

e[ o 3] [ 2) e

Ay Onyxn, Uy Aju, Uy

where u; and u, are the eigenvector entries corresponding to nodes in V; and V5 respec-
tively.

Defining v’ = [ulT, —uzT]T, we observe that
o u, . —Ag’u,g (. U,
e[ n] e

Therefore, u' is also an eigenvector of A, with eigenvalue —\.

Grading: 1 point for adjacency A, i.e. Equation (3); 1 point for relation between wu,
and wug, i.e. Equation (4); 1 point for finding u’; 1 point for proving the eigenpair, i.e.
Equation (5).
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