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Recap from previous class

 Networks/graphs are either indicated by the application or
constructed from the data

e Spectral graph theory reveals significant properties of the network
Spectrum tells us a lot about connectivity, bottlenecks, diameter
Eigenvalues provide a notion of frequency
Eigenvectors are smooth functions on the graph

* |t has applications in network tasks, where preserving geometry is
crucial
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In the following lectures...

e How can we infer useful information from data that live on a
graph?

* Graphs could be weighted or unweighted
e Nodes could have attributes
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Why learning from graphs is hard?

e Contrary to traditional modalities:

Graphs capture complex and irregular connections
- There is no explicit notion of ordering
- Nodes can have multiple attributes
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Traditional ML pipeline on graphs

e How can we infer useful information from data that live on a
graph?
* Graphs could be weighted or unweighted
e Nodes could have attributes
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Graph-structured features/embeddings:
A high level overview

 Hand-crafted features: Capture some structural properties of the graph, followed
by some statistics (signatures)

 Graph kernel methods: Design similarity functions in an embedding space

Spectral features: Capture the graph properties through spectral graph theory

Model-driven

Learned features: Learn graph features directly from data by designing models
based on meaningful assumptions

Unsupervised (shallow) embeddings: Learn features based on different ways
of preserving information from the original graph (often without node attributes)

Graph neural network features: Learn features from the data using a well-
designed family of neural networks (often with node attributes)

Data-driven
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In this lecture

 How can we infer useful information only from the graph

structure?
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Graph-structured features/embeddings:
A high level overview

 Hand-crafted features: Capture some structural properties of the graph, followed
by some statistics (signatures)

 Graph kernel methods: Design similarity functions in an embedding space

o Spectral features: Capture the graph properties through spectral graph theory

Model-driven
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Outline

 Machine learning pipeline on graphs

* Traditional graph structural features
Node level tasks
Graph level tasks
Edge level tasks
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Outline

 Machine learning pipeline on graphs

* Traditional graph structural features
Node level tasks
Graph level tasks
Edge level tasks
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Traditional ML pipeline: Input
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Traditional ML pipeline: Features

Graph-
based
features

O(X,0)

Should reveal important information regarding the
graph structure

Key to achieving good model performance

Features can be defined at different scales
- At a node, edge, sets of nodes, entire graph level

The choice of the features depends on
- the end task
prior knowledge on the data

cPL
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Traditional ML pipeline: Learning tasks

ML model

f(o(X,G)) mmp

—>

 The features are given as input to an
ML model

e Examples: logistic regression, SVM,
neural networks, etc.

Actionable
knowledge

e Training phase:

e Given a set of graph-based features,
train a model f that predicts the
correct Y

e.g., node/graph classification,

signal inpainting/denoising

Y

e Testing phase:

e Given a new node/link/graph,
compute its features, and give them
as an input to [ to make a prediction

cPL
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lllustrative example: Graph
classification

Training data . Test data
Class 1 e ~ e I E w
Class 1 - Class 1 é Class ?
] _i : Class ?
Class -1 Class -1
>
Class -1

What are the key features for classifying my graphs?
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lllustrative example: Graph
classification with SVM

e Classical SVM setup:
M

Given a set of M training graphs, across with their class labels D = {(G;,v:) }i=;
learn a classifier that predicts the label of a new graph

M 1 M Graph features or
' o embeddings
maX az - (){/L (){J yzy]
o 4
i=1 i,j=1

N
subject to Zaiyi =0
i=1

Use the learned model to classify new graph instances

How do we compute graph features?
[Scholkopf et al., Learning with kernels, MIT Press, 2002]
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Highly challenging for ML

e Features (often know as embeddings) should capture the intrinsic structure of the
graph

 Most ML algorithms require features to be represented as a fixed length feature
vector

—

?

 Todays’ focus:

Graphs without node attributes, i.e., inferring information only from the graph structure (graph
structural features)

Hand-designed features, i.e., features that are designed based on some priors (no learning

involved!)
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Outline

 Machine learning pipeline on graphs

* Traditional graph structural features
Node level tasks
Graph level tasks
Edge level tasks
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Extracting structural information at
different levels

Node feotures

- []

G;r‘a\ph features
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Node level features

* Typically useful for node classification/clustering tasks

Color reflects the degree!

* Aim at characterizing the structure and position of a node in the

network
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Common node level features

* Node degree

* Node centrality

e Clustering coefficient

e Graphlets
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Node degree

 The degree D,, of node u is the number of edges (neighboring nodes)
the node has

~

e Usually normalized with the maximum number of nodes D,

p— 7
* The node degree feature treats all nodes equally VI
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Node centrality

* Node centrality takes the node importance in a graph into account

* Various ways to model importance
Betweenness centrality
Closeness centrality

Eigenvector centrality
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Betweenness centrality

 Anode is important if it lies on many shortest paths between other
nodes

Z # (shortest paths between v and z that contains )
# (shortest paths between v and z)

VAEUELZ

Example:
Om
. CB — 0
o (ABD, ABC, ABCE, ABCEF, ABCG, ABCGH)
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Comparison between degree and
betweenness centrality

Color: Betweenness
Size: Degree

Degree is high if a node has many direct connections (e.g., friends)
Betweenness is high if a node is ‘between’ other nodes
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Closeness centrality

 Anode is important if it has small shortest path lengths to all other
nodes

1
Zv L shortest path length between v and w

Cuy —

Example:

ca=1/(142+2+3+4+3+4)=1/19
(AB, ABC, ABD, ABCE, ABCEF, ABCG, ABCGH)
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Comparison between degree and
closeness centrality

Color: Closeness
Size: Degree

Degree is high if a node has many direct connections (e.g., friends)
Closeness is high if a node is in the ‘middle’ of things
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Eigenvector centrality

 Anode u is important if it is surrounded by important neighbors

Cy — l Z Wuvcv
A vEN,

* |t can be written as the eigenvector equation
Ac=We

e Centrality measure: (dominant) eigenvector corresponding to the
largest eigenvalue

e Can be computed using power iteration
— Wt

ontains the number of length t+1 paths arriving at each node!
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Example of eigenvector centrality

CB — 0.091
Dp =4
B

Degree is high if a node has many direct neighbors
Centrality is high if a node has well-connected neighbors
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(Global) Clustering coefficient

* The clustering coefficient characterizes the subgraph containing

the neighbors of a node, and all edges between nodes in its
neighborhood

* |t measures how tightly clustered a node’s neighborhood is

[(v1,v2) € &€ 111,09 € Ny

(")

CCy =

e |t is computed as the proportion of closed triangles in a node’s
local neighborhood

It represents the probability that two neighbors of a node are linked to each
other (see previous lecture on graph theory basics)
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(Global) Clustering coefficient

* The clustering coefficient characterizes the subgraph containing

the neighbors of a node, and all edges between nodes in its
neighborhood

* |t measures how tightly clustered a node’s neighborhood is

# edges among neighboring nodes

(J(v1,v2) € €t 1,00 € N
CCy =

D,
( 2 ) # node pairs among neighboring nodes

e |t is computed as the proportion of closed triangles in a node’s
local neighborhood

It represents the probability that two neighbors of a node are linked to each
other (see previous lecture on graph theory basics)
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Example of clustering coefficient

cco =0

ccg =1/3

Well-connected Sparsely connected
neighborhood neighborhood
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Graphlets

e Small subgraphs that describe the structure of node network neighborhood

3-node graphlets 4-node graphlets

TR PN R

g1

5-node graphlets

Bl SRR

g

©é§A@$@%

* These topological structures can be used to define a frequency histogram

©
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Example of graphlets

e Graphlet Degree Vectors (GDV): counts the number of graphlets
that a node belongs to

Possible graphlets:

L e e A

ool euy ool cof ceg ool oa]

HQ—O—.H—QHHAH
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Example of graphlets

e Graphlet Degree Vectors (GDV): counts the number of graphlets
that a node belongs to

GDV (v3) = [2.1.1] Possible graphlets:

GDV (1) = [1,2,0]

GDV(UQ) - [3, 2, 1] GDV(U4) - [2, 1, 1]

ool euy ool cof ceg ool oa]

HQ—O—.H—QHHAH
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Graphlets for protein-protein

Interactions

e Often used in classifying function of proteins in the interactome
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[Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel protein—protein interactions. Nature]
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From node level to graph level task

Node feotures
]

—

TTIT

Edge_ features

G;r‘axph feotures

How can we design features that characterize the structure of the
entire graph”?

I
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lllustrative example: Graph
classification

e Common assumption: Graphs with similar structure have similar label

Training data Test data

O e )
Class 1 w
Class -1

Class ?
O Class 1 l
Class 1
1 Class ?

Class -1 Class -1

What is a good similarity metric between graphs?
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Kernels in a nutshell

* Intuition: Move the learning task to a feature space where the
task is easier

 Usually a two steps approach:
Map objects = and z’ via mapping ¢ to H
Measure the similarity in the feature space (¢(x), ¢(z'))

3T
1 e
o0
} 8 } e o }
3 me -1 ® g1 3
I -1+ @
ll

__. T
R2:>9{°or‘i A

o Kernel trick: compute the inner product in ‘H as kernel in the input

space

K(z,2") = (¢(z), ("))

K is a measure of similarity
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Graph kernel methods

e Let ¢(G1),9(G2) be feature representations of graphs 1,62 in
a very high dimensional feature space

e Define functions/kernels which measure the similarity between
graphs 4

K(G1,G2) =< ¢(G1), 9(G2) >

* Provide kernels as an input to a classifier: e.g., SVM
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lllustrative example: Graph
classification with Kernel SVM

e Classical SVM setup:

Given a set of M training graphs, across with their class labels D = {(G;, ;) }i=
learn a classifier that predicts the labels of a new graph

maX E &y — — E QY Yy Graph kernel
2,9=1

subject to Zaiyz- =0
i=1

Use the learned model to classify new graph instances

How do we compute graph features/kernels?

M
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Graph level features

 Bag of nodes

 Graphlet kernel

e The Weisfeiler-Lehman kernel
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Bag of nodes

e Use node features to compute histograms or other summary statistics to
define a graph level representation, i.e., graph features

e Example: Graph features based on node degrees

$(G1) = [0,3,2,0,1] 4

e Limitation: It can miss global properties of the graph
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Graphlet kernel

* A subgraph-based kernel based on graphlets
- Nodes do not need to be connected

* |t counts the occurrence of graphlets in a graph

K@O l Graphlet kernel

O O K(G1,G2) =< ¢(G1), 9(G2) >

O
e Limitation: High complexity; there are (g) graphlets of K nodes

[Shervashidze et al., Efficient graphite kernels for large graph comparison. AISTATS, 2009]
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Weisfeiler-Lehman kernel

* |teratively aggregate information from node’s neighbourhoods
wider than the 1-hop neighborhood

e Color refinement algorithm:
Input: a graph ¢
- Assign an initial color ¢\”(u) (e.g., node degree) to each node u of G
For each iteration k£ + 1 refine node colors as

) () = HASH ({®) (u), {e® (v)}rew, | )

Output: The node color %) () after K iterations

* |t provides a description of the K-hop neighborhood with an
efficient algorithm

[Shervashidze et al., Weisfeiler-Lehman graph kernels, JMLR, 2011]
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Example of WL kernel

1 — 1 1
Initial colors
O O O
1 1 1 1
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Example of WL kernel

1 1
Initial colors
<I>

(1,111)
(1,111) (1,11) (1,11)

Aggregate

) (1,111) (1,111) -
neighbourhood colors

(1,1111) (1,1111)

/
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Example of WL kernel

Initial colors

N
O
O

1
- O ?;!

1 1
(1,111) (1,11) (1,11) (1,111)
Aggregate
=2 S neighbourhood colors
(1,1111)\ (1,1111)
O
<>(1,1) <>(1,1) (1,1) (1,1)
4
4 ’ ’ Hash table
! PRV
’ . (1,11) 3
\ (1,111) — 4
> O O (1,1111) — 5

2
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Exam

3

ple of WL kernel

4
5%
o\o
2 2

Hash table

w

cPL
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Example of WL kernel

4
- < ’ Hash table
i e 4 / 4 (171} — 2
? 5 (1,11) - 3
\ (1,111) — 4
O O O a,
2 2 2 2
(4,345) (3,44) (3,45 , 345
Aggregate

) (4,345)
) (4, 345) :
(4,245)  neighbourhood colors
(5,2244 \ (5,2344)
O O O
(2,5)  (2,5) (2,5) (2,4)
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Example of WL kernel

1
! ’ ’ Hash table
=_) 4 / \ 1,1) o 2
. D (1,11) - 3
~\\\\“~\\\\~ (1,111) — 4
O O O (.
2 2 2 2

(4,345) (3,44) (3,45) (4,345)
) (4, 345) Aggregate
’ (4,245) neighbourhood colors
(5,2244 \ (5,2344)
O O
(2,5)  (2,5) (2,5) (2,4)

Network Machine Learning - EE452
E P F I Dr Dorina Thanou 44
Prof. Pascal Frossard



Example of WL kernel

: > Hash table
=_) 4 / \ 1,1) o 2
. D (1,11) - 3
~\\\\“~\\\\~ (1,111) — 4
O O (1,
2 2

C2) 2 1,1111) — 5

(4,345) (3,44) (3,45) (4,345)
) (4, 345) Aggregate

(4,245)  neighbourhood colors
5,2244 \ (5,2344)
O
(2, (2,5) (2,4)

) H Hash table
(2,4) - 6
5 - 7
13 10 E?, 4)) - 8
(3,45) - 9
\ (4,245) — 10
(4,345) — 11
7Q 7Q 6 (5,2244) — 12
(5,2344) — 13

Network Machine Learning - EE452
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Example of WL kernel

o After K iterations, the WL kernel computes the histogram of colors

1,2,.3.4,5,6,7,8,9,.10,11,12,13
¢(G1) = 16,2,1,2,1,0,2,1,0,0,2,1,0]

N~ -

1,2,3,4,5,6,7,8,9,10,11,12,13
) »(G2) =16,2,1,2,1,1,1,0,1,1,1,0,1]

O ‘ WL kernel

K(G1,G2) =< ¢(G1), 9(G2) >
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Edge level features

Node feotures

Edge features

Gpraph feotures

How can we capture relationships between neighboring nodes?
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lllustrative example: Link prediction

* Goal: Predict the existence of an edge between two nodes given
some already existing edges

* |ntuition: Design features about pairs of nodes that measure the
overlap between their neighborhoods
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Link prediction in one slide

* For each pair of nodes (u,v)compute score(u,v)
e Sort pairs by decreasing score
* Predict top £ pairs as a link

e Common ways to compute score(, -):

Local neighborhood overlap: quantify the similarity of the neighborhood between two
nodes

Global neighborhood overlap: quantify if two nodes belong to the same community in
the graph
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Local neighborhood overlap

 Compute score(u,v) as the number of common neighboring
nodes i.e., overlap between (u, v)

e Common neighbors:

score(A,B) = NaNNg|=|{D}| =1

e Jaccard’s coefficient:

:\NAﬁNB\: {D}] 1
NaUNB|  |{D,C}| 2

score(A, B)

« Limitation: A link between (A4, F) cannot be created. Why?
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Global neighborhood overlap

 Compute score(u, v) by taking into consideration the entire graph,
l.e., global overlap

o Katz index: Count the number of walks of all lengths between a
given pair of nodes

- Use powers of the adjacency/weight matrix

oo

score(A, B) = ZﬁiWAB = [(I — BW) ™t —1I]aB

|L166] >0

SRS
HEi:

edges [[W||o = 40 edges [IW?||o = 62 edges [|W3||o = 108 edges [|W*||o = 122 edges
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Summary

* Traditional graph analysis/inference pipeline decouples the data
representation and learning process

Hand-crafted features + ML/statistics

* The type of features depends on the task:
Node level: generate features for each individual node
- Node degree, centrality, clustering coefficients, graphlets

Graph level: generate features for the whole graph
- Bag of nodes, graphlet kernels, WL kernels

Link level: generate features that measure a common neighborhood between two nodes
+ Local/global neighborhood overlap

e Careful design of graph features can be useful in applications where
data is limited
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Limitations

 Hand-engineered features are defined a priori: no adaptation to
the data

e Designing graph features can very often be a time consuming and
expensive process

* Not easy to incorporate additional features on the nodes

* More flexibility can be achieved with an end-to-end learning
pipeline: next lectures!
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