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1. Introduction and Applications 
 

1.1 Scope 
The scope of this course is to familiarize the students with some fundamental aspects related to 
microwaves. The following topics will be treated:  

 

• Applications of microwaves 
• Maxwell's model (brief reminder) 
• Transmission line theory, and modal transmission 
• Microwave network analysis  
• Microwave components 
• Introduction to microwave measurements 
• Introduction to microwave sources and amplifiers 
• Introduction to microwave filters 
 

1.2 History  
Electromagnetic theory and Microwaves are often considered being mature scientific disciplines, as 
their fundaments were built by James Clerk Maxwell during the second half of the 19th century. 
Moreover, they had a tremendous growing during the Second World War due to the research done on 
radar applications.  

Nowadays, work in these fields is very active again, as the boom in telecommunication and data 
transmisssion has reactivated the interest in microwaves, most of wireless links being done in the 
microwave frequencies. 

 

1872 : Publication of James Clerk Maxwell's "A Treatise on Electricity and Magnetism". 

This work unifies all the previous work done on electricity, magnetism and 

electromagnetism and summarizes the obtained results in four equations.  

1887 :  Heinrich Hertz performs the first demonstration of a wireless link. To this aim, he 

built an experimental system using a spark generator coupled to a dipole antenna on 

the emission side and a coil on the receiver side. These first experiments were done at 

a frequency of 37 MHz and 1 GHz, and were enthusiastically received by the 

scientific community, as it was the first experimental validation of Maxwell's theory. 

The interest however remained confined to academic circles.. 

1885-1887 : Publication of Oliver Heaviside's comments on Maxwell's work. These 

comments, introducing the vector notation, made Maxwell's theory more accessible 

to the scientific community. 

1887 : Lord Rayleigh proves theoretically the possibility to transmit through a waveguide. 
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1901 : Marconi repeats Hertz' experiments, and then decides to work at much lower 

frequencies. He succeeded in doing the first transatlantic link on the 12th of 

December.   

1903: First regular wireless telegraphic link between England and New Scotland.. 

1920 : First tube amplifiers (triodes) working above 1 MHz.  

1921 :  The 12th of December (20 years exactly after the first link performed by Marconi), 

radio amateurs perform the first transatlantic link in medium waves, at 1.5 MHz 

(nearly short waves). This was possible thanks to a new receiver, the super 

heterodyne receiver. 

1930 : First use of Radar in VHF band (54-88 MHz).  

1930 :  The crystal detector replaces the needle detector 

1936 : Rediscovery of the waveguide by two scientists independently : G.C. Southworth and 

W.L. Barrow both presented a paper on waveguide propagation at the same 

conference. 

1937 :  Invention of the klystron by the Varian brothers. This tube can be used as a generator 

or an amplifier, and works in the microwave range. 

1938 : Motorola develops the first portable phone. 

1939-1945 : Comeback of microwaves, thanks to RADAR 

1948 :  Principles of distributed filter theory by Richards. 

1949 : First use of ferrites for the fabrication of non reciprocal components (isolators, 

circulators) 

1950 : First multiple cavity filters, synthesized using Butterworth of Chebyshev 

characteristics. 

1950 :  Development of planar microwave transmission lines : first the striplines, then the 

microstrip lines and the coplanar waveguide 

1950 : Apparition of TWT (Traveling Wave Tube) amplifiers and of masers, used as low 

noise amplifiers. 

1960 : First transistors and integrated circuits in microwaves. 

1960 : First passive satellite "Echo 1", a metallized balloon of 30m of diameter, which was 

used as a reflector at an altitude of 1600 km.  

1962 : First active satellite, Telstar1, which enabled transatlantic telediffusion. It has an 

elliptic orbit varying between 950km and 5650 km. 

1965 : First geostationary satellite, "Early Bird or Intelsat 1", having 240 phone channels for 

a satellite weight of38 kg. 
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1970 : Beginning of MMIC (Monolithic Microwave Integrated Circuits), allowing a better 

integration of microwave circuits. 

1970 :  Apparition of first CAD tools for microwaves.  

2004 :  - Hundreds of geostationary satellites. 

 -Hundred of LEO and MEO satellites 

 - 3rd generation of cellular phone 

 - Wireless data transmission 

 - ... 

 - ... 

2015 :  - Internet of things 

 - Big Data 

 - Wearable connectivity 

 - ... 

 - ... 

1.3 Definition of the Microwave band 
 

 

The electromagnetic spectrum comprises all frequencies between zero and infinity. It is traditionally 
divided in bands covering a decade, meaning that the upper limit of a band equals ten times its lower 
limit. These limiting frequencies are chosen in a way that their associated wavelength is a power of 10, 
when expressed in meters. 
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1.3.1 Electromagnetic spectrum 

 

 
Fig. 1. 1 : Subdivisions of the electromagnetic spectrum 
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VHF 

Very High Frequency 

30 - 300 MHz 10 - 1 m Radio FM, TV, radar, 

mobile 
communications 

UHF 

Ultra High Frequency 

300 MHz - 3 GHz 1 m - 10 cm Cellular phone, 
Satellite, TV,  

radar 

SHF 

Supra High  

Frequency 

3 - 30 GHz 10 - 1 cm Satellite, hertzian links, 

radio astronomy 

EHF 

Extremely 

High Frequency 

30 - 300 GHz 10 - 1 mm Satellite, radar,  

radio astronomy, 

military applications 

Fig. 1. 2 : Wireless communication frequency bands 
 

The bands between 300 MHz and 300 GHz are called microwaves. They are characterized by the fact 
that the size of circuits and components is of the same order of magnitude as the wavelength.  

 

In comparison, at the power network frequency of 50 Hz the wavelength is of 6000km, while at visible 
optical frequencies the wavelength is in the order of 0.6 micrometers.  

 

The microwave band is subdivided in the following way :  

 

 

Band Frequency 

L 1-2 GHz 

S 2-4 GHz 

C 4-8 GHz 

X 8-12 GHz 

Ku 12-18 GHz 

K 18-26 GHz 
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Ka 26-40 GHz 

Q 40-60 GHz 

E 60-90 GHz 

Fig. 1. 3 : Microwave sub-bands 
 

 We have seen about that the microwaves band was defined according to frequency. Alternatively, we 
can also define it according to period, wavelength or energy. We have indeed the following 
equivalences : 

 

Frequency (f) 300 MHz – 300 GHz 

Period (T) 3 ns – 3 ps 

Wavelength (λ) 1 m – 1 mm 

Energy (hf) 1.2 10-6 eV – 1.2 10-3 eV 

 

These different points of view in the definition of the microwave band will have different 
consequences on their properties, as will be seen in the next section.  

 

1.4 Properties of microwaves 
 

1.4.1 Bandwidth   
The absolute bandwidth of a transmission system is directly linked (proportional) to the carrier 
frequency. If the latter is in the microwave area, i.e. in the upper part of the electromagnetic spectrum, 
the bandwidth will be higher than if we work at lower frequencies. The same is of course also true for 
transmissions using optical fibers. 

1.4.2 Transparency of the ionosphere   
The ionosphere is formed by several ionized layers, which surround the Earth at an altitude between 
50 and 10000 km. The propagation of electromagnetic waves inside the ionosphere is similar to the 
propagation in a waveguide. Signals at frequencies below some tens of MHz (cut off) are partially or 
totally reflected. Signals having a higher frequency can cross the ionosphere, and suffer a distortion 
which becomes smaller as the frequency increases. In the range of microwaves, the distortion is so 
slight it is negligible. 

An effective dielectric permittivity is associated with uniform plasma. It is given by : 
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εe = ε0 1−

ω p
2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                     ω p =

Nq2

mε0  (1. 1) 
 

With 

N : number of ions/volume 

q : charge of the electron 

m : mass of the electron 

ε0 = 8.854 10-12 As/Vm : permittivity of free space. 

 

We can distinguish three regions : 

 

I) ω << ωp 

The effective permittivity of the medium tends towards -∞, and the characteristic impedance of the 
medium, given by 

Zmilieu =
μ
ε

 

is imaginary and close to 0. An incident wave will thus be totally reflected (Figure 1.4) 

 

 
Fig. 1. 4 : total reflection due to ionosphere at low frequencies 

 

II) ω = ωp 

The effective permittivity of the medium is zero, thus the wave number k of the wave is also equal to 
zero : 

Plasma

θ θ

ω << ωp

ω < ωp
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k = ω εμ  

The wave is absorbed by the plasma (figure 1.5) 

 

 
Fig. 1. 5: absorption of a wave by the plasma 

 
III) ω >> ωp 

The effective permittivity of the plasma tends towards unity, and the wave is nit disturbed by the 
plasma (Fig. 1.6) 

 
Fig. 1. 6 : High frequency wave undisturbed by plasma. 

 

 

1.4.3 Partial transparency of the atmosphere 
The gases composing the atmosphere and the different suspended molecules do not affect signals 
below 10 GHz. The first absorption ray (24GHz) is corresponding to the presence of water.  

 

plasmaabsorbtion

penetration
and absorbtion
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ω ωp
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plasma

air

ω >> ωp ω > ωp
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Fig. 1. 7: absorption due to atmosphere 

 

 
To the absorption due to gazes present in the atmosphere, we must add the effect of clouds, rain, snow 
and hail (Fig. 1.8) 

 

 
 

Fig. 1. 8: effect of atmosphere and ionosphere on microwaves 

1.4.4 Inhomogeneity of the atmosphere 
The dielectric constant of the earth atmosphere varies slightly with the altitude, as the air becomes less 
dense. The refraction index of a typical "average" atmosphere is depicted in figure 1.9.  for light and 
microwaves, and is given in (1.2). 

Inosphere free electrons

atmosphereclouds

rain fog
* * * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

snow

f<10MHz

f>10MHz

ground surface
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25

2 6
2

79 11 3.8 101 10r
pn

T T T
ν νε −⎡ ⎤⎛ ⎞⋅

= ≅ + − + ⋅⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (1. 2) 

 

where p is the barometric pressure in millibar, T the temperature in Kelvin, ν the water vapor pressure 
in millibar and n the refraction index.  

 

 
Fig. 1. 9 : inhomogeneity of the atmosphere 

 

The effect of this inhomogeneity is that microwaves do not travel along a straight line, but are curved 
as they gain altitude. Indeed, let us suppose a slab of atmosphere which is made of three layers, having 
each a different refraction index (Fig. 1.10) : 

 

 
Fig. 1. 10: inhomogeneous atmosphere 
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Let us consider the spherical interfaces given by ro and r1, which separates the three regions. Snell's 
law tells us that : 

 

 1 1

1 1 2 2

sin sin '
sin '' sin

o on n
n n

θ θ
θ θ

=

=
 (1. 3) 

Moreover, geometry tells us that : 

 1 1 1sin '' sin 'or rθ θ=  (1. 4) 
If combine those relations, we get 

 1 1 1 1 1 2 2 2sin sin ' sin '' sino o o on r n r n r n rθ θ θ θ= = =  (1. 5) 
which can be generalized for a continuously varying medium into : 

 sin sino o onr n rθ θ=  (1. 6) 
 
The practical significance of this for engineering purposes is, that in the planning of a Hertzian link 
(see applications), the curvilinear path of the wave through the air is replaced by a straight line, but 
where the Earth is considered to have a fictive radius of  

 4
3TR R=  (1. 7) 

 

Thus, if we consider the case depicted in figure 1.11, the two path lengths are considered equivalent. 

 

 
Fig. 1. 11 : Real versus fictive Earth radius. 

 
More generally, we can define an equivalence between a rectilinear and a curved path for 
different atmosphere configurations in the following way: 
 

TR kR=   
 
with k given in the following table  
 

k zone weather 
1.33 temperate without fog 

1-1.33 arid mountainous without fog 
0.68-1 temperate light fog 
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0.5-0.68 littoral heavy fog 
0.4-0.5 tropical, water fog and rain 

 
 
 
 

1.4.5 Electromagnetic noise  
The noise power received by an antenna pointing towards the sky is minimal between 1 and 10 GHz. 
In this band, the equivalent noise temperature is below 10 K. The corresponding noise power received 
is obtained by multiplying the noise temperature by Bolzmann's constant (kB=1.3804 10-23 J/K) and by 
the bandwidth of the receiver. This means that it is in the band between 1 and 10 GHz that we will be 
able to detect the signals with the smallest amplitude, thus having the most sensitive receivers. For 
instance, signals used for deep space observation use a band close to 3 GHz.  

 

 

Fig. 1. 12 : Antenna noise temperature 
 

1.4.6 Antenna directivity  
The antenna beamwidth is proportional to the wavelength divided by the largest dimension of the 
antenna. For the same physical dimensions, an antenna will be more directive at higher frequencies. 
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Fig. 1. 13 : Point to point link (Hertzian link or satellite link) using microwaves 

 
 

 
Fig. 1. 14: omnidrectional Radio diffusion using ultra short waves 

 
Indeed, in a first approximation the 3dB Beamwidth of antenna is given by  

 
d
λα ≥  (1. 8) 

where α is the beamwidth, λ the wavelength and d the largest dimension of the antenna. 

 
Fig. 1. 15 : Half power beamwidth 

 
 

 

1.4.7 Interaction with matter  
The absorption of electromagnetic waves by matter depends on the frequency. In particular, water 
absorbs microwaves over the entire band, a property which allows applications like microwave heating 
or the thermal treatment of certain illnesses. 

P
αd

1/2
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1.4.8 Non ionizing radiation 
The molecular cohesion energy is much larger than the photonic energy in the microwave band. This 
means that a photon in the microwave band is not able to modify a chemical link in a molecule, by 
inducing a photoelectrical effect. Microwave radiation is thus non ionizing ( in comparison, X rays 
which have a much larger photonic energy can produce ionization of the matter).  

 

1.5 Applications  
 

1.5.1 RADAR 
RADAR stands for RA Detection And Ranging. It is based on the use of the echo produced by an 
obstacle located on the trajectory of an electromagnetic wave. In most cases, the system is as depicted 
on the schema of figure 1.16. 

   
Fig. 1. 16 : Principle of RADAR 

 
where the received power is linked to the transmitted power by the RADAR equation : 

 

 
( )

2 2

3 44
r

f

P g
P R

λ σ

π
=  (1. 9) 

 
where Pr is the power at the receiver, Pf the transmitted power, g the antenna gain, λ the wavelength, σ 
the equivalent radar surface and R the distance to the target. 

The equivalent radar surface depends on the shape of the object and its material. It is usually also 
frequency dependent : Fig 1.17 gives the equivalent radar surface of a metallic sphere- We see that 

Tx

Rx

Diplexer

Detection
Analysis
Results

σ

R
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when the sphere is much larger than the wavelength, its equivalent radar surface is equal to its surface 
projected on the plane normal to the direction of propagation. On the other hand, when the object is 
much smaller than the wavelength, the radar signal hardly sees the object, thus its equivalent radar 
surface is very low. In the area where the object is of the same size than the wavelength, we can see 
that the behavior of the object shows resonances.  

 

 
Fig. 1. 17 : Equivalent RADAR surface of a perfect conductor sphere 

 
It is not possible to find closed form formulas for most of radar targets. For some canonical structures 
however, it is possible to find analytical expression for the equivalent radar surface in the optical 
region. Some examples are shown in figure 1.18.  

 

0.001

0.01

0.1

1

10

0.01 0.1 1 10

OPTICAL REGION

RAYLEIGH REGION

MIE REGION

resonances

a/λ

σ/πa2



 

Microwaves 
 20 
 

 
Fig. 1. 18 : optical limit of equivalent radar surface for some canonical perfect electric conductors 

 
 

Pulse radar 
For the measurement of the distance to the target, we use a pulse modulation of the radar (fig. 1.19). 
The distance to the target is simply given by  

 
2

o arc tR =  (1. 10) 

 
where R is the distance, tar the time between the emission of the pulse until the arrival of the reflected 
pulse and co the velocity of light in free space. The advantage of pulsed radars is that the peak power 
can be much larger than the average power used by the system (typically a factor of 1000). The 
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frequency of repetition of the pulses fr is set by the longest distance the radar has to detect (see fig. 
1.19). 

 

  
Fig. 1. 19 : pulse radar 

 
 

Chirp radar 
For the measurement of short distances (automatic door opening systems, steering aids), another type 
of radar, the chirp radar is used. The principle of this radar system is depicted in figure 1.20. It consists 
of a frequency sweeper connected via a circulator to an antenna. The frequency of the signal emitted 
by the antenna changes thus linearly with the time. The signal reflected back by the target received by 
the antenna will thus have a different frequency than the signal emitted by the antenna at a specific 
instant of time (see fig. 1.21). This returning signal is mixed with the transmitted signal, and the 
difference in frequency is detected, giving a measure of the distance of the target.  

 

t

P

tar

1/fr=τr
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Fig. 1. 20 : Principle of the chirp radar 

 
 

 

 
Fig. 1. 21 : Transmitted and received signals at the antenna of the chirp radar 
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Doppler effect and Doppler radar 
The Doppler ef fect is the shift in wavelength, thus in frequency, due to a relative movement between 
a source and a receiver. This phenomenon was first described four acoustic waves by Christian 
Doppler in 1848.  

Let us consider the four cases of an acoustic wave due to a point source shown in figure 1.22 : 

 

 
Fig. 1. 22 : Illustration of the Doppler effect for an acoustic wave 

 
The first case illustrates an immobile source, on fig 1.22b) the source is moving with a velocity which 
is lower than the speed of sound, on fig1.22 c) the source is moving with a velocity equal to the speed 
of sound while on fig1.22d) the velocity of the source is larger than the speed of sound. In the second 
case, we see clearly that an observer towards which the source is traveling will perceive a signal with a 
wavelength shorter that the effective wavelength of the emitted signal, while in an observer placed in a 
position such as the sound source moves away from him will perceive a signal with a larger 
wavelength. The first observer will thus perceive a higher frequency, while the second a lower 
frequency. The frequency shift is directly correlated to the relative velocity of the source and the 
receiver. 

a) b)

c) d)
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This phenomenon exists of course also for electromagnetic waves, but in this case, we will have only 
the situations describes in figs 1.22 a) and b), as the velocity of the source can not be larger than the 
speed of light.  

 

The Doppler effect in electromagnetic waves is used for velocity measurement, anti intrusion systems, 
etc.  

 

Doppler radar 
 

Let us consider the situation of figure 1.23, where a static emitter is transmitting a signal of frequency 
fo towards a receiver travelling with a certain velocity v.  

 
Fig. 1. 23 : Doppler radar 

 

The frequency of the signal perceived at the receiver is given by : 

 1 cosr o
vf f
c

α⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (1. 11) 

Conversely, consider a moving emitter is transmitting towards a static receiver as presented in 
fig 23.b.  
 

 
Fig. 1. 24 : Doppler radar 

 

The frequency of the signal perceived at the receiver is given by : 
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1 cos

o
r

ff
v
c

α
=

⎛ ⎞+⎜ ⎟
⎝ ⎠

 

where c is the speed of light.  
 

1.5.2 Telecommunication 
Microwaves are often used for telecommunication links, either between two fixed terrestrial antennas 
(Hertzian links), for space applications or for mobile communications. Indeed, for the two latter 
applications, waves are the only alternative. 

 

In a transmission in free space, between two fixed antennas, the received power is given by Friis' 
formula :  

 
2

1 2 4r fP P g g
L

λ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1. 12) 

where Pr is the received power, Pf the transmitted power, g1,g2 the antenna gains, λ the wavelength and 
L the distance between the antennas. The term in brackets is called the link path  loss, and is caused by 
the spherical wave nature of electromagnetic waves propagating in free space.  

 

As we have seen in §1.4.4, the atmosphere is slightly inhomogeneous, which leads to a slight change 
in permittivity with altitude at microwave frequencies. This is taken into account in the planning of 
Hertzian links (point to point links on Earth) by substituting the radius of the earth by a corrected 
value when computing the length L of the link.  

 

Another characteristic that has to be considered when planning point to point Hertzian links is the fact 
the propagation takes place over the Earth. Moreover, other obstacles (mountains, trees, buildings, etc) 
can perturb the transmission. The reflected wave will arrive with a different phase to the receiver than 
the direct wave, as the length of these paths is usually different (figure 1.24). 
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Fig. 1. 25 : Diffraction on the Earth 

 

In order to avoid destructive interference between the direct and the reflected waves, Hertzian links are 
planned such that there is no obstacle in the link that would yield a reflected path which has a path 
length difference of half a wavelength with the direct path, as a difference of half a wave length would 
lead to a reflected wave being in phase opposition with direct path (destructive interference). This 
destructive interference will of course also happened for path length differences of 3λ/2, 5λ/2, etc., but 
as the path length of the reflected wave becomes much longer than the path length of the direct wave, 
the former will be sufficiently attenuated with respect to the latter to avoid a complete destructive 
interference.  

We want thus to avoid to have obstacles such that (see fig. 1.24) 

 

 
2
λ

=1 2R + R - R  (1. 13) 

which is the equation of an ellipsoid of revolution : The Fresnel ellipsoid. From this equation, the 
height of the antenna masts such that the ellipsoid is empty of obstacles can be determined (figure 
1.25) 
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Fig. 1. 26 : Fresnel ellipsoid 

 
 

 

In the case of mobile communication, it is not possible to avoid the reflection of the obstacles. Multi 
path communication is the rules, and different models exist to approximate the characteristics of the 
channel according to the environment : urban, suburban or countryside.  

 

1.5.3 Other microwave applications 
• Microwave heating 

• Material characterization 

• Radiometry 

• Remote sensing. 
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2. Maxwell's model: short summary 
 

In this chapter the basics of Maxwell's model necessary for the following of the course will be 
summarized. 

 

2.1 Definition 

2.1.1 Electric Field E 
 

A motionless particle with an electric charge q sustains an electrical force Fe called electrostatic force 
due to all other electrical charges. This force is proportional to q, thus the ratio Fe/q is independent of 
the considered particle, but indicates a local property of space. This property is called the electric field: 

   

  Fe(t, r)/q=E(t,r) [V/m]  (2. 1) 

 

The electrostatic force and the electric field are vector quantities, which depend on time and position.  

 

2.1.2 Induction field B 
In addition to the electrostatic force, a moving loaded particle sustains a magnetic force Fm. This 
force is orthogonal to the velocity and to another vector property of space, called the induction field 
B(t,r). : 

 

  Fm(t,r) / q = v(t,r) × B(t,r) [V / m]  (2. 2) 

 

The dimension of the induction field B(t,r) is the tesla [T = Vs/m2].  

The magnetic force produced by the induction field B on moving charge is the basis for all 
electromechanical conversions (motors, generators, etc.) 

 

2.1.3 Electric charge density 
The electric charge can be a point or distributed in space. The following four charge densities exist: 

q [C=As] point charge 

ρl [As/m]  line charge density 
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ρs [As/m2] surface charge density 
ρ [As/m3] volume charge density 
 

2.1.4 Electric current density 
In some media, the electric charges may move freely. The application of an electric force leads to a 
motion of the charges, which creates an electric current, whose density is defined by : 

  J( t,r) = ρi vi
i

∑     [As / m2 ]  (2. 3)  

 

The summation ports on all the types of charges particles moving in the considered medium. In many 
situations, it is the mean velocity vi and not the acceleration which is proportional to the electric 
field. This is due to collisions between the particles. We define the conductivity σ [S/m] 
 

  J(t,r) = σE(t,r)   [A / m2 ]   (2. 4) 

 
This is Ohm's law. We find free particles in classical conductors (metals), semiconductors, salt 
solutions, plasmas and electric arcs.  

 

2.1.5 Surface current density Js 
A surface charge density ρs can also move, producing a surface current density Js(r,t). A surface 
current can flow on the surface between two different media, in particular when one of the media is a 
perfect electric conductor.  

 

2.1.6 Dielectric properties 
In insulating media, the charges are bound to the atoms and molecules. When an electric field is 
applied, the charges sustain a force but are tied by the atom's cohesion forces. They can thus only 
moves slightly. Small dipoles form then in the medium, producing a polarisation field P(t,r), which 
depends on the applied electrical field. The combined effect of the electric field and the polarisation is 
called electric flux density. 

 

  D t, r( ) = ε0E t,r( )+ P t,r( )  (2. 5) 

 
where ε0=8.854.10‐12 is the dielectric constant. In free space, and by extension in air, there is no 
polarisation. 
In a lossless, isotropic and linear medium, the polarisation is a linear function of E(r, t). We can thus 
write: 
  D t, r( ) = εE t,r( ) = ε0εrE t,r( )   (2. 6) 
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where εr is the relative permittivity of the medium. 

2.1.7 Magnetic properties 
The magnetic properties of materials result of a quantum property of the electron, called magnetic 
spin, which can be positive or negative.  

In most elements, the number of positive spins equals the number of negative spins and the considered 
medium does not have any magnetic properties. In some materials, the so-called ferromagnetic 
materials (iron, nickel, cobalt, some rare earths, their oxides and their alloys), the numbers of positive 
and negative magnetic spins are different. The resulting magnetic moment yields a magnetization 
moment M(t,r). The magnetic field is then defined as: 

   B t,r( ) = μo H t,r( )+ M t,r( )[ ]  (2. 7) 

 

where μ0=4π.10-7 Vs/Am. In free space and non ferromagnetic materials, there is no magnetization. In 
a lossless, isotropic and linear medium, the magnetization is a linear function of the magnetic field. 
Thus: 

 

  B t,r( ) = μoμrH t,r( )  (2. 8) 

 

where μr the relative permeability of the medium. 

 

 

2.1.8 Properties of vacuum 
Vacuum, and by approximation air, are linear. There is neither polarization nor magnetization, and 
their relative permittivity and permeability are equal to one.  

The constants εo and μo are linked by : 

 

 
1

εoμo
= co ≅ 3 ⋅108   m / s[ ]  (2. 9) 

 

which yields the free space light velocity, and 

 

 
μo
εo

= Zo ≅120π ≅ 376.6   Ω[ ]  (2. 10) 
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which yields the characteristic impedance of free space. 

 

 

2.2 Maxwell's equations 

2.2.1 In time domain 
The four vector fields defined above are independent. They are linked by Maxwell's equations in all 
points which belong not to an interface between two media: 

 

 
∇ × E t,r( ) = − ∂B t,r( )

∂t
∇ ⋅ D t,r( ) = ρ t,r( )

∇ × H t,r( ) =
∂D t,r( )

∂t
+ J t,r( ) ∇ ⋅ B t,r( ) = 0

  (2. 11) 

 

If we take the divergence of the second equation and use the third, we get the continuity equation: 

 
∂ρ t,r( )

∂t
+ ∇ ⋅ J t,r( ) = 0   (2. 12) 

 

2.2.2 In frequency domain 
In this course, we will consider time harmonic waves. Indeed, even non harmonic phenomena like 
transients are often studied by decomposing the time domain wave in its frequency spectrum using 
Fourier's transform. For a sinusoidal wave of pulsation ω = 2πf, the time dependence is of the type cos 
(ωt +φ) and we can write 

 

(2. 13) 

 

 

A is the peak value and Ae = A/√2is the effective value. 

The true time dependent physical values f(r,t) (f=E, D, H, B, J,ρ) are replaced by complex time 
independent values, called phasors f(r) (f=E, D, H, B, J, ρ), using the relation :  

 

A cos(ωt +φ) = Re [Aejφ exp (jωt)] = 2 Re [ A
2

ejφ exp (jωt)] = 2Re [Aeejφ exp (jωt)]  
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  f t,r( ) = 2 Re f r( )ejωt[ ]  (2. 14) 

 

The factor 2   is introduced in the definition in order that the modulus of the phasor corresponds to 
the effective value of the signal. In some textbooks, this factor is not introduced in the phasors's 
definition. The norm of the phasor is then the peak value of the signal, and a factor ½ appears in 
power and energy related formulas.   

 

 

The introduction of phasors allows replacing time domain derivation by a multiplication by jω. 
Maxwell's equations in phasor notation become: 

 

 
∇ × E r( ) = − jω B r( )           ∇ ⋅D r( ) = ρ r( )
∇ × H r( ) = jω D r( ) + J r( )   ∇⋅ B r( ) = 0

  (2. 15) 

 

and the continuity equation : 

  ∇⋅ J r( )+ jω ρ r( ) = 0   (2. 16) 

 

From this point on, we will always work in the frequency domain, and in order to simplify notation 
phasors will not be underlined anymore.  

 

In this course, we will limit ourselves to linear media. We have seen that in this case  

  

 

    (2. 17) 

 

where now  ε and μ are two constants defining the medium (permittivity and permeability), which can 
in general be frequency dependent and complex. 

 

    (2. 18) 

 

D =  εE      ;     B = μH

ε = ε' - j ε"    ;    μ = μ' - j μ" 
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A complex value for ε implies, when we transform back to time domain, that D(r,t) et E(r,t) have the 
same pulsation ω but are not in phase. Moreover, if Im(ε) < 0, D is late with respect to E. A negative 
imaginary part of ε is linked to causality (Kramers-König relations which are similar to Bode's 
relations in circuit theory) and correspond physically to the existence of losses in the medium. The 
same consideration can be done for B, H. As an example water at 1 GHz has εr = (80 − j10) ,  μr  = 1.  

Finally we must note that the pulsation of an electromagnetic phenomenon is unchanged by a linear 
medium. 

 

Relations (2.17) imply that only two vectors E, H, are necessary to describe an electromagnetic 
phenomenon in a linear medium. We can thus rewrite Maxell's equations as :  

   

  (2. 19) 

 

 

2.3 Boundary conditions  
In presence of a boundary separating two different media #1 and #2, Maxwell's equations must be 
completed by the following boundary conditions (Fig 2.1) 

 

 

Fig. 2. 1: Boundary conditions 

 

  n × E1 − E2[ ]= 0     n × H1 − H2[ ]= Js   (2. 20) 

  

for the tangential components 

∇ × E = - jωμH ∇ •E = ρ/ε

∇ × H = J + jωεE ∇ • H = 0

Milieu #1

Milieu #2

Js

n
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  n ⋅ εr1E1 − εr2E2[ ]= ρs      n ⋅ μr1H1 − μ r2H2[ ]= 0   (2. 21) 

 

for the normal components. n  is the unitary vector normal to the surface pointing from medium #1 to 
medium #2, Js is an eventual surface current [A/m] exiting at the interface and ρs is the surface charge 

density which my exist between the media. . 

 

2.4 Electric and magnetic energy 
The following definitions are valid for time harmonic fields:  

 

  [J/m3] : Mean value of the electric energy density at one point 

  [J/m3] : Mean value of the magnetic energy density at one point  

  [W/m2] : Poynting vector ( mean value of the power flux at one point) 

   

 

The integration of Maxwell's equations over a volume v, enclosed by a surface s yields Poynting's 
theorem:  

 

    (2. 22) 

 

where n is the unitary normal vector to s pointing towards outside. The first term to the left is the flux 
of the Poynting vector, i.e. the power escaping from the volume through the surface s. The second 
term on the left side corresponds to the reactive power in the volume. The sum of those two powers is 
equal to the power given by the current sources.  

2.5 Potentials 

2.5.1 Magnetic vector potential 
Knowing that the divergence of a rotational is always identical to zero and that the divergence of the 
induction field B(r) is zero, we define the magnetic vector potential in the following way : 

 : 

 

 we = (1/2) εE•E 

wm = (1/2) μH•H

S = E × H *

ds S•n 
s

  +  jω  dv (we +wm) 
v

= - dv  J•E 
v

    ,    [w]
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  AB    0,B   0A ×∇==⋅∇≡×∇⋅∇ thusand   (2. 23) 

 

This relation defines the magnetic vector potential short to an irrotational factor. We may thus replace 
A by A + ∇Φ  where Φ is an arbitrary function, as the rotational of a gradient is always equal to zero. 
On have thus a certain degree of freedom in choosing the definition of A.  

 

2.5.2 Electric scalar potential 
Combining (2. 24) with Maxwell's first equation, we get : 

 

  ∇ × E + jωA( ) = 0   (2. 25) 

 

 

As the rotational of a gradient is always zero, we can define a scalar function V such that :  

 

  E + jωA = −∇V   (2. 26) 

 

This function is called electric scalar potential and is defined short to a constant. We have chosen a 
negative sign, because the convention states that the field lines go from the positive potential to the 
negative potential 

 

 

2.6 Wave equation  

2.6.1Source and induced currents 
In all electromagnetic problems, we admit the existence of source currents Jsrc which are not modified 
by the fields they create or by any other field. These sources generate the electromagnetic excitation 
fields. If any object is placed close to these excitation fields, they will produce induced currents Jind 
on the object. In turn, these induced currents in the object will generate diffracted fields. The total 
fields are the sum of the excitation and the diffracted fields.  

There is no physical difference between source currents and induced currents, as in both cases they are 
merely moving electrons. We will however establish a conceptual difference, subtle but essential :  
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* Jsrc is a known imposed current. it is not affected by the existing fields. It is the fundamental 

source of the problem. 

* Jind is a current depending on the total field, in general unknown. 

  

In Maxwell's equation    

 

 

the current  J is total current and depend thus on the fields. We want to put in evidence the field 
independent part of the current, which will play the mathematical role of the inhomogeneous term in 
the differential equation. We write thus J = Jsrc + Jind where Jsrc is the known "source" part 
independent of the field and Jind is the induced part. For object made of linear materials, this induced 
current is linked exclusively to the total electric field via Ohm's law :  Jind= σE . We can then write : 

 

    (2. 27) 

 

and we obtain finally Maxwell's equation in the wanted form:  

 

    (2. 28) 

 

where a global permittivity has been introduced. 

 

 εT = ε ‐ j σ/ω.   (2. 29) 

 

 ∇.E = ρ/ε is replaced ∇.E = ρsrc/εΤ  in an analogue way. 

 

 

2.6.2 Maxwell's equations far away from the sources 
In this course we shall focus on the propagation phenomena that occur when the signal has quit the 
generator (source) and propagated towards a receiver. Thus, we will consider a medium without 

∇ × H = jωε E + J

jωε E + J = jωε E + Jind + Jsrc = (jωε + σ) E + Jsrc = jωεTE + Jsrc 

∇ × H =  = jωεTE + Jsrc 
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sources and write Maxwell's equations in the following way, which we will often use during this 
course:  

    (2. 30) 

 

However and in order to simplify the notation, the permittivity will be write as ε instead of  εT, 
implicitly meaning that this complex value takes into account not only the dielectric losses but also an 
imaginary part σ/ω in the presence of ohmic losses. 

 

2.6.3 Wave equation 
We take the rotational of the two first Maxwell's equations, and using vector calculus we show that in 
a source free region the electric and magnetic field satisfy the following wave (or Helmoltz) equations: 

 

    (2. 31) 

 

or in compact notation 

    (2. 32) 

 

For a given medium and frequency, k = ω√(με) is a complex constant called the wave number. 

 

2.6.4 Plane waves 
The simplest solution to the wave equations in an infinite unbounded medium is the electromagnetic 
plane wave, whose fields are given by:  

 

   

  ( ) ( ) ( ) ( )0ˆ ˆexp ,    or   , 2 cosjk t t kω= − ⋅ = − ⋅0E r E n r E r E n r   (2. 33) 

 

n being the unitary vector in the propagation direction. The product of kn, written k, is sometimes 
called the propagation vector. The propagation velocity of a wave is given by 

 

∇ × E = - jωμH ∇ •E = 0

∇ × H =  jωεTE ∇ • H = 0

∇2E + ω2μεE = 0     ;     ∇2H + ω2μεH = 0

(∇2+k2)E = 0     ;     (∇2+k2)H = 0
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   v =
k
ω

=
1
με

=
c0
μrεr

  (2. 34) 

 

where c0 is the free space light velocity. The associated wavelength is then given by 

 

    (2. 35) 

 

Plane waves are characterised by the fact that the three vectors E, H and k (propagation vector) are 
mutually orthogonal and form a direct system of reference.  E × H is in the direction of k. Moreover, 
the phase of E and H are constant on planar surfaces, which are named equiphase planes, and are 
orthogonal to the direction of propagation of the wave.  

 

Example: 

Lets define a Cartesian system of reference along E, H and k respectively, so that the only non-zero 
components of the fields and the wave vector are Ex, Hy and kz. The wave equation becomes: 

 

 

d2Ex
dz2 + k 2Ex = 0

  (2. 36) 

 

The solutions to this equation are linear combination of  ejkz et e-jkz. Let consider the solution  

  Ex = E0e− jkz
  (2. 37) 

 

which is a wave travelling in the positive direction of z. The associated magnetic field is obtained by  

 

jωμH = −∇ × E = ˆ y jk Ex

Ex = μ
ε

Hy
  (2. 38) 

 

The proportionality factor between the two fields has the dimension of impedance. It is the 
characteristic impedance of the medium.  

λ = 2π/k = v/f 
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           In free space : 120 377c cZ Zμ π
ε

= = ≅ Ω   (2. 39) 

 

This quantity has for radiating waves the same role than the characteristic impedance for transmission 
lines. 

The fields in time domain are given by 

   

Ex = E0 cos ωt − kz( )

H y =
Eo
Zc

cos ωt − kz( )
  (2. 40) 

 

In a lossless medium (free space for instance), the Poynting vector is purely real and directed along k. 
The transmitted power density is equal to  

 
P =

E0
2

Zc
= Zc H0

2

  (2. 41) 

 

2.6.5 Spherical waves 
 

Another very useful solution to the wave equations is obtained by resolving the latter in spherical 
coordinates. The obtained solution is then called spherical wave, and its equiphase surfaces are 
spheres. This means that, if the origin of a spherical coordinate system is placed on the source of a 
spherical wave, the propagation is radial.  

The electric and magnetic fields and the propagation vector are mutually orthogonal and form a direct 
reference system, so we can choose the reference system in a way that : 

  

    

k = ker
E = Eθeθ
H = Hϕeϕ

Eθ = ZcHϕ =
μ
ε

Hϕ
  (2. 42) 

 

A spherical wave has the following form:  
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Eθ = E0

e− jkr

r   (2. 43) 

for a wave travelling away from the origin 

 

 

2.6.6 Wave polarisation 
The orientation of the electric field is called the polarisation of the electromagnetic wave. It can be of 
three types: linear, circular or elliptical. 

 

 

Linear polarisation  

The orientation of the electric field remains unchanged as a function of time at a specified point of the 
space. For a wave travelling close to the earth's surface, we often use the terms vertical or horizontal 
polarisations for a vertical or horizontal electric field.   

 

Fig. 2. 2: linear polarisation 

 

 

Circular polarisation 

The polarisation of a wave is circular when at a fixed point in space the extremity of the phasor 
representing the electric field describes a circle. If the phasor turns clockwise we talk about right hand 
circular polarisation (RHCP), id it turns counter clockwise we talk about left hand circular polarisation 
(LHCP). 

t

E

E

E
E
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Fig. 2. 3: Circular polarisation 

 

Elliptical polarisation 

The polarisation of a wave is elliptical if the extremity of the phasor representing the electric field 
describes an ellipse at a fixed point in space. This is the most general case.  

 

Fig. 2. 4: Elliptical polarisation 

 

 

2.6.7 Polarisation characteristics of a field. 
 

A time harmonic electric field is defined as: 

E

K

RIGHT HAND CIRCULAR
POLARIZATION

E

K

LEFT HAND CIRCULAR
POLARIZATION

H

H

E

2b

2a
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E(t ) = 2 exE0x cos ωt +ϕ x( )+ eyE0y cos ωt + ϕ y( )+[
ezE0z cos ωt + ϕz( )+]   (2. 44) 

 

which can be written as 

  E(t) = E 0( )cos ωt( )+ E T / 4( )sin ωt( )  (2. 45) 

where 

        

E(0) = 2 exE0x cos ϕ x( )+ eyE0y cos ϕ y( )+ ezE0z cos ϕ z( )[ ]
E(T / 4) = − 2 exE0x sin ϕ x( )+ eyE0y sin ϕ y( )+ ezE0z sin ϕz( )[ ]  (2. 46) 

 

or in term of phasor vector 

 

E(0) = Re 2E[ ]
E(T / 4) = − Im 2E[ ]  (2. 47) 

 

Vectors E(0) and E(T/4) are two conjugated axes of the polarisation ellipse. In the case of a linear 
polarisation they are collinear, which can be written as : 

 

 

E 0( )× E T / 4( ) = 0

E2 ≠ 0
  (2. 48) 

 

In the case of a circular polarisation, the two half axes of the ellipse are orthogonal and have the same 
length. We write thus:  

 

E 0( )⋅ E T / 4( ) = 0

E 0( ) = E T / 4( ) ≠ 0   (2. 49) 

 

Which is term of phasors yields:  

  E ⋅ E = 0   (2. 50)
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Chapter 3: Transmission lines 
 

Transmission line theory has a great kinship to standard circuit analysis, with one major difference, 
being the electrical size : In circuit analysis we assume that the physical dimensions of a circuit are 
much smaller than the wavelength, whereas a transmission line can have any dimension between a 
fraction of wavelength (electrically short) to many wavelength (electrically large). Thus, a 
transmission line is a distributed parameter network. 

 

3.1 Incremental model 
 

Let us consider an incremental length of a transmission line, as represented by a section of a two wire 
line in figure 3.1a. If the segment Δz is short, its equivalent circuit can be represented as in figure 3.1b, 
where R, L, G and C are per unit length quantities :  

 

R = series resistance per unit length, for both conductors [Ω/m] 

L = series inductance per unit length, for both conductors [H/m] 

G = shunt conductance per unit length [S/m] 

C = shunt capacitance per unit length [F/m] 

 

The series inductance represents the total self inductance of the conductors, while the shunt 
capacitance is due to the proximity of the conductors. The series resistance represents conductive 
losses and the shunt conductance dielectric losses. A transmission line of finite length can be viewed 
as a cascade of incremental transmission lines.  
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Fig. 3. 1: Definition of an incremental transmission line 

 

We can apply Kirchhoff's laws to the circuit of figure 3.1, and obtain :  

 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,
, , , 0

,
, , , 0

i z t
v z t R zi z t L z v z z t

t
v z z t

i z t G zv z z t C z i z z t
t

∂
− Δ − Δ − + Δ =

∂
∂ + Δ

− Δ + Δ − Δ − + Δ =
∂

 (3. 1) 

 
Dividing those relations by Δz and taking the limit as Δz->0 yields the following differential equations 
for the voltage and the current on the line :  

 

 

( ) ( ) ( )

( ) ( ) ( )

, ,
,

, ,
,

v z t i z t
Ri z t L

z t
i z t u z t

Gv z t C
z t

∂ ∂
= − −

∂ ∂
∂ ∂

= − −
∂ ∂

 (3. 2) 

These equations are the time domain form of the telegrapher or transmission line equation. For 
harmonic waves (sinusoidal steady-state condition) and in phasor notation, (3.2) simplifies to :  

 

 

( ) ( ) ( )

( ) ( ) ( )

dV z
R j L I z

dz
dI z

G j C V z
dz

ω

ω

= − +

= − +

 (3. 3) 

 

Δz

z

i(z,t)

u(z,t)

Δz

i(z,t)

u(z,t)

RΔz LΔz

GΔz CΔz

i(z+Δz,t)

u(z+Δz,t)
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These equations can be solved simultaneously to give a wave equation for either V(z) or I(z) : 
 
 

 

( ) ( )

( ) ( )

2
2

2

2
2

2

0

0

d V z
V z

dz
d I z

I z
dz

γ

γ

− =

− =

 (3. 4) 

 
where 

 

 ( )( )j R j L G j Cγ α β ω ω= + = + +  (3. 5) 
 
is the complex propagation constant. The imaginary part, β, is called the phase constant, while the real 
part, α, is the attenuation constant. Note that the propagation constant is in general a function of 
frequency.  

 

The solutions to (3.4) are called travelling waves and can be described as :  

 

 
( )
( )

0 0

0 0

e e

e e

z z

z z

V z V V

I z I I

γ γ

γ γ

+ − −

+ − −

= +

= +
 (3. 6) 

 
were the e zγ− term represents a wave travelling in the +z direction, and the e zγ  a wave travelling in 
the –z direction. Applying (3.3) to (3.6) gives the current on the line :  

 

 ( ) ( )0 0e ez zI z V V
R j L

γ γγ
ω

+ − −= −
+

 (3. 7) 

 
 

If we define the characteristic impedance of the line as  

 

 o
R j L R j LZ

G j C
ω ω

γ ω
+ +

= =
+

 (3. 8) 

we can write : 

 0

0

o
o

o

V VZ
I I

+ −

+ −
−

= =  (3. 9) 
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Then the second equation of (3.6) can be rewritten as :  

 

 0( ) e ez zo

o o

V VI z
Z Z

γ γ
+ −

−= −  (3. 10) 

 
Converting into time domain, we get : 

 

 ( ) ( ) ( ), 2 cos e 2 cos ez z
o ov z t V t z V t zα αω β θ ω β θ+ + − − −= − + + + +  (3. 11) 

 

where θ is the phase of the complex voltage V.  

 

The wavelength of the travelling wave is defined as the distance between two successive points of 
equal phase at a fixed instant of time, which is given by : 

 

 2πλ
β

=  (3. 12) 

 

The phase velocity of the wave is defined as the speed at which constant phase points travel along the 
line : 

 

 dzv f
dtϕ

ω λ
β

= = =  (3. 13) 

since ω=2πf. 
 

3.2 Lossless transmission lines 
 

In many practical cases, the loss of the line is very small and can be neglected. Setting R=G=0 in the 
above results yields 

 

 
o

j j LC

LZ
C

γ β ω= =

=
 (3. 14) 
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where β and Zo are real numbers. The general solution for the voltage and the current on the 
transmission line can be written as  

 

 
( )

( )

0 0

0 0
0 0

e e

e e e e

j z j z

j z j z j z j z

o o

V z V V

V VI z I I
Z Z

β β

β β β β

+ − −

+ −
+ − − −

= +

= + = −
 (3. 15) 

The wavelength on the line is  

 

 2 2
LC

π πλ
β ω

= =  (3. 16) 

and the phase velocity of the line is 

 

 1dzv
dt LCϕ

ω
β

= = =  (3. 17) 

 

3.3 Terminated transmission lines 
 

A lossless transmission line terminated by an arbitrary impedance is depicted in figure 3.2 

 

 
Fig. 3. 2 : A terminated transmission line 

 
 

We suppose that we have an incident wave of the form 0 e j zV β+ −  travelling on the line. This wave is 

generated at a source at z<0.  We have seen that the ratio of voltage to current for such a travelling 
wave is Zo. When the line is terminated in an arbitrary load L oZ Z≠ , the ratio of voltage to current in 

the load must equal ZL. Thus, a reflected wave must be generated at the load, with appropriate 
amplitude to satisfy this condition. The total voltage on the line can be written as in (3.15), as a sum of 

ZL

IL
V(z), I(z)

Zo, β VL

z

0
l
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an incident and a reflected wave. The total voltage and current at the load are related by the load 
impedance, so at z=0, we must have : 

 

 ( )
( )

0 0
0

0 0

0
0L

V V VZ Z
I V V

+ −

+ −
+

= =
−

 (3. 18) 

Solving for the reflected wave, we get : 

 

 0 0
L o

L o

Z ZV V
Z Z

− +−
=

+
 (3. 19) 

 

We can thus define the voltage reflection coefficient Γ : 

 

 0

0

L o

L o

V Z Z
Z ZV

−

+
−

Γ = =
+

 (3. 20) 

 

A reflection coefficient for the current could also be defined, and will be exactly the negative of the 
voltage reflection coefficient. We will thus not use it in this course. 

 

The voltage and current on the line can be written as : 

 

 
( ) ( )
( ) ( )

0

0

e e

e e

j z j z

j z j z

o

V z V

VI z
Z

β β

β β

+ −

+
−

= + Γ

= − Γ
 (3. 21) 

Thus, the current and voltage on this terminated line are a superposition of an incident and a reflected 
wave, called standing waves. To avoid reflection, we must have Γ=0, which is obtained when the load 
impedance is equal to the characteristic impedance of the line. 

 

The time average power flow along the line at a point z  is  : 

 

 ( ) ( )
2

2* * 2 2Re Re 1 e e
o j z j z

av
o

V
P V z I z

Z
β β

+
−⎡ ⎤⎡ ⎤= = − Γ + Γ − Γ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3. 22) 
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The combination of the two middle terms is purely imaginary, the power flow reduces thus to : 

 

 ( ) ( ) ( )
2

2*Re 1
o

av
o

V
P V z I z

Z

+
⎡ ⎤= = − Γ⎣ ⎦  (3. 23) 

 

 

which shows that the average power flow is constant at any point on the line, and that the total power 
delivered to the load is equal to the incident power minus the reflected power. If Γ=0, the maximum of 
power is delivered to the load, while no power is delivered if the modulus of the reflection coefficient 
equals 1. The preceding results assumed that the source is matched (there are no re reflections at the 
source).  

 

When the load is mismatched, then not all of the available power is delivered to the load. The "loss" is 
called return loss, and is defined in dB as : 

 

 1020log dBRL = − Γ  (3. 24) 
 

If the load is matched to the line, the magnitude of the voltage on the line is constant : ( ) 0V z V += . 

When the load is mismatched, the reflected wave leads to a standing wave, where the magnitude of the 
voltage is not constant along the line  : 

 

 ( ) ( )22 2
0 0 01 e 1 e 1 e j lj z j lV z V V V θ ββ β −+ + − += + Γ = + Γ = + Γ  (3. 25) 

where l=-z is the positive distance measured from the load back toward the generator, and θ is the 
phase of the reflection coefficient.  We see that the magnitude of the voltage oscillates with z along the 

line. The maximum occurs when ( )2e 1j lθ β− = , and is equal to  

 

 ( )max 0 1V V += + Γ  (3. 26) 

 

while the minimum occurs at ( )2e 1j lθ β− = −  and is equal to  
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 ( )min 0 1V V += − Γ  (3. 27) 

 

As the magnitude of the reflection coefficient increases, the ratio of Vmax to Vmin increases, so a 
measure of the mismatch of line, called the standing wave ratio, is defined as :  

 

 
( )
( )

max

min

1
1

VSWR
V

+ Γ
= =

− Γ
 (3. 28) 

 

It can be see that the SWR is a real number such that 1 SWR≤ ≤ ∞ , where SWR=1 implies a matched 
load.  

 

The reflection coefficient can be generalized to any point along the line : 

 

 ( ) ( ) 20

0

e 0 e
e

j l
j l

j l
Vl
V

β
β

β

− −
−

+
Γ = = Γ  (3. 29) 

 

where Γ(0) is given by (3.20). We have seen that the power flow on the line is constant, while the 
voltage amplitude on a mismatched line is oscillatory. We can thus deduce that the impedance seen 
looking into a mismatched line must vary with the position. Indeed, at a distance l=-z from the load, 
the input impedance looking towards the load is given by  

 

 ( )
( )

( )
( )

20
2

0

e e 1 e
1 ee e

j l j l j l
in o o j lj l j l

VV l
Z Z Z

I l V

β β β

ββ β

+ − −

−+ −

+ Γ− + Γ
= = =

− − Γ− Γ
 (3. 30) 

 

This result can be transformed using (3.20), and we obtain :  

 

 

( ) ( )
( ) ( )

0

e e

e e
cos sin
cos sin

tan
tan

j l j l
L o L o

in o j l j l
L o L o
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o
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o L

Z Z Z Z
Z Z

Z Z Z Z
Z l jZ lZ
Z l jZ l
Z jZ lZ
Z jZ l

β β

β β

β β
β β

β
β

−

−
+ + −

=
+ − −

+
=

+

+
=

+

 (3. 31) 
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This result is the transmission line impedance equation.  

 

3.4 Special cases of terminated transmission lines 
 

Consider first the case where the line is terminated by a short circuit, as depicted in figure 3.3 

 

 
Fig. 3. 3 

 
 

In this case, ZL =0, and we see immediately that Γ=-1. The voltage and the current along a short 
circuited line can be written as  

 

 
( ) ( )
( ) ( )

0 0

0 0

e e 2 sin

2e e cos

j z j z

j z j z

o o

V z V jV z

V VI z z
Z Z

β β

β β

β

β

+ − +

+ +
−

= − = −

= + =
 (3. 32) 

 

which shows that, as expected for a short circuit, the voltage is 0 at the load while the current is 
maximum. The input impedance can be found from (3.31) :  

 

 tanin oZ jZ lβ=  (3. 33) 
 

which is purely imaginary for any length l, and takes all values between inj Z j− ∞ ≤ ≤ ∞ . For 

instance, we have Zin=0 when l=0, but for l=λ/4, inZ j= ∞ . We see also that the impedance is 

periodic in l, with a periodicity of λ/2.  

IL
V(z), I(z)

Zo, β VL=0

z

0

-l
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Consider next an open circuited line, as shown in figure 3.4 

 

 
Fig. 3. 4 

 

In this case, LZ = ∞ , and we obtain Γ=1. The voltage and current along the line are given by  

 

 
( ) ( )
( ) ( )

0 0

0 0

e e 2 cos

2e e sin

j z j z

j z j z

o o

V z V V z

V jVI z z
Z Z

β β

β β

β

β

+ − +

+ +
−

= + =

−
= − =

 (3. 34) 

 

which shows that the current is zero at the load and that the voltage is maximum at the load. The input 
impedance can be found as  

 

 cotin oZ jZ lβ= −  (3. 35) 
 

which is also purely imaginary.  

 

3.4 Generator and load mismatches 
 

We have assumed above that the generator was matched to the line. We will study now what happens 
when both the generator and the load are mismatched. Let us consider the circuit depicted in figure 3.5 

 

IL=0
V(z), I(z)

Zo, β VL

z

0

-l
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Fig. 3. 5 

 
It consists of a transmission line circuit with arbitrary generator and load impedances Zg and Zl, which 
may be complex. We assume that the transmission line is lossless, with length l and characteristic 
impedance Zo. Multiple reflections can occur on the line, as waves reflected from the load can be re 
reflected by the generator and form an infinite sequence of reflections. In the steady state, the result is 
a single wave travelling towards the load and a single reflected wave travelling towards the generator. 
We analyze circuit 3.5 by finding first the impedance looking into the terminated transmission line 
from the generator end. We get :  

 

 
2

2
1 e tan

tan1 e

j l
l l o

in o oj l o ll

Z jZ lZ Z Z
Z jZ l

β

β
β
β

−

−
+ Γ +

= =
+− Γ

 (3. 36) 

 

where 

 

 l o
l

l o

Z Z
Z Z

−
Γ =

+
 (3. 37) 

 

is the reflection coefficient of the load. The voltage on the line is given by (3.21), and we can find 0V +

, the amplitude of the incident wave from the generator end of the line, where z=-l : 

 

 ( ) ( )0 e ej l j lin
g l

in g

Z
V l V V

Z Z
β β+ −− = = + Γ

+
 (3. 38) 

 

so that 

 
( )0

1

e e
in

g j l j lin g l

Z
V V

Z Z β β
+

−
=

+ + Γ
 (3. 39) 
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This can be rewritten using (3.36) as  

 

 
( )0 2

e

1 e

j l
o

g j lo g l g

Z
V V

Z Z

β

β

−
+

−
=

+ − Γ Γ
 (3. 40) 

 

where Γg is the reflection coefficient seen looking into the generator : 

 

 g o
g

g o

Z Z
Z Z

−
Γ =

+
 (3. 41) 

 

The power delivered into the load is then obtained as : 

 

 
2

22* 1 1Re Re Rein
l in in in g

in in g in

ZP V I V V
Z Z Z Z

⎡ ⎤ ⎡ ⎤⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎣ ⎦ +⎣ ⎦ ⎣ ⎦
 (3. 42) 

 

If we write in in inZ R jX= +  and g g gZ R jX= + , we obtain  

  

 
( ) ( )

2
2 2

in
l g

in g in g

RP V
R R X X

=
+ + +

 (3. 43) 

 

 

Let us consider several case of load impedance. First, let us assume the case where the load is matched 
to the line, so that Zl=Zo.  In this case Γl = 0 and SWR=1 on the line. The input impedance is Zin = Zo, 
and the power delivered to the line is  

 

 
( )

2
2 2

o
l g

o g g

ZP V
Z R X

=
+ +

 (3. 44) 

 

Next, consider the case when the generator in matched to the input impedance of a mismatched 
transmission line. In this case we have Zin=Zg and the overall reflection coefficient Γ seen at the input 
of the line is zero : 
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 0in g

in g

Z Z
Z Z

−
Γ = =

+
 (3. 45) 

However, in this case, 0gΓ ≠ and 0lΓ ≠ in general, and there may be a standing wave on the line. 

The power delivered to the load is  

 

 
( )

2
2 24

g
l g

g g

R
P V

R X
=

+
 (3. 46) 

 

We see that even if the terminated line is matched to the generator, the power delivered to the load 
may be less than the power delivered to the load from (3.44), where the line was matched to the load, 
but not the generator. This leads to the question of what is the optimum load impedance, or 
equivalently, what is the optimum input impedance to achieve maximum power transfer to the load for 
a given generator impedance. 

 

Let us assume that Zg is fixed, and that we may vary the input impedance Zin until we achieve the 
maximum power delivered to the load. Knowing Zin, it is easy to find the corresponding load 
impedance Zl, via an impedance transformation along the line. To maximize Pl, we differentiate with 
respect to the real and imaginary parts of Zin. Using (3.43), we get : 

 

 
( ) ( )

( )
( ) ( )

2 2 22 2

420 0in in gl

in in g in g in g in g

R R RP
R R R X X R R X X

+∂
= → − =

∂ ⎡ ⎤+ + + + + +⎢ ⎥⎣ ⎦

 (3. 

47) 
 

or in other terms  

 

 ( )22 2 0g in in gR R X X− + + =  (3. 48) 
 

 
( )

( ) ( )
22 2

4
0 0in in gl

in
in g in g

X X XP
X

R R X X

− +∂
= → =

∂ ⎡ ⎤+ + +⎢ ⎥⎣ ⎦

 (3. 49) 
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or 

 ( ) 0in in gX X X+ =  (3. 50) 
 

Solving (3.48) and (3.50) simultaneously for Rin and Xin gives Rin=Rg and Xin =-Xg, or  

 

 *
in gZ Z=  (3. 51) 

This condition is known as conjugate matching, and results in maximum power transfer to the load, for 
a fixed generator impedance. Under these conditions, the power delivered to the load is : 

 

 
2 1

4l g
g

P V
R

=  (3. 52) 

 

which is equal to or greater than the powers of  (3.44) or (3.46). The reflection coefficients may be 
nonzero.  

 

Physically, this means that in some situation the multiple voltage reflections on a mismatched line may 
add in phase to deliver more power to the load than would be delivered if the line were matched (no 
reflections). If the generator impedance is real (Xg=0), then the last two cases produce the same result, 
which is that the maximum power is delivered to the load when the loaded line is matched to the 
generator.  

 

Finally, note that neither matching for zero reflection (Zl=Z0) nor conjugate matching (Zl=Zg*) 
necessarily yields the best efficiency for a system. For instance, if Zg=Zl=Zo, then both the load and the 
generator are matched (no reflections), but only half the power produced by the generator is delivered 
to the load (half is lost in Zg), yielding a transmission efficiency of 50%. This efficiency can only be 
improved by making Zg as small as possible.  

 

 

3.5 Impedance matching 
 

The basic idea of impedance matching is to place an impedance matching network between a load 
impedance and a transmission line (figure 3.6) 
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Fig. 3. 6 

 
 

The matching network is ideally lossless, to avoid loss of power, and is designed so that the 
impedance seen looking into the matching network is equal to the characteristic impedance of the line. 
Reflections are then eliminated on the transmission line to the left of the matching network, although 
there will be multiple reflections between the matching network and the load. Impedance matching is 
important in wireless systems in order to ensure maximum power transfer to the load, to improve the 
signal to noise ratio and to minimize the RF power required by a system.  

As long as the load impedance is passive (having a positive real part), a matching network can always 
be found, at least for a small frequency band. Some basic matching networks will be described below. 

 

3.5.1. The quarter wave transformer 
 

 
Fig. 3. 7 

 

The circuit is shown in figure 3.7, where the impedance of the matching section is given by : 

 

 l o LZ Z Z=  (3. 53) 
 

where ZL is a real load impedance. At the design frequency f0, the electrical length of the matching 
section is λo/4, but at other frequencies the electrical length is of course different, and a perfect match 
is no longer obtained.  

The input impedance seen looking into the matching section is given by : 

 

 tan
tan

L l
in l

l L

Z jZ lZ Z
Z jZ l

β
β

+
=

+
 (3. 54) 

 

where β corresponds to the design frequency f0, and βl=π/2 at this design frequency. The reflection 
coefficient seen at the input of the transformer is then :  

ZL
Ma t c h ing
net wor k
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Zo Zl

l
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( ) ( )
( ) ( )
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l L o l o Lin o

in o l L o l o L

Z Z Z j l Z Z ZZ Z
Z Z Z Z Z j l Z Z Z
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β

− + −−
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+ + + +
 (3. 55) 

 

Using (3.53), we get : 

 
2 tan

L o

L o o L

Z Z
Z Z j l Z Zβ

−
Γ =

+ +
 (3. 56) 

 

The magnitude of the reflection coefficient is  
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 (3. 57) 

 

since 2 21 tan el s c lβ β+ =  

 

If we assume that we are considering a narrow frequency band around the design frequency f0, then 

0
4

l λ
≈  and 

2
l πβ ≈ . Then, 2e 1s c lβ >> , and we can write :  

 

 cos
2

L o

o L

Z Z
l

Z Z
β

−
Γ ≅  (3. 58) 
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Which gives the approximate mismatch of the quarter-wave transformer near the design frequency 
(figure 3.8 ) 

 

 
Fig. 3. 8 

 
 

 

3.5.2 Matching using L sections 
 

Another matching network is the L-section, which uses two reactive elements to match an arbitrary 
load at a given frequency. In contrary to the quarter wave transformer, the load does not need to be 
real. This technique is extensively used at lower frequencies, where lumped reactive elements having a 
good quality factor can readily be found. There are two possible configuration for a L-section network, 
depicted in figure 3.9. 
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Fig. 3. 9 

 

If the normalized impedance L
L

o

Zz
Z

=  is inside the 1+jx circle of the Smith' chart, then the circuit of 

figure 3.9a should be used. In either of the configurations, the reactive elements may be either 
inductive or capacitive, depending on the load impedance.   

 

While analytic solutions for the required values of series reactance jX and shunt susceptance jB are 
available, it is often more convenient in practice to use the Smith chart to find these values for a given 
load impedance.  

 

Let us consider the following example, where we want to design an L-section matching network  to 
match a series RC load having an impedance ZL =200-j100 Ω, to a 100 Ω line, at a frequency of 500 
MHz.  

 

The normalized impedance is zL=2+j, which is plotted on the Smith chart of figure 3.10. This point is 
inside the 1+jx circle, so we will use the matching circuit of figure 3.9a. Since the first element from 
the load is a shunt susceptance, it is helpful to convert to a load admittance yL, by drawing the circle 
representing the amplitude of the load reflection coefficient , and a straight line from the load through 
the centre of the Smith chart. The load admittance is a the intersection of the circle and the line (figure 
3.10). Now, we want to be on the circle 1+jx  on the impedance chart after having added a shunt 
susceptance jB, which means that this susceptance must allow us to reach the 1+jx circle on the 
admittance chart, which we construct as shown in figure 3.10. (It is the axial symmetry of the 1+jx 
impedance circle, with respect to a vertical axis going through the centre of the Smith chart). We see, 
then that the normalized susceptance required is jb=j0.3, and we reach the point y=0.4+j0.5. 
Converting back to impedance leaves us at z=1-j1.2, indicating that the addition of a series reactance 
x=j1.2 will bring us to the centre of the Smith chart.  

 

 

Zo

jX

jB ZL
Zo

jB ZL

jX

a) b)
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Fig. 3. 10 

 

 

The matching circuit consists of a shunt capacitor and a series inductor, as shown in figure 3.11. At a 
frequency of 500 MHz, the values are given by  
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π

π

= =

= =
 

 

 

 
Fig. 3. 11 

 

There is a second possible solution for this problem. If instead of adding a shunt suscpetance b=0.3, 
we use a shunt susceptance of b=-0.7, we will move to a point on the lower half of the rotated 1+jx 
circle, to y=0.4-j0.5. Converting to impedance yields x=-1.2, which leads to a match as well. This 
matching circuit is also shown in figure 3.11. The values are given by :  
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3.5.3 Single-Stub tuning 
 

Finally, we consider a matching technique which uses a single open-circuits or short-circuited length 
of transmission line (a stub), connected either in parallel or in series with the transmission line at a 
certain distance from the load (figure 3.12) 

 

 
Fig. 3. 12 

 

Such a circuit is convenient at microwave frequencies from a fabrication point of view, since no 
lumped elements are required. In single stub tuning the distance d, from the load to the stub position, 
and the value of the shunt susceptance (or series reactance) provided by the stub, are adjustable 
parameters. These two degrees of freedom can be used to match an arbitrary passive load impedance 
to any feed line. For the shunt stub case, we select d in order to achieve an admittance of  Y=Yo +jB  
(Yo=1/Zo)looking towards the load from the end of this section of transmission line of length d. Then, 
the stub is chosen as –jB.  

Yo Yo

Yo

YL

open or
shorted
stub

ZL

d

d

open or
shorted
stub

Zo Zo

Zo
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For the series case, the length d is chosen so that the impedance towards the load from that point is 
Z=Zo+jX. Then, the stub reactance is chosen as –jX.  
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4. Guided electromagnetic propagation 
 

In chapter 2, we made no assumptions regarding the geometry of the medium supporting the 
considered electromagnetic phenomena. The obtained equations were thus very general. In this 
chapter, we will specialize the results of chapter 2 to the case of guided waves.  
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4.1 Generalities 
 

4.1.1 Reference, coordinates and components 
We will consider that all the geometries we will study have translation symmetry along the z axis. 
Thus, the z (or longitudinal) axis will play a specific role, which is very different from the role played 
by the transverse components x,y (or ρ,ϕ, or any system defined in the transverse plane). We introduce 
the generic notation t = (t1, t2) for these transverse coordinates. 

 

  
Fig. 4. 1 : wave guiding structure 

 

We can write any vector v as:  , emphasizing the z component and grouping the 
transverse components in a vector. The vector operator ∇ becomes:  

t2

t1

z

v = vzz + vt
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 2
2 2

2

ˆ t

t

z

z

∂⎛ ⎞∇ = + ∇⎜ ⎟∂⎝ ⎠

∂
∇ = + ∇

∂

z
 (4. 1) 

 

We use classical variable separation to write 

 

  (4. 2) 
All the six scalar components of the electromagnetic fields E and H have to satisfy a wave equation : 

  (4. 3) 
 

We get:  

 

  (4. 4) 
 

where γ  is the complex constant associated to the separation process. 

 

 

4.1.2 Longitudinal dependency : propagation exponent 
The equation for Z(z) has a simple analytical solution. We find that the z dependency of guided waves 
is always of the kind :  

 

  (4. 5) 
 

exactly as for voltages and currents in transmission lines. 

We have incident  exp(-γz) and reflected exp(+γz) waves, and the physical meaning of the separation 
constant γ becomes clear : Its real part α is the linear attenuation [Np/m] or [dB/m], while its 
imaginary part is the linear phase constant [rad/m]. 

To simplify the expressions above, we will consider only incident waves propagating along the 
positive z axes. In this case, B=0, and we can integrate the amplitude of the incident wave into the 
transverse function T, and write in compact vector form :  

 

f(t1, t2,z) = T( t1, t2) Z(z)

  (∇2 + k2)f = 0 ; f= Et1, Et2, Ez, Ht1, Ht2, Hz

∇t
2T
T

 + k2 = - 1
Z

 d
2Z

dz2
 = -γ2

Z(z) = A exp (-γz) + B exp (+γz)
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  (4. 6) 
 

where the transverse vectors e, h depend on the transverse section of the guiding structure. 

To find the relations for the reflected wave, we only have to replace γ by –γ. 

 

 

4.1.3 Transverse dependency: eigenvalues and eigenvectors 
The transverse vectors e, h are solution to eigenvalue equations: 

  

  (4. 7) 
 

The admissible eigenvalues kc   are determined by the boundary conditions associated 
to the transverse geometry of the waveguide. For each eigenvalue, the corresponding eigenvectors e, h 
can be found. The latter are often called the modes of the guiding structure.  

 

Thus, to each eigenvalue we can associate a longitudinal propagation exponent: 

 

  (4. 8) 
 

The relation between the eigenvalues and the frequency will determine the nature of γ (real, imaginary 
or complex), and thus the propagation characteristics. 

 

 

4.1.4 Transverse and longitudinal components 
The transverse vectors e and h contain in general six scalar components. In principle, we have thus to 
solve 6 scalar eigenvalue problems, with each its particular boundary conditions. It is however evident 
that these six components are not independent from each other, as they are linked by Maxwell's 
equations. It should thus be possible to solve the eigenvalue problem for two of the components, and 
obtain the others from these two.  

The most logical choice is to consider the longitudinal components, ez, hz as basis functions from 
which we will try to derive the other components. The sought for relations are found easily by 
introducing the following field expressions in Maxwell's equations:  

E(t1, t2,z) = e(t1,t2) exp(-γz) 
H(t1, t2,z) = h(t1,t2)  exp(-γz) 

(∇t
2 + k2 + γ2) e = (∇t

2 + kc
2) e = 0

(∇t
2 + k2 + γ2) h = (∇t

2 + kc
2) h = 0

(kc
2 = k2 + γ2)

γ = kc
2 - k2  = kc

2 - ω2με
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  (4. 
9) 

 
where the transverse-longitudinal decomposition has been used. We find:  

 

  (4. 10) 
 

and finally: 

  (4. 11) 
 

As mentioned, we only have to replace exp(-γz) by exp(+γz) and +γ by -γ to obtain the expressions for 
a reflected wave. 

 

 

4.1.5 Summary: computing procedure 
The study of a guiding structure will in general include the following steps :  

a) The resolution of the eigenvalue problem in the transverse section of the structure  

 

  (4. 12) 
 

with the pertinent boundary conditions. In particular, the eigenvalues kc and the associated modes  ez, 
 hz  have to be found. 

 

b) Compute the longitudinal propagation constant . For an incident wave, we 
choose the sign of the square root so that  Im(γ)>0. 

 

c) Compute the transverse components  

 

E = (ezz + et) exp(-γz)    ;    H = (hzz + ht) exp(-γz)     ;   ∇ = (∂/∂z)z + ∇t 

∇t × et  = -jωμ  (hzz)    ;    ∇t × (ezz)  - γ z × et  = -jωμ  ht

∇t × ht  = +jωε  (ezz)    ;    ∇t × (hzz)  - γ z × ht  = +jωe  et

kc
2 et  = - γ ∇tez + jωμ z × ∇thz

kc
2 ht  = - γ ∇thz - jωε z × ∇tez

 (∇t
2 + kc

2) ez = 0   ;    (∇t
2 + kc

2) hz = 0

γ = α + jβ = kc
2 - k2



 

Microwaves  69  

  (4. 13) 
 

d) Construct the incident fields: 

 

   (4. 14) 
 

e) Redo the procedure for the reflected fields. We only have to choose the other branch in the square 
root defining γ, which formally is equivalent to substitute  +γ by -γ in the formulas. 

 

f) Find the amplitude if the incident and reflected waves using transmission line theory. To this aim, 
the load conditions at the end of the line must be known.  

 

g) If time domain expressions are wanted, they are readily obtained using the definition of phasors. 
For instance, the incident field component Ez of a complex amplitude A = |A| exp (jϕA) is given by: 

  (4. 15) 
 

 

4.2 Propagation modes 
 

The possible solutions to the transverse Helmoltz equation are called the modes of the guiding 
structure. Each mode represents a specific configuration of the electromagnetic fields in which a signal 
can propagate. To evaluate the characteristics of a transmission channel, it is thus very important to 
know the modes that may exist for a given combination of geometry, frequency and medium.  

 

References: 

 

S. Ramo, J.R. Whinnery, T van Duzer : “Fields and Waves in Communication Electronics”, Wiley, New-York, 
1984 

 

 

kc
2 et  = - γ ∇tez + jωμ z × ∇thz

kc
2 ht  = - γ ∇thz - jωε z × ∇tez

E(t1,t2,z) = (et  + ezz) exp(-γz) 

H(t1,t2,z) = (ht  + hzz) exp(-γz) 

Ez(t1,t2,z,t) = 2 |A| ez(t1, t2) exp(-αz) cos(ωt-βz+ϕA)
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4.2.1 Classification 
The solutions to Helmoltz' equations 

 

  (4. 16) 
 

can be ordered in the following way :  

 

 TEM modes TM or E modes TE or H modes Hybrid modes 

ez 0 0≠  0 0≠  

hz 0 0 0≠  0≠  

 

All these mode types exist in nature. In general, a guiding structure with a given geometry can support 
several mode families. We will for instance see that a coaxial cable supports TEM, TE and TM modes, 
while Hybrid modes propagate along optic fibres. 

The characteristics of each mode family will be briefly described hereafter. 

 

 

4.2.2 TEM Modes 
A TEM (Transverse Electro Magnetic) mode is characterized by the absence of longitudinal 
components (ez = hz = 0), and we have purely transverse fields as for a plane wave in an unbounded 
medium. In any guided structure, the transverse fields are given by (§4.1.4) 

 

  (4. 17) 
 

Thus, we see that when ez and hz are zero. The transverse fields are also zero which would be a trivial 
solution. The only solution allowing non-zero transverse fields is to force the eigenvalue kc=0, which 

implies jk jγ ω εμ= = , which is identical to the case of a plane wave in an unbounded medium. 

The transverse fields are then computed using directly Maxwell's equations:  

 

 (∇t
2 + kc

2) ez = 0   ;    (∇t
2 + kc

2) hz = 0

kc
2 et  = - γ ∇tez + jωμ z × ∇thz

kc
2 ht  = - γ ∇thz - jωε z × ∇tez
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  (4. 18) 
 

The rotational of the transverse fields is thus equal to zero, which means that they derive from a 
potential : 

 

  (4. 19) 
 

It is thus enough to solve Laplace's equation in the transverse section of the structure using the 
appropriate boundary conditions, just as in Electrostatics. 

In particular, we know that the electrostatic field is equal to zero inside a hollow conductor. It is thus 
not possible to obtain a TEM propagation mode for metallic waveguide like structures, indeed we need 
in general two or more distinct conductors to ensure the presence of a TEM wave.  

Maxwell's equations show also that for a TEM mode, the magnetic field is linked to the electric field 
by :  

 

  (4. 20) 
 

The factor |et|/|ht| has the dimension of an impedance, and is called the wave impedance or the mode 
impedance, Zmod. For TEM modes, we have:  

 

 Zmod(TEM) = jωμ/γ  = γ/jωε = μ
ε . (4. 21) 

  

Thus, the wave impedance of a TEM mode is equal to the impedance of the medium supporting the 
propagation, as for a plane wave.  

 

Current, voltage and characteristic impedance 

We have seen that the fields of a TEM mode have static behaviour. This implies that a current and a 
voltage can be univocally defined along the guiding structure. Let's for instance consider the following 
arbitrary bifilar transmission line :  

 

   ∇t × et = 0 ; - γ z× et = -jωμ h t

∇t × h t = 0 ; - γ z× ht = +jωε et

et = -∇tV   et   Et = (-∇tV) exp(-γz)   avec    ∇t
2V = 0

   h t = (γ /jωμ) z × et = (jωε /γ) z × et



 

Microwaves  72  

 
Fig. 4. 2: Bifilar TEM line 

 
The potential difference between the positive and the negative conductors is given by the integral of 
the electric field between the conductors. Because of the static behaviour of the field, this integral will 
be independent of the chosen integration path, and an unique voltage is defined in the transverse plane 
as: 

 

 V
−

+

= ⋅∫ E dl  (4. 22) 

 
A voltage wave can thus be defined in the same way as the field waves : 

 

 ( ) e ej z j zV z V Vγ γ+ − −= +  (4. 23) 
 

In the same way, the total current circulating on the positive conductor can be obtained using 
Ampere's law, which for a TEM mode is written : 

 

 
C

I
+

= ⋅∫ H dlv  (4. 24) 

+

-

E
H
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where C+ in any closed path enclosing the positive conductor but not enclosing the negative 
conductor. The current wave is then written as :  

 

 ( ) e ej z j zI z I Iγ γ+ − −= −  (4. 25) 
 

The factors  and V V
I I

+ −

+ −
 are constants along the line and have the dimension of an impedance, and 

represent the characteristic impedance of the line, which depends essentially on the geometry of the 
conductors.  

 

 

4.2.3 TM Modes  
A TM mode (transverse Magnetic) is characterized by a zero longitudinal component for the magnetic 
field. The magnetic field is thus transverse, while the electric field is not. The component ez is solution 
of :  

 

  (4. 26) 
 

with the appropriate boundary conditions. The transverse fields are obtained as : 

 

  (4. 27) 
 

We note that for TM modes, the propagation constant is equal to     and the modal 
impedance  Zmod is given by : 

 

  (4. 28) 
 

These parameters depend on the eigenvalue  kc. 

 

 

 (∇t
2 + kc

2) ez = 0   

kc
2 et  = - γ ∇tez     ;     ht  =  jωε

γ
 z × et

γ = kc
2 - ω2με

  Zmod = γ / jωε = ( ω2με – kc
2 ) / ωε
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4.2.4 TE Modes 
A TE mode (Transverse electric) is characterized by a zero longitudinal component for the electric 
field. Thus, the electric field is transverse, but the magnetic field is not. The characteristic equation of 
these modes is thus:  

 

  (4. 29) 
 

with the appropriate boundary conditions. The transverse fields are then obtained using:  

 

  (4. 30) 
 

We note that for TE modes, the propagation constant is equal to    and the wave 
impedance Zmod is given by :  

 

  (4. 31) 
 

These parameters depend on the eigenvalue kc. 

 

4.2.5 Recapitulation 
Here are in a compact form the fields and parameters characterizing TEM, TE and TM modes. The 
square root in the value of the propagation exponent γ  is always taken in a way to have  

. This corresponds to a wave travelling in the positive direction of the z axis. The 
following table is thus valid only for incident waves. In order to obtain the corresponding values for a 
reflected wave, we only have to replace γ by −γ. 

 

 Modes TEM Modes TM Modes TE 

Characteristic equation    

γ    

Ez 0  0 

Hz 0 0  

 (∇t
2 + kc

2) hz = 0   

   
kc

2 h t = - γ ∇thz ; et =
jωμ

γ ht × z

γ = kc
2 - ω2με

  Zmod = jωμ / γ = ωμ / ω2με – kc
2

  arg (γ) ∈ [0 ; π/2]

  ∇t
2V = 0   (∇t

2 + kc
2) ez = 0   (∇t

2 + kc
2) hz = 0

  – ω2με = jω με   kc
2 – ω2με   kc

2 – ω2με

  ez exp ( – γz)

  hz exp ( – γz)
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Et    

Ht    

Zmod = |et| / |ht|    

 

 

4.3 Dispersion and distortion 
 

When the linear phase constant β is a non linear function of the frequency, the propagation is said to 
be dispersive. Waveguides and optic fibres are dispersive transmission lines, and the signal travelling 
on them will be distorted.  

 
Fig. 4.3 : Dispersion diagram of a guiding structure 

 

This effect is illustrated on a Gaussian pulse travelling along a dispersive line, as this gives a simple 
mathematical development. 

 

  – ∇tV exp ( – γz)   – (γ / kc
2) ∇tEz    ( jωμ / γ) (Ht × z)

   (γ / jωμ) (z × Et)    ( jωε / γ) (z × Et)   – (γ / kc
2) ∇tHz

  μ/ε   ω2με – kc
2 / ωε   ωμ / ω2με – kc

2

β

ω
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Fig. 4.4 : modulated Gaussian pulse 

A modulated Gaussian pulse is described by:  

 f t, z = 0( )= cos ω0 t( )e
−

1
2

t
τ( )2

 (4. 32) 

 
where 2τ is the width of the pulse at level 1

e = 0.606  of the maximum. The Fourier transform 

(spectrum) of the Gaussian pulse has also a Gaussian dependenc :  

 

 F ω ,z = 0( ) = τ 2π e
−

1
2

τ ω −ω 0( )[ ]
2

 (4. 33) 
 

The signal propagates along the dispersive lines and sustains a phase shift βz 

 

 F ω,z( )= τ 2π e
−

1
2

τ ω−ω0( )[ ]2
e− jβz

 (4. 34)  

To find the corresponding function in time domain, we take the inverse Fourier transform: 
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 f t, z( )=
1

2π
F ω,z( )e jωt

−∞

+∞

∫ dω =
τ 2π

2π
e

−
1
2

τ ω−ω0( )[ ]2
e− jβz e jωt dω

−∞

+∞

∫  (4. 35) 

 

But β is not a simple linear function of ω, so this integral cannot be simply evaluated. The spectrum of 
the pulse is usually narrow, so we can develop it in a Taylor series in the vicinity of  ω0 

 

 
  
β = β0 + β1 ω − ω0( )+

β2
2

ω −ω0( )2 +…  (4. 36) 

 

    with β0 = β ω0( )  et βn =
∂ nβ
∂ωn

ω=ω0

   (4. 37) 

The integrand takes the following form:  

 

 
( ) ( ) ( )22 2

1 0 00
1

22e e e
ojz

j t
β

β β ω ω ω ωτ ω ω ω
⎡ ⎤− + − + −⎡ ⎤− − ⎢ ⎥⎣ ⎦ ⎣ ⎦  (4. 38) 

 

 

Grouping the terms in ω, we obtain a term   e jωte− jβ1ωz = e jω ′ t , with  ′ t = t − β1z , which 

corresponds to a translation with velocity  1
β1

= vg  (group velocity). Grouping the terms in 

ω − ω0( )2 , we obtain : 

 

 e
− 1

2
τ ω−ω0( )[ ]2 − j β2

2
ω−ω0( )2⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ z

= e
−

ω−ω0( )2

2
τ 2 + jβ2z[ ]

= e
−

ω−ω0( )2τe
2

2  (4. 39) 
 

 

Taking now the inverse Fourier transform (4.35) we find, after some approximations, that the width of 
the Gaussian pulse becomes 

 

 
  

′ τ ≅
τ e

2

τ
= τ 2 +

β2z
τ

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2
 (4. 40) 
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At a large distance z, if the dispersion β2 is important, we tend towards 

  

 
 
′ τ =

β2z
τ

 (4. 41) 

Thus a very narrow pulse in z=0 widens faster than a large pulse in z=0 

 

 

 

4.4 Parallel plate waveguide 
 

One of the simplest electromagnetic transmission systems is the parallel plate waveguide, made of two 
parallel conductive plates separated by a distance a (the height of the guide, figure 4.4) 

 

 
Fig. 4.5 : parallel plate waveguide 

 

For the analysis, the plates are considered to be infinite and placed at  x=0 and x=a respectively. The 
propagation occurs as usual along z, and the medium between the plates is defined by ε,μ.  

Because the structure is supposed to be infinite in the y direction, the fields will be independent of this 
coordinate. The solution of the relations given in §4.2.5 is then simple, and the following results are 
obtained:  

 

a

y

x z
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 TEM Mode   TM Modes  TE Modes  

kc 0   

ωc 0   

γ    

Ez 0  0 

Hz 0 0  

Et  
0 ˆcos e z

c

m xE
k a

γγ π −− x  0 ˆsin e z

c

j m xH
k a

γωμ π −y  

Ht  
0 ˆcos e z

c

j m xE
k a

γωε π −− y  0 ˆsin e z

c

j m xH
k a

γβ π −x  

Js(x=0)    

Js(x=a) - Js(x=0)   

 

 

   mπ / a    mπ / a

   mπ / (a με )    mπ / (a με )

  – ω2με = jω με   jω με 1 – (ωc / ω)2   jω με 1 – (ωc / ω)2

   E0 sin mπx
a e– γz

   H0 cos mπx
a e– γz

    E0 x e– γz

    E0
μ/ε

y e– γz

    E0
μ/ε

z e– γz     – jωεa
mπ E0 z e– γz     H0 y e– γz

   –( – 1)m Js(x = 0)    –( – 1)m Js(x = 0)
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4.5 The rectangular waveguide 
 

The geometry of the rectangular waveguide is shown in figure Fig. 4.6. It consists of a rectangular 
tube a*b, which is supposed to be infinite in the z direction. 

 

 
Fig. 4.6 : Rectangular waveguide 

 
The guide is formed of four conducting walls, placed at x=0, x=a, y=0 and y=b. The propagation of 
the wave occurs along the z direction. As this type of guide is made of only one distinct conductor, it 
is not able to support a TEM wave: indeed, no static field can exist inside a hollow conductor made of 
a single conductor. 

4.5.1 TM Modes 
Transverse magnetic modes (TM) have a non zero longitudinal component for the electric field (Ez ≠ 
0), whereas Hz = 0. 

The wave equation will thus be solved for ez : 

 

 ( )
2 2

2 2 2
2 2
e ee e 0z z

t c z c zk k
x y

∂ ∂
∇ + = + + =

∂ ∂
 (4. 42) 

 

This equation can be solved using separation of variables. We suppose first that the solution can be 
written as  

 ( ) ( )e e ez zx zyx y=  (4. 43) 

a b

x

y

z
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The wave equation becomes then  

 

 
22

2
2 2

ee 1 1
e e

zyzx
c

zx zy

dd k
dx dy

+ = −  (4. 44) 

 
This relation has to be valid for all values of x and y. It is thus necessary that both terms of the sums 
are constants :  

 

 
22

2 2 2 2 2
2 2

ee 1 1, ,
e e

zyzx
x y x y c

zx zy

dd k k k k k
dx dy

= − = − + =  (4. 45) 

 
The solutions to these differential equations are given by :  

 

 
2 2 2

e cos sin
e cos sin

zx x x

zy y y

x y c

A k x B k x
C k y D k y

k k k

= +

= +

+ =

 (4. 46) 

 
and 

 
( )( )

2 2 2

e cos sin cos sinz x x y y

x y c

A k x B k x C k y D k y

k k k

= + +

+ =
 (4. 47) 

 
The six constants A, B, C, D, kx and ky are determined using the boundary conditions: A has to be 
equal to zero in order to satisfy the condition that the tangential electric field is zero at x=0, C has to 
be equal to zero in order to satisfy the condition that the tangential field has to be zero at y=0. In order 
to obtain zero tangential fields at  x=a et y=b, we have two solutions : either B or D is equal to zero, 
and the solution is trivial, or  

 

 , 0x y
m nk k mn
a b
π π

= = ≠  (4. 48) 

 
We get finally  
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2 2

e sin sin

sin sin e

z o

z
z o

c

m nE x y
a b
m nE E x y
a b

k

γ

π π

π π

γ ω εμ

−

=

=

= −

 (4. 49) 

 
We note that these modes can propagate only for an imaginary γ, thus for 

 

 
2 21

c
m n
a b
π πω ω

εμ
⎛ ⎞ ⎛ ⎞> = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4. 50) 

 
For values blow this angular frequency, γ is real and the wave is attenuated in the guide. 

 

 

4.5.2 TE modes 
Transverse electric modes have a non zero magnetic longitudinal component, and the characteristic 
equation to solve is :  

 

 ( )
2 2

2 2 2
2 2 0z z

t c z c z
h hk h k h

x y
∂ ∂

∇ + = + + =
∂ ∂

 (4. 51) 

 

Again, this equation is solved using the variable separation technique, to obtain:  

 

 
( )( )

2 2 2

cos sin cos sinz x x y y

x y c

h A k x B k x C k y D k y

k k k

= + +

+ =
 (4. 52) 

The computation of the constants is a little less straight forward than in the TM case. We first derive 
the electric field components ex and ey from hz : 

( )( )

( )( )

2 2

2 2

e cos sin sin cos

e sin cos sin cos

yz
x x x y y

c c

yz
y x x y y

c c

j khj A k x B k x C k y D k y
yk k

j khj A k x B k x C k y D k y
yk k

ωμωμ

ωμωμ

∂
= − = − + − +

∂

∂
= − = − − + − +

∂

 (4. 53) 
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Two constants, B and D have to be equal to zero in order that ex is equal to zero at y=0 and ey at  x=0. 
Moreover, ex has to be equal to zero at y=b and ey at x=a. The only non trivial solution is given by: 

 

 , 0x y
m nk k m n
a b
π π

= = + ≠  (4. 54) 

 
and finally: 

 

 

2 2

cos cos

cos cos e

z o

z
z o

c

m nh H x y
a b
m nH H x y
a b

k

γ

π π

π π

γ ω εμ

−

=

=

= −

 (4. 55) 

 
We note that these modes can propagate only for an imaginary γ , thus for 

 

 
2 21

c
m n
a b
π πω ω

εμ
⎛ ⎞ ⎛ ⎞> = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4. 56) 

 
For values below this angular frequency, γ is real and the wave is attenuated in the guide. 

4.5.3 Summary 
 

 TM Modes  TE Modes  

kc 2 2
, 0m n mn

a b
π π⎛ ⎞ ⎛ ⎞+ ≠⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠  

2 2
, 0m n m n

a b
π π⎛ ⎞ ⎛ ⎞+ + ≠⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠  

ωc
 

2 21 m n
a b
π π

με
⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

2 21 m n
a b
π π

με
⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

α 2
1 ,c c

c
k ω ω ω

ω
⎛ ⎞

− <⎜ ⎟
⎝ ⎠

 

2
1 ,c c

c
k ω ω ω

ω
⎛ ⎞

− <⎜ ⎟
⎝ ⎠
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β 2
1 ,c

ck ω
ω ω

ω
⎛ ⎞− >⎜ ⎟
⎝ ⎠

 
2

1 ,c
ck ω

ω ω
ω

⎛ ⎞− >⎜ ⎟
⎝ ⎠

 

Ez 
0 sin sin e zm nE x y

a b
γπ π −  0 

Hz 0 
0 cos cos e zm nH x y

a b
γπ π −  

Ex 
02 cos sin e z

c

m m nE x y
a bak

γγ π π π −−  02 cos sin e z

c

j n m nH x y
a bbk

γωε π π π −
 

Ey 
02 sin cos e z

c

n m nE x y
a bbk

γγ π π π −−  02 sin cos e z

c

j m m nH x y
a bak

γωε π π π −−  

Hx 
02 sin cos e z

c

j n m nE x y
a bbk

γωε π π π −  02 sin cos e z

c

m m nH x y
a bak

γγ π π π −  

Hy 
02 cos sin e z

c

j m m nE x y
a bak

γωε π π π −−  02 cos sin e z

c

n m nH x y
a bbk

γγ π π π −  

Z 2
1 cωμ

ε ω
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

2
1 c

μ
ε

ω
ω

⎛ ⎞− ⎜ ⎟
⎝ ⎠
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4.6 The circular waveguide 
 

The geometry of a circular waveguide is described in  
Fig. 4.7. It consist of tube having a circular section of radius a, and supposed to be infinite in the 
propagating direction z. 

 

 
 

Fig. 4.7 : Circular waveguide 

 
For the same reasons as in the case of the rectangular waveguide, this structure cannot support a TEM 
wave. Before studying the TM and TE modes, we will express the transverse fields (§4.1.4) in 
cylindrical coordinates:

     

 

2

2

2

2

e1e

e1e

e1

e1

z z

c

z z

c

z z

c

z z

c

hj
k

hj
k

hjh
k

hh j
k

ρ

ϕ

ρ

ϕ

ωμγ
ρ ρ ϕ

λ ωμ
ρ ϕ ρ

ωε γ
ρ ϕ ρ

γωε
ρ ρ ϕ

⎡ ⎤∂ ∂−
= +⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤∂ ∂
= − +⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤∂ ∂
= + −⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤∂ ∂−
= +⎢ ⎥∂ ∂⎣ ⎦

 (4. 57) 

where  

 2 2 2 2 2
0 0ck k kγ β= + = −  (4. 58) 

 
 

a zρ ϕ
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4.6.1 TM modes 
We have to solve the wave equation for ez in cylindrical coordinates: 

 

 
2 2

2
2 2 2

1 1 e 0c zk
ρ ρρ ρ ϕ

⎛ ⎞∂ ∂ ∂
+ + + =⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠

 (4. 59) 

 
We apply again the variable separation technique:  

 

 ( ) ( ) ( )e ,z R Pρ ϕ ρ ϕ=  (4. 60) 

 
Which yields:  

 

 
2 2 2

2 2
2 2

1
c

d R dR d Pk
R R d Pd d

ρ ρ ρ
ρρ ϕ

+ + = −  (4. 61) 

 
The left hand side of this equation depends only on the radial coordinate ρ whereas the right hand side 
only on the azimuthal coordinate ϕ, thus both sides must be equal to a constant  kϕ2 : 

 

 

( )

2 2
2 2

2 2

2 2 2
2 2 2 2 2 2 2

2 2

1 , 0

, 0c c

d P d Pk Pk
P d d

d R dR d R dRk k R k k
R R d dd d

ϕ ϕ

ϕ ϕ

ϕ ϕ

ρ ρ ρ ρ ρ ρ
ρ ρρ ρ

− = + =

+ + = + + − =

 (4. 62) 

 
The general solution for the equation in  ϕ has the form :  

 

 ( ) sin cosP A k B kϕ ϕϕ ϕ ϕ= +  (4. 63) 

 
The solution has to be periodic in   ϕ, meaning that kϕ has to be an integer.  

 

 ( ) sin cosP A n B nϕ ϕ ϕ= +  (4. 64) 

 
The equation in  ρ takes the form : 
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 ( )
2

2 2 2 2
2 0c

d R dR R k n
dd

ρ ρ ρ
ρρ

+ + − =  (4. 65) 

 
This equation is a Bessel equation, which has solutions of the following form:  

 

 ( ) ( ) ( )n c n cR CJ k DY kρ ρ ρ= +  (4. 66) 

 
Jn and Yn are Bessel function of order n of the first and second kind. Bessel functions of second kind 
become infinite at the origin, which would not have any physical meaning. Thus D has to be equal to 
zero. We get finally:  

 

 ( ) ( )( )e , sin cosz n cJ k A n B nρ ϕ ρ ϕ ϕ= +  (4. 67) 

 
where the constant C has been absorbed in A and B. We have now to determine the cut off wave 
number kc. The boundary conditions imply that ez(ρ,ϕ) becomes zero at ρ=a. We have thus: 

 ( ) 0 nm
n c c

pJ k a donc k
a

= =  (4. 68) 

 
where pnm is the mth zero of the Bessel function of first kind and order n. The zeros of the Bessel 
functions are readily available in tables or numerical databases. 

The propagation constant for the TMnm mode is given by: 

 

 
2

2 2 2
0 0

nm
nm c

pk k k
a

β ⎛ ⎞= − = − ⎜ ⎟
⎝ ⎠

 (4. 69) 

 
and the cut-off frequency by 

 
2 2nm

c nm
c

k pf
aπ με π με

= =  (4. 70) 

 
The first TM mode to propagate is the TM01 mode, obtained for the first zero of the Bessel function of 
order zero, p01=2.405. There is no  TM10, as m ≥ 1. All the components of the electric and magnetic 
fields are readily from ez(ρ,ϕ). 

We notice that the solutions contain two independent variables A and B. The value of the latter will 
depend on the source exciting the waveguide. The fact that we have two constants comes from the 
circular symmetry of the problem, having solutions with either a sinusoidal or cosinusoidal 
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dependency. It is possible to choose either A or B equal to zero, by a proper position and orientation of 
the coordinate system. 

 

4.6.2 TE modes 
The calculus is the same as for the TM case. The wave equation to solve is: 

 

 
2 2

2
2 2 2

1 1 0c zk h
ρ ρρ ρ ϕ

⎛ ⎞∂ ∂ ∂
+ + + =⎜ ⎟⎜ ⎟∂∂ ∂⎝ ⎠

 (4. 71) 

 

Applying the same procedure as for the TM case, we get:  

 

 ( ) ( )( ), sin cosz n ch J k A n B nρ ϕ ρ ϕ ϕ= +  (4. 72) 

 
The wave number is obtained using the boundary conditions: eϕ(ρ,ϕ) has to be zero at ρ=a. Using the 
beginning of §4.6, we have  

 

 
( ) ( ) ( )e , sin cos n c

c

j A n B n J k
kϕ
ωμρ ϕ ϕ ϕ ρ′= +

 (4. 73) 
 

where J'n is the derivative of Jn with respect to its argument. The boundary condition imposes that :  

 

 
( ) 0  thus  nm

nm
n c c

pJ k a k
a
′

′ = =
 (4. 74) 

 
where p'nm is the mth zero of the derivative of the Bessel function of the first kind of order n. The TE 
modes are thus defined by the cut-off wave number kcnm

. The propagation constant is given by  

   
βnm = k 2 − kc

2 = k 2 −
′ p nm
a

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2

 (4. 75) 
 

and the cut-off frequency by:  
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fcnm =

′ p nm
2πa με  (4. 76) 

 

Again, we have m≥1. It is interesting to note that the smallest cut-off frequency is the one of the mode 
TE11, corresponding to p'11=1.8141. Indeed, p'01=3.832, which yields a higher cut-off frequency for 
the TE01 mode. 

 

The TE11 mode is called the dominant mode of the circular waveguide, because it has the lowest cut-
off frequency of all TE and TM modes. 
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4.6.3 Summary 
 

 Modes TM Modes TE 

kc nmp
a

 
 

′ p nm
a

 

ωc nmp
a με

 

 

′ p nm
a με

 

α 2
1 ,c c

c
k ω ω ω

ω
⎛ ⎞

− <⎜ ⎟
⎝ ⎠

 

2
1 ,c c

c
k ω ω ω

ω
⎛ ⎞

− <⎜ ⎟
⎝ ⎠

 

β 2
1 ,c

ck ω ω ω
ω

⎛ ⎞− >⎜ ⎟
⎝ ⎠

 
2

1 ,c
ck ω ω ω

ω
⎛ ⎞− >⎜ ⎟
⎝ ⎠

 

Ez ( )( )sin cos e z
n cJ k A n B n γρ ϕ ϕ −+  0 

Hz 0 ( )( )sin cos e z
n cJ k A n B n γρ ϕ ϕ −+  

Eρ 

    

−γ
kc

Asin nϕ + Bcos nϕ( ) ′ J n kcρ( )e−γz
 ( ) ( )2 cos sin e z

n c
c

j n A n B n J k
k

γωμ ϕ ϕ ρ
ρ

−− −

 

Eϕ ( ) ( )2 cos sin e z
n c

c

n A n B n J k
k

γγ ϕ ϕ ρ
ρ

−− −  
  

jωμ
kc

Asin nϕ + Bcos nϕ( ) ′ J n kcρ( )e−γz  

Hρ ( ) ( )2 cos sin e z
n c

c

j n A n B n J k
k

γωε ϕ ϕ ρ
ρ

−−  
  

−γ
kc

Asin nϕ + Bcos nϕ( ) ′ J n kcρ( )e−γz  

Hϕ 

    

jωε
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Asin nϕ + B cosnϕ( ) ′ J n kcρ( )e−γz  ( ) ( )2 cos sin e z
n c

c

n A n B n J k
k

γγ ϕ ϕ ρ
ρ

−− −



 

Microwaves  91  

Z 2
1 cωμ

ε ω
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 

2
1 c

μ
ε

ω
ω

⎛ ⎞− ⎜ ⎟
⎝ ⎠
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4.6.4  Zeros of the Bessel functions of the first kind 
 

 

n pn1 pn2 pn3 

0 2.405 5.520 8.654 

1 3.832 7.016 10.174 

2 5.135 8.417 11.620 

 

 

4.6.5 Zeros of the derivative of the Bessel functions of first kind 
 

 

n p'n1 p'n2 p'n3 

0 3.832 7.016 10.174 

1 1.841 5.331 8.536 

2 3.054 6.706 9.970 
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4.7 Printed microwave transmission lines 
 

References: 

S. Ramo, J.R. Whinnery and T. van Duzer, “Fields and Waves in Communication Electronics”, Wiley, 1984, 
§ 8.6. 

F. E. Gardiol, "Hyperfréquences", volume XIII du Traité d'Electricité, Presses Polytechniques Romandes, § 2.11. 

K.C. Gupta, R. Garg & I.J. Bahl, "Microstrip Lines and Slotlines", Artech House, Dedham MA, 1979 

R.K Hoffmann, "Handbook of Microwave Integrated Circuits", Artech House, Dedham MA, 1987 

 

4.7.1 Introduction 
 Printed microwave circuits gradually replace since the early fifties the more conventional waveguides 
and transmission lines, especially in consumer products. Their advantages are their light weight and 
bulk and low production cost, while their drawbacks are relatively high losses and the fact they are 
dispersive. Indeed and like all printed circuits, they are manufactured using photolithographic 
processes, which ensure a high repeatability and easy mass production.  

Several kinds of printed circuits devoted to microwaves exist, but the most popular one is without any 
doubt the microstrip circuit. In the frame of this course, we will first introduce the stripline, which is 
homogeneous and thus non dispersive, then the microstrip line and finally the coplanar waveguide, 
which is used manly at mm-wave frequencies, where the losses of microstrip lines become prohibitive. 

 

4.7.2 Stripline 
 

Definition 

The stripline structure is illustrated in Fig. 4.8. It consists of a conductive strip sandwiched between 
two ground planes.  
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Fig. 4.8: Stripline 
 

This structure is characterized by two conductive surfaces (ground planes) separated by a distance 2h. 
The volume between the ground planes is filled by a homogeneous dielectric medium of permittivity 
εr.  A strip of width w is located between the two planes. 

 

Stripline propagation modes  

The analysis of this type of structure is unfortunately quite complex, and no analytic solution to 
Maxwell's equations exists for these specific boundary conditions. We will thus concentrate on the 
dominant mode only, as in most situations it will be the only propagating mode.  

The dominant mode of this type of homogeneous structures is a TEM mode, as the structure is formed 
of two distinct conductors: the ground planes and the strip. We need thus to solve Laplace's equation 
for this structure, in order to characterize the TEM mode. An exact solution can be obtained using 
conformal transforms (see for instance "Stripline Circuit Design", by H.Howe Jr., Artech House, 
Dedham Ma, 1974), but this is a complicated procedure which yields results in a cumbersome form. 
We prefer here to give analytic expressions that are a good approximation of the rigorous solution, and 
which are much more convenient to use.  

 

 

Propagation constant 

In the case of a non magnetic medium, the phase velocity of a TEM wave is given by  

 

2h

ground plane

εr

w
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1

r o o r

cvϕ ε ε μ ε
= =

 (4. 77) 
 

where c is the free space velocity of light. We deduce the propagation constant : 

 

 
r o o r ok

vϕ

ωβ ω ε ε μ ε= = =
 (4. 78) 

 
 

Characteristic impedance 

The characteristic impedance of a line supporting a TEM mode is given by :  

 o
LZ
C

=  (4. 79) 

 
where L is the linear inductance of the line and C its linear capacitance. These two quantities are 
obtained solving Laplace's equations numerically, and doing a curve fitting of the obtained solution. 
We obtain finally the following approximation for the characteristic impedance :  

 

 
( )e

30 2
0,441 2o

r

hZ
w h

π
ε

=
+

 (4. 80) 

 
where we is the effective width of the central strip, given by : 

 

 e
2

0 0.35
2

2 2
0.35 0.35

2 2

wfor
hw w

h h w wfor
h h

⎧ >⎪⎪= − ⎨
⎛ ⎞⎪ − <⎜ ⎟⎪⎝ ⎠⎩

 (4. 81) 

 
These expressions are valid for a central strip which is infinitesimally thin, and have an accuracy of 
about 1%. We note that the characteristic impedance becomes smaller when the strip becomes wider.  

In a circuit conception process, we often want the inverse relation, yielding the width of the strip as a 
function of the characteristic impedance. This is obtained via the following approximation:  
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120

2 0.85 0.6 120
r o

r o

x for Zw
h x for Z

ε

ε

⎧ <⎪= ⎨
− − >⎪⎩

 (4. 82) 

with 

 30 0.441
r o

x
Z
π

ε
= −  (4. 83) 

 

 

Attenuation of a stripline 

There are two kinds of losses in a stripline transmission line: dielectric losses and ohmic losses. The 
first are the same for all TEM lines and are given by:  

 

 [ ]tan /
2d

k Np mδα =  (4. 84) 

 
where k is the wave number in the medium and δ its loss angle : 

 

   

k = ω εrεoμo =
ω εr

c

tanδ =
′ ′ ε 
′ ε  (4. 85) 

 

The ohmic losses are computed using a perturbation method. We get the following approximation:  

 

 

( ) [ ]

( )

( )

0.0027 120
30 2

/
0.16 120

2

2 2 41 ln
2 2

2 0.414 1 41 0.5 ln
0.5 0.7 2

s r o
r o

c
s

r o
o

R Z A for Z
h t

Np m
R B for Z

Z h

w h t h tA
h t h t t

h t wB
w t w t

ε ε
π

α
ε

π

π
π

⎧ <⎪ −⎪= ⎨
⎪ >
⎪⎩

+ −⎛ ⎞= + + ⎜ ⎟− − ⎝ ⎠

⎛ ⎞= + + +⎜ ⎟+ ⎝ ⎠

 (4. 86) 

 
where t is the thickness of the strip and  Rs is the surface resistance of the conductor. 
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 2
o

sR ωμ
σ

=
 (4. 87) 

 
where σ is the conductivity of the metal. 

 

 

4.7.3Microstrip 
 

Definition 

A microstrip line consists of a thin metallic conductor, the strip, placed on one face of a dielectric 
plate, the substrate. The other side of the plate is entirely covered by a conductor, the ground plane. 
This structure is illustrated in Fig. 4.9.  

 

 
Fig. 4.9 : Microstrip line 

 
The main characteristics of the line are:  

• The relative permittivity of the substrate εr. 
• The height of the substrate, in general some fractions of wavelength. 
• The width w of the strip. This width has usually the same order of magnitude as the 

height of the substrate (0.1 h ≤ w ≤ 10 h).  
• The thickness of the strip, usually small (b/h << 1). 
 

These characteristics have an influence on : 

• The concentration of the electric field in the substrate (no radiation). The higher the 
dielectric constant, the more the fields are concentrated in the substrate and the less 
the line will radiate.  

h

ground plane

εr

w

b
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• The characteristic impedance of the line, which depends mostly on the permittivity 
and the relation w/h. 

 
 

Propagation modes 

In first approximation, we can consider a microstrip structure as the half of a stripline structure (Fig. 
4.10). 

 

 
Fig. 4.10 

  
 

In the absence of the dielectric substrate, a microstrip line could be viewed as a bifilar line, constituted 
by two conductors of width w separated by a distance 2h (the ground plane acting like a mirror). Such 
a structure would support a TEM wave.  

The presence of the dielectric beneath the strip makes the structure inhomogeneous in the transverse 
plane. The propagating modes are thus hybrid modes. It is indeed easy to understand that such a 
structure cannot support a TEM wave : the phase velocity of this mode would indeed be equal to 

/ rc ε    in the dielectric, while it should be equal to the velocity of light in the air. The resulting 

phase mismatch leads thus to the introduction of longitudinal components for the electric and magnetic 
fields, so that the boundary condition can be satisfied at the air dielectric interface.   

 

In most practical applications of microstrip lines, the dielectric substrate is electrically thin: 

 h < 0.05 λ. In consequence, the longitudinal components of the electromagnetic fields are very weak, 
and we have a quasi TEM mode. This means that the field distribution is very similar to the one 
obtained for the structure of Fig. 4.11, where the strip is placed in a homogeneous dielectric. . 

 

 εe
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Fig. 4.11 : Equivalent homogeneous structure 

 

This type of structure supports a TEM mode, with the following characteristics:  

 

 
e

e

e1
o

r

cv

k

ϕ ε

β ε

ε ε

=

=

< <

 (4. 88) 

 
Microstrip lines have also been studied using numerical techniques, and the obtained results 
approximated by analytic expressions. 

 

 

Effective permittivity of a microstrip circuit 

The effective permittivity of a microstrip circuit is the equivalent homogeneous permittivity 
simulating best its characteristics. For a zero thickness strip, an approximation of this effective 
permittivity is given by :  

 

( ) ( )

( ) ( )

0.5 2

e

0.5

e

1 11 1 1 12 0.04 1 1
2 2

1 11 1 1 12 1
2 2

r r

r r

h w wfor
w h h

h wfor
w h

ε ε ε

ε ε ε

−

−

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= + + − + + − ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞= + + − + ≥⎜ ⎟
⎝ ⎠

 (4. 89) 

 
The relative error of these approximations is smaller than 1 % when 

 

  0.05 20 16r
w and
h

ε≤ ≤ ≤  (4. 90) 

We obtain for the phase velocity and the wave length : 
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 e

e

o
g

cvϕ ε

λ
λ

ε

=

=
 (4. 91) 

 
 

Characteristic impedance  

For a strip of zero thickness, the following formulas yield a good approximation for the characteristic 
impedance of a microstrip line (relative error smaller than 1% for 0.05≤w/h≤20): 

 

 
e

1

e

8ln 1
42

1.393 0.667 ln 1.444 1

o
c

o
c

Z h w wZ for
w h h

Z w w wZ for
h h h

π ε

ε

−

⎛ ⎞= + ≤⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞= + + + ≥⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (4. 92) 

 
where 120oZ π=  is the characteristic impedance of the vacuum.  

 

In a circuit conception process, we often want the inverse relation, yielding the width of the strip in 
function of the characteristic impedance. This is obtained via the following approximation: 

( ) ( )( )

114 e e 2
2

1 0.61 2ln 1 0.39 1 ln 2 1 2

A A

r

r r

w wfor
h h

w wB B B for
h h

ε
πε ε π

−
−⎡ ⎤= − ≤⎢ ⎥⎣ ⎦

⎛ ⎞−
= − + − + − − − ≥⎜ ⎟

⎝ ⎠

 (4. 93) 

with 

 
( ) 1 0.112 1 0.23

1

2

c r
r

o r r

o

cr

ZA
Z

ZB
Z

επ ε
ε ε

π
ε

⎛ ⎞−
= + + +⎜ ⎟+ ⎝ ⎠

=
 (4. 94) 

 
We see that, as for striplines, the characteristic impedance of a microstrip line becomes smaller when 
the strip becomes wider. 

 

Attenuation in a microstrip line 

There are two type of losses in a microstrip line, dielectric losses and Ohmic losses. The dielectric 
losses are given by  
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 ( )
( )

[ ]e

e

1 tan
/

2 1
o r

d
r

k
Np m

ε ε δ
α

ε ε
−

=
−

 (4. 95) 

 
where ko is the wave number in free space and δ the loss angle of the dielectric. 

 

The Ohmic losses are approximated by : 

 

 [ ]/s
c

c

R Np m
wZ

α =  (4. 96) 

 
where Rs is the surface resistance of the conductor. 

 

 
2sR ωμ
σ

=  (4. 97) 

 
and σ is the conductivity of the metal. 

 

 

Radiation of microstrip lines 

Radiation in a microstrip is linked to the apparition of higher order non guided modes. These 
are excited at the vicinity of discontinuities, like a step in width, a bend or the end of the line. 
For a line having a characteristic impedance of 50 Ω, we can compute the frequency fm for 
which the proportion of the radiated power remains smaller than 1% of the total power :  

 [ ] [ ]
42.14 r

mf GHz
h mm

ε
=  (4. 98) 

 
For a high frequency application, we should thus select a high permittivity substrate, and/or use a thin 
substrate.  

 

 

Dispersion in a microstrip line 

The quasi-TEM approximation used in the sections above neglects the longitudinal components of the 
electromagnetic fields, and allows thus no prediction for the dispersion. The concentration of the 
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electric fields in the substrate will increase with the frequency, which leads us to think that the 
effective permittivity, the propagation constant and the characteristic impedance of the line will be 
frequency dependent. The rigorous study of these phenomena is complex and out of the scope of this 
course. But for practical applications, we can use the following approximation for the effective 
permittivity:  

 

 

( ) e
e 2

1

2
0.6 0.009

r
d r

p

c
p

o

c

f
f G
f

Zf
h

G Z

ε ε
ε ε

μ

−
= −

⎛ ⎞
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⎝ ⎠

=

= +

 (4. 99) 

 
We use εed rather than εe in the computation of the characteristic impedance, the wavelength and the 
phase velocity. In the cases when  f<<fp, this correction is not necessary. 
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4.7.4 coplanar waveguides 
 

References: 

K.C. Gupta, R. Garg & I.J. Bahl, "Microstrip Lines and Slotlines", Artech House, Dedham MA, 1979. 

T.Q. Deng, M.S. Leong & P.S. Kooi, "Accurate formulas for coplanar waveguide synthesis", Electronics Letters, 
Vol. 31, 1995, pp. 2017-2019. 

 

 

Definition 

Coplanar waveguides are meeting a new interest since some years, mainly as transmission lines in the 
mm-wave domain (30GHz-300GHz). They are indeed much cheaper to manufacture than traditional 
waveguides, and have fewer losses than microstrip lines. A coplanar waveguide is depicted Fig. 4.12. 
It consists of a strip situated on the same substrate side as the ground plane. The strip, of width s, is 
separated from the ground plane by two slots, of width w. The dielectric substrate has a height h.  

 
Fig. 4.12: coplanar waveguide 

 
 

Effective permittivity 

The effective permittivity of such a structure can be approximated by : 

 

( )e
1 tanh 1.785ln 1.75 0.04 0.7 0.01 1 0.25

2 10
r rh kw k k

w h
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s w

ε εε
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⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

=
+

 (4. 100) 
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Again, the effective permittivity allows us to obtain the phase velocity, the propagation constant and 
the wavelength by :  

 

 e

e e
, , o

g
cv

c ϕ
ω ε λ

β λ
ε ε

= = =  (4. 101) 

 

 

Characteristic impedance 

The characteristic impedance is approximated by: 
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 (4. 102) 

 
 

4.7.6 Summary 
 

Characteristic coaxial cable Waveguides Stripline microstrip 

Dominant mode TEM TE10 TEM Quasi TEM 

Other modes TM, TE TM, TE TM, TE Hybrids 

Dispersion none medium none weak 

Bandwidth high low high high 

Losses medium small high high 

Max. power medium high small small 

Size big big medium small 

Ease  of 
manufacturing. 

medium medium easy easy 
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Integration of 
components 

difficult difficult medium easy 
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5. Microwave network analysis 
 

References: 

F. E. Gardiol, "Hyperfréquences", volume XIII du Traité d'Electricité, Presses Polytechniques Romandes, Chap 
6. 

R.E. Collin, "Foundations for Microwave Engineering", Mc Graw Hill, 1992, Chap. 4. 

 

5.1 Introduction 
 

We will see in this chapter how the concepts of low-frequency circuit analysis can be extended to 
microwave circuits and networks. We will reconsider familiar concepts like current, voltage and 
impedance, find out if and when they can be used in microwave circuit analysis. We will learn to view 
currents and voltages as sums of incident and reflected waves. We will then introduce generalized 
waves and the scattering matrix as very efficient and practical tools for microwave circuit analysis.  

5.2 Voltage, current and impedance  
 

Currents and voltages are difficult to define in the microwave bands, excepted for the case of 
transmission lines supporting only a TEM wave. In all other cases, it is not possible to define these 
quantities in a univocal way. Moreover, they are extremely difficult to measure in a reliable way. 
Nevertheless, Kirchhoff's model is a very convenient tool for describing a circuit, and we would like 
to retain it. We will thus try to define equivalent currents and voltages on transmission line, 
remembering that excepted for the TEM case, these values are concepts without physical meaning and 
are not uniquely defined.  

Each propagating mode will be described by a separate voltage current pair. 

 

5.2.1 TEM Modes  
The measurement of currents and voltages is very difficult if not impossible at microwave frequencies, 
excepted when access ports can be clearly defined. This is the case only for TEM or quasi TEM 
modes. 

Figure 5.1 illustrates the electric and magnetic fields for an arbitrary TEM transmission line.  
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Fig. 5. 1 : Arbitrary TEM line 

 
The voltage difference between the two conductors is defined as :  

 

 
V

−

+
= ⋅∫ E dl

 (5. 1) 
 
In the case of a TEM wave, the field has a static behaviour, and the voltage will not depend on the 
integration path, as long as the latter goes from conductor + to conductor -. Thus, the voltage is 
uniquely defined and there is no ambiguity.  

The total current in conductor + is defined by Ampere's law :   

 
  

C
I

+
= ⋅∫ H dlv  (5. 2) 

 

where C+ is a closed integration path containing conductor +, but not conductor -. The characteristic 
impedance is the written as :  

 

 
c

V LZ
I C

= =
 

(5. 3) 

 

Where L is the inductance per unit length of the TEM line and C its capacitance per unit length.  

 

 

5.2.2 Non TEM modes 
The situation is less clear for non-TEM modes, as a simple example can show :  

+

-

E
H
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The transverse fields of the  TE10 mode of a rectangular waveguide are given by :   

 

 

( ) ( )

( ) ( )

0 0

0 0

, , sin e e , e

, , sin e , e

j z j z
y y

j z j z
x y

j a xE x y z E E x y
a

j a xH x y z E E h x y
a

β β

β β

ωμ π
π
β π
π

− −

− −

= =

= =
 

(5. 4) 

 
The voltage should thus be defined as  

 

 
0 sin e j z

y
j a xV E dy

a
βωμ π

π
−−

= ∫  
(5. 5) 

 

This voltage would depend on the x position we place the integration path in the guide, and of the 
geometry of this path. The result is clearly different if we choose a path 0<y<b at x=a/2 or at x=0. So 
what is the voltage ? 

The answer is that in this case there is no "correct" voltage, which could be measured. We may 
however define a voltage and a current in many different ways for a non-TEM mode.  

In order to obtain useful results, we will follow the following rules in our definition :  

• The voltage and current are defined for one mode only. We decide (arbitrarily) that 
the voltage has to be proportional to the amplitude of the transverse electric field, 
while the current has to be proportional to the amplitude of the transverse magnetic 
field. 

• In order to enable the use of Kirchhoff's model, the product of the current and the 
voltage should yield the power flux of the considered mode.  

• The voltage divided by the current should be equal to the characteristic impedance of 
the line. The latter should also be equal to the mode impedance of the considered 
mode. 

 
 

In an arbitrary guide, the transverse fields can be expressed as a function of an incident and a reflected 
wave. The voltage and current must thus be expressed in the same way :  
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( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

1

2

, , , e e

,
e e

, , , e e

,
e e

j z j z
o o

j z j z

j z j z
o o

j z j z

x y z x y E E

x y
V V

C

x y z x y E E

x y
I I

C

β β

β β

β β

β β

+ − −

+ − −

+ − −

+ − −

= +

= +

= −

= −

t t

t

t t

t

E e

e

H h

h

 (5. 6) 

 
We write thus :  

 

 

( )
( )

e e

e e

j z j z

j z j z

V z V V

I z I I

β β

β β

+ − −

+ − −

= +

= −  
(5. 7) 

 

The characteristic impedance of this wave is defined (by analogy to the TEM case) as  

 

 
1 1

22

o
c

o

C E CV VZ
CI I C E

++ −

+ − +
= = = =

 
(5. 8) 

 
If we want moreover that the characteristic impedance is equal to the wave impedance of the mode, 
we get :  

 
1

mod
2

C Z
C

=
 

(5. 9) 

 

 

5.2.3 Impedance concepts 
It is important to make the difference between : 

• The characteristic impedance of the medium. It depends only on the material 
constituting the medium : 

 oZ μ
ε

=  (5. 10) 

• The wave impedance of a mode. It will depend on the type of the mode (TE, TM, 
TEM), on the guide, and on the materials used. It is also dependent on the frequency 
and the geometry :  
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 modZ = t

t

E
H

 (5. 11) 

• The characteristic impedance, defined as the voltage divided by the current. It is 
univocally defined only for a TEM transmission line :  

 c
V V LZ

CI I

+ −

+ −
= = =  (5. 12) 

 

5.3 The impedance matrix 
The concepts of voltage, current and impedance defined for transmission lines above can also be used 
to characterize microwave components, circuits and systems. The latter will then be defined by an 
impedance matrix, obtained from the voltage and current waves flowing on the transmission lines 
which are linked to the ports of the element.  

 

References: 

R.E. Collin, "Foundations for Microwave Engineering", Mc Graw Hill, 1992. 

 

5.3.1 Impedance of a single port element 
 

The simplest possible microwave component has only one access. Its impedance matrix reduces to a 
scalar, defined as the voltage divided by the current, both "measured" at the access of the component, 
the reference plane.  

 

 
Fig. 5. 2 : Single port element 

Circuit with a single
accessaccess

refernce plane

Zin

I

V

n

S
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Zin =

V
I  (5. 13) 

 
 

5.3.2 Impedance characteristics of a single port element 
The complex power supplied to the element is given by Poynting's vector :  

 

 ( )e2r m
s

P P j W Wω= × ⋅ = + −∫v *E H ds  (5. 14) 

 

The E and H fields on the transmission line are by definition linked to the voltage and the current :  

 

 
( ) ( ) ( )

( ) ( ) ( )
1

2

,
, , e

,
, , e

j z

j z

x y
x y z V z

C
x y

x y z I z
C

β

β

−

−

=

=

t
t

t
t

e
E

h
H

 (5. 15) 

 

Thus, with the chosen definition for voltage and current :  

 

 
1 2

1 1
s

C C
× ⋅ =∫ t te h ds  (5. 16) 

 

Thus 

 

 * *

1 2

1

s
P VI VI

C C
= × ⋅ =∫ t te h ds  (5. 17) 

 

Moreover, the input impedance can be written as a function of the mean power :   
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( )( )

*

2 2

e
2

2

in

r m

V VI PZ R jX
I I I

P j W W

I

ω

= + = = =

+ −
=

 (5. 18) 

 

Where Pr is the real mean power, Wm is the stored magnetic energy and We  the stored electric energy. 
We can deduce from the above relation :  

 

• R is proportional  to the real power dissipated in the system (losses) 

• X is proportional to the mean reactive energy stored in the system 
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5.3.3 Impedance and admittance matrices 
Let us consider the generic element depicted in figure 5.3. It is characterized by a certain number of 
accesses defined by reference planes located on the transmission lines linking the component to the 
outside world. These planes, noted tn, are the reference planes between which the component is 
defined.  

 

 
Fig. 5. 3 : Multi-port  microwave component and its access ports 

 

An axis of coordinates zi is linked to each transmission line i. By definition, the origin of this axis is 
located in the reference plane. We have thus at ports t1, t2, ..., tn 

 

 n n n

n n n

V V V

I I I

+ −

+ −

= +

= −
 (5. 19) 

 

The impedance and admittance matrices characterizing the component are defined by :  

 

 
[ ] [ ][ ]
[ ] [ ][ ]
V Z I

I Y V

=

=
 (5. 20) 

[Z]

v1
+,i1

+

v1
-,-i1

-

v2
+,i2

+

v2
-,-i2

-

v3
+,i3

+

v3
-,-i3

-

v4
+,i4

+

v4
-,-i4

-

v5
+,i5

+

v5
-,-i5

-

v6
+,i6

+

v6
-,-i6

-

t1

t2

t3
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with 

 
0  

0  

k

k

i
ij

j I for k j

i
ij

j V for k j

VZ
I

IY
V

= ≠

= ≠

=

=

 (5. 21) 

 

In consequence,   

• The impedance matrix is obtained in open circuit conditions. 

• The admittance matrix is obtained in short circuit conditions.  

 

The impedance matrix is the inverse of the admittance matrix 

 

 [ ] [ ] 1Y Z −=  (5. 22) 
 

 

5.3.4 Properties of the impedance and admittance matrix 

5.3.4.1  Reciprocity 
Let us consider the case where the basic conditions for Lorentz' reciprocity theorem are respected, thus 
the case where the component is isotropic, linear and passive. Consider the component depicted in 
figure 5.4, where all the accesses excepted for two are short circuited. Consider now Ea, Ha, Eb, et Hb 
which are due to independent sources located somewhere in the circuit. Lorentz' reciprocity theorem 
states that : 

 

 
s s

× ⋅ = × ⋅∫ ∫a b b aE H ds E H dsv v  (5. 23) 

 

where s is a closed integration surface enclosing the component. 

We select the closed surface s as the external limit of the component passing through the reference 
planes, such that Etan=0, excepted for reference planes 1 and 2. (If the transmission lines are made of 
conductors, this is always true. Otherwise, we can always select a surface sufficiently far away so that 
Etan is negligible).  
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Fig. 5. 4 :  Illustration of the reciprocity principle 
 

The only contributions to the integrals come then from reference planes 1 and 2, the only ones which 
are not short circuited.  

We write on these planes : 

 

 

1
1 1

1 1

1
1 1
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2 2
2 2 2 2
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V I
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V I
C K

V I
C K

V I
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= =

= =

= =

= =

1
1a 1a

1
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a a

b b

e hE H

e hE H

e hE H

e hE H

 (5. 24) 

 

And the reciprocity theorem becomes : 

 

[Z]

i1

i2

u1

u2

Ea,Ha

Eb,Hb
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( )
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1

2

1 1 1 1
1 1

2 2 2 2 2 2
2 2

1

1 0

a b b a s

a b b a s

V I V I
C K

V I V I
C K

− × ⋅ +

− × ⋅ =

∫

∫

1 1e h ds

e h ds
 (5. 25) 

 

But, by definition 

 

 
1 1

1 1 2 2
1 1 2 2

1 1 1
s sC K C K

× ⋅ = × ⋅ =∫ ∫e h ds e h ds  (5. 26) 

Thus  

 

 1 1 1 1 2 2 2 2 0a b b a a b b aV I V I V I V I− + − =  (5. 27) 
We have 

 1 11 1 12 2

2 21 1 22 2

I Y V Y V
I Y V Y V

= +
= +

 (5. 28) 

 

Thus 

 ( )( )1 2 1 2 12 21 0a b b aV V V V Y Y− − =  (5. 29) 
 

This relation has to hold for any sources, thus for any voltage. This means that  : 

 

 12 21Y Y=  (5. 30) 
 

This relation can be generalized to all the ports of the component. We can thus write in a general way, 
for a circuit or component having neither active elements, plasmas or ferrites that : 

 

 
ij ji

ij ji

Y Y

Z Z

=

=
 (5. 31) 

 

Thus the impedance and admittance matrices are symmetric for a reciprocal component. 

 

 



 

Microwaves  
 

118

5.3.4.2 Lossless circuit 
Let us consider a lossless component with N ports. We can write that for this component the average 
power consumed by the circuit is zero 

 

 { }Re 0avP =  (5. 32) 
 

By definition of the voltages and the currents at the ports, the mean power delivered to the component 
is given by :  

 

 [ ] [ ]*t
avP V I=  (5. 33) 
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Which can be written in term of the impedance matrix as 

 

 

[ ][ ]( ) [ ]

[ ] [ ][ ]

*

*

*

1 1

t
av

t

N N
m mn n

n m

P Z I I

I Z I

I Z I
= =

=

=

= ∑ ∑

 (5. 34) 

 

The currents In are independent, thus the real part of each m=n term has to be zero : 

 

 { } { }2*Re Re 0n nn n n nnI Z I I Z= =  (5. 35) 

 

We deduce from this that the diagonal terms of the impedance matrix of a lossless circuit must be 
purely imaginary. 

 { }Re 0nnZ =  (5. 36) 
 

We suppose now that all the currents flowing into the circuit are equal to zero, excepted for 

 In and Im. We write 

 

 ( ){ } ( ) { }* * * *Re Re 0n m m n mn n m m n mnI I I I Z I I I I Z+ = + =  (5. 37) 

 

From which we deduce that 

 Re Zmn{ }= 0 (5. 38) 
 

We have thus shown that the impedance (and admittance) matrix of a lossless component has to be 
purely imaginary 

 

 

5.3.5 Examples of impedance matrices 
1) Transmission line 

Consider the transmission line section depicted in figure 5.5 
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Fig. 5. 5 : Transmission line of length d 
 

Its equivalent two-port is given by 

 

 
 

Fig. 5. 6 : Equivalent two-port 
 

Where, by definition  

 

 
( ) ( )
( ) ( )

1 1

2

0  , 0  , 

 , 2

U U I I

U U d I I d

= =

= = −
 (5. 39) 

 

Knowing that 

 
( )

( )
e e

e e

z z

z z

U z U U

I z I I

γ γ

γ γ

− +
+ −

− +
+ −

= +

= −
 (5. 40) 

 

We write 

 

d
I(0) I(d)

U(0) U(d)

I1 I2

U1 U2
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( ) ( )

( ) ( )
0 e e

0 e e

d d

d d

U U U U d U U

I I I I d I I

γ γ

γ γ

− +
+ − + −

− +
+ − + −

= + = +

= − = −
 (5. 41) 

 

The impedance and admittance matrices are then written as 

 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 11 12 1

2 21 22 2

1

2

1 11 12 1

2 21 22 2
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2

1coth
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1 coth
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c
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d I

Z
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d

I Y Y U
I Y Y U
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d U
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γ
γ

γ
γ

γ
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γ
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
−⎡ ⎤

⎢ ⎥ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥− ⎣ ⎦
⎢ ⎥
⎣ ⎦

 (5. 42) 

 

 

2) Equivalent T circuit of a reciprocal two-port 

A reciprocal two-port has the following impedance matrix :  

 

 11 12

12 22

Z Z
Z Z

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (5. 43) 

 

It can be represented by an equivalent T circuit 

 

 

I1 I2

U1 U2

Za Zb

Zc



 

Microwaves  
 

122

 
Fig. 5. 7 : Equivalent T circuit of a reciprocal two-port 

 

where 

 

 
11 12

22 12

12

a

b

c

Z Z Z
Z Z Z
Z Z

= −

= −

=

 (5. 44) 

 

 

example : equivalent T circuit of a transmission line section 

 

 
 

Fig. 5. 8 : Equivalent T circuit of a transmission line section 
 

with  
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( )
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a caract
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c
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d
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γ γ
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γ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

=

 (5. 45) 

 

 

3) Equivalent Π circuit of a reciprocal two-port 

A reciprocal two-port has the following admittance matrix : 

I1 I2

U1 U2

Za Za

Zc
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 11 12

12 22

Y Y
Y Y

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (5. 46) 

 

Such a two port can be represented by an equivalent Π circuit  

 

 
 

Fig. 5. 9 : Equivalent Π circuit of a reciprocal two-port 
 

with 

 

 
11 12

22 12

12

a

b

c

Y Y Y
Y Y Y
Y Y

= +

= +

= −

 (5. 47) 

 

 

Example : equivalent Π circuit of a transmission line section 

 

 
Fig. 5. 10 :  Equivalent Π circuit of a transmission line section 

 

With  
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( ) ( )
( )

( )

( )

1coth
sinh

1
tanh

sinh 2

sinh

a caract

caract caract

caract
c

Y Y d
d

ch d dY Y
d

YY
d

γ
γ

γ γ
γ

γ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

=

 (5. 48) 
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5.4 The scattering matrix 
 

References: 

R.E. Collin, "Foundations for Microwave Engineering", Mc Graw Hill, 1992. 

F. E. Gardiol, "Hyperfréquences", volume XIII du Traité d'Electricité, Presses Polytechniques Romandes, chap. 
6 

 

We have seen in the preceding sections that voltages and currents are not really well suited for the 
microwave range. One of the direct consequences of the non uniqueness of these values are that they 
are often not measurable. They can thus be used for the theoretical characterization of circuits and 
components, as we have seen above, but these theoretical impedances and admittances cannot be 
corroborated by measured results. This is why we introduce normalized wave amplitudes, which are 
linked to power, in order to characterize microwave circuits.  

 

5.4.1 Normalized wave amplitudes 
We define the normalized waves amplitudes a and b as 

 

   ,  
2 2
i ci i i ci i

i i
ci ci

v Z i v Z ia b
Z Z

+ −
= =  (5. 49) 

 

 

Note : These normalized wave amplitudes have the dimension of the square root of the power, and 
power is easily measurable in microwaves.  

 

The inverse relation is given by 

 

 ( ) ( )
  ,  i i

i ci i i i
ci

a b
v Z a b i

Z
−

= + =  (5. 50) 

 

These normalizes amplitudes are defined on the transmission lines linking the ports of a component. 
But on these transmission lines, we have : 
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e e

e e

j z j z
i i i

j z j z
i i i

v v v

i i i

β β

β β

+ − − +

+ − − +

= +

= +
 (5. 51) 

 

From which we deduce 

 

e

e

j zi
i

ci

j zi
i

ci

va
Z

vb
Z

β

β

+
−

−
+

=

=

 (5. 52) 

 

Thus 

• ai :  is a purely progressive (incident) wave giving the signal (square root of the power) flowing 
into the port i 

• bi :  is a purely retrograde (reflected) wave, giving the signal flowing out of the port i.  

 

5.4.2 Reference planes 
A microwave component is defined between its ports, which are planes transverse to the transmission 
lines linking the component to the outside world. On these planes are located the origin of the 
longitudinal coordinate zi related to the transmission line  i (figure 5.11) 

 

 
 

Fig. 5. 11 :  Microwave component with its reference planes 
 

By definition, the reference planes have to satisfy the following criteria : 

• The reference planes are sufficiently far away from the component, to ensure that all evanescent 
modes have decayed. 
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• The transmission lines support only the dominant mode. 

• The transmission lines are lossless 

 

The active power at port i is given by 

 

 ( )( ) 2 2* * *Re Rei i i i i i i i iP v i a b a b a b⎡ ⎤⎡ ⎤= = + − = −⎢ ⎥⎣ ⎦ ⎣ ⎦
 (5. 53) 

 

|ai|2 is thus the active power flowing into the component at port i, while |bi|2 is the active power 
flowing out of the component at port i. 

 

5.4.3 Scattering matrix of a component 
A microwave component is characterized as a function of the generalized wave amplitudes flowing on 
the transmission lines at the reference planes (figure 5.12). It is then characterized by its scattering 
matrix as :  

 

 

 
Fig. 5. 12 : Microwave component with its reference planes 

 

 

 [ ] [ ][ ]b S a=  (5. 54) 
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with 

 
0 , k

i
ij

j a k j

bs
a

= ≠

=  (5. 55) 

 

 

5.4.4 Properties of the scattering matrix 
 

• The impedance matrix characterizes a component between open-circuits (Zij = vi/ij, ik=0 
for k≠j), while the admittance matrix characterizes a component between short-circuits (Yij 
= ii/vj, ik=0 for k≠j). The scattering matrix characterizes a component between matched 
loads  (Sij = bi/aj, ak=0 for k≠j). 

• The term sij is the transfer function of the signal between port j and port i.  
• The scattering matrix depends on the component itself, but also on the environment of the 

component through the transmission lines.  
• Changing the characteristic impedance of the transmission lines means changing also the 

scattering matrix. 
 

 

5.4.4.1 Reciprocity 
In the case of a passive, linear and isotropic component, we have seen that 

 

 ij jiz z=  (5. 56) 
 

It is easy to show through matrix transforms that for a reciprocal circuit  

 

 ij jis s=  (5. 57) 
 

Thus, a reciprocal circuit has a symmetrical scattering matrix. 
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5.4.4.2 Lossless circuit  
A lossless circuit is circuit where no active power is dissipated. This means that for such a circuit, the 
sum of the active power flowing into the circuit must be equal to the active power flowing out of the 
circuit :  

 

 
2 2

i ia b=∑ ∑  (5. 58) 
 

In a matrix notation, this is equivalent to  

 

 [ ][ ] [ ] 0a a b b⎡ ⎤− =⎣ ⎦
��

 
(5. 59) 

 

Where the tilde sign means the transpose complex conjugate of a matrix :  

 

  [ ] * t
a a⎡ ⎤= ⎣ ⎦
�   (5. 60) 

 

Moreover, by definition,  

 

 

[ ] [ ][ ]
[ ]

b S a

b a S

=

⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦
� ��

 
(5. 61) 

 

Thus 
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(5. 62) 

 

This can be written as  
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ij ik jk jk
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(5. 63) 
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5.4.4.3 Moving the reference plane 
The origins of the axes zi, thus the position of the reference plane, are arbitrarily defined, as long as 
we are in single mode propagation. It can thus be interesting to study the effect of a translation of the 
reference plane along the axis on the scattering matrix (figure 5.13). 

 

 
 

Fig. 5. 13 :  Translation of the reference plane 

 
The normalized wave amplitudes a'i et b'i linked to the translated coordinates system can be expressed 
in term of the normalized wave amplitudes  ai et bi, linked to the original coordinate system, by 

 

' e

' e

i

i

j
i i

j
i i

i i i

a a

b b
z

ϕ

ϕ

ϕ β

−=

=

= − Δ  

(5. 64) 

But we have also  

[S]...

ti

tn

[S']...

t'i

t'n

Δz

ai
bi

b'i

a'i
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 [ ] [ ][ ] [ ] [ ][ ]' ' '   e   b S a t b S a= =  (5. 65) 
 

We write 

 

 2' e ij
ii iis s ϕ=  (5. 66) 

And in general 

 

 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

e '

'  e

e '

'  e

j

j

j

j

a diag a

a diag a

b diag b

b diag b

ϕ

ϕ

ϕ

ϕ

−

−

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦  

(5. 67) 

 

With 

 

 

1

2

e 0 ... 0

0 e : e
:

0 ... e

j

j
j

j n

diag

ϕ

ϕ
ϕ

ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦  

(5. 68) 

 

Thus 

 

 

[ ] [ ] [ ]

[ ] [ ]

( )

'  e  e '

'  e  e

' e i j

j j

j j

j
ij ij

b diag S diag a

S diag S diag

s s

ϕ ϕ

ϕ ϕ

ϕ ϕ+

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

=  

(5. 69) 

 

 

5.4.4.4 Relation between impedance matrix and scattering matrix 
 

We define the two diagonal matrices 
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[ ] [ ]

[ ]

1

2

1

2

0 ... 0
0 :

 
:
0 ...

1 0 ... 0
2

10 :1 2 
2

:
10 ...

2

c

c
ci

cn

c

c
ci

cn

Z
Z

G diag Z

Z

Z

ZF diag
Z

Z

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥
= =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(5. 70) 

 

 and use the definition of the normalized wave amplitudes to write  

 

 

 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

1

1 1

S F Z G F Z G

F Z G Z G F

−

− −

⎡ ⎤⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤= − +⎣ ⎦ ⎣ ⎦  

(5. 71) 

 

and 

 

 [ ] [ ] [ ] [ ] [ ] [ ] [ ][ ]11 1 1Z F s s F G−− ⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦  (5. 72) 
 

where [1] is the identity matrix. 

 

 

5.4.5 Flow charts 
The terms of the scattering matrix are transfer functions, linking an input port to an output port. They 
can be represented graphically by flow charts. 

 

example 1 : two-port 
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Fig. 5. 14 :  Flow chart of a two-port 
 

example 2 : three-port 

 

 
 

Fig. 5. 15 : Flow chart of a three-port 

 
 

example 3 : two two-ports cascaded 
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Fig. 5. 16 : Cascaded two-ports 
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5.4.5.1 Flow chart reduction rules 
 

1) multiplication 

 

 
Fig. 5. 17 : Two flow chart in series 

 

2) addition 

 

 
Fig. 5. 18: Two flow charts in parallel 

 

3) retroaction 
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Fig. 5. 19 : Retroaction of two flow charts 
 

 

5.4.5.2 Example 
 

Find the reflection coefficient at the input of a reciprocal two-port terminated by a short circuit 

 

 
 

 
 

 
 

 
 

Fig. 5. 20 : Reduction of flow chart 
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5.4.5.3 Example : two cascaded two-ports 
 

 

 

First stage : we look for the possible paths going from a1 to b1 : 

 

 

 

Stage two : we reduce 
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Stage three : we look for the possible paths going from a1 to b'2 : 

 

 

 

Stage 4 : we reduce 
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Stage 5 :  we look for the possible paths going from a'2 to b1 : 

 

 

 

Stage 6: we reduce 

 

 

 

Stage 7 :  we look for the possible paths going from a'2 to b2' : 

 

 

 

Stage 8 : we reduce 
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And we get finally the scattering matrix of two cascaded two-ports : 

 

 

21 12 11 12 12
11

11 22 22 111 1

2 221 21 12 21 22
22

11 22 11 22

' '
1 ' 1 '

' '' ' '
'

1 ' 1 '

s s s s s
s

s s s sb a
b as s s s s

s
s s s s

⎡ ⎤+⎢ ⎥− −⎡ ⎤ ⎡ ⎤⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦+⎢ ⎥− −⎣ ⎦  

(5. 73) 

 

5.4.6 Summary of the general characteristics of the scattering matrix 
 

• sij : transfer function between port j and i 
• sii : reflection coefficient at port i 

• 
2 i

ij
j

P
s

P
=  normalized transferred power from j to i  

• The scattering of a reciprocal network is symmetric 
• The scattering matrix of a lossless network is of the type [ ] [ ]1S S⎡ ⎤ =⎣ ⎦

�  

• The scattering matrix of a matched network has zeros on its main diagonal. 
 

5.5 Voltage standing wave ratio 
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The voltage standing wave ration, or VSWR, is another useful mean to characterize the refflection 
coefficient at the ports of a device. It results from the fact that a reflection at a port will induced a 
reflected wave along the feeding line. This reflected wave will combine itself to the incident wave, in 
order to form a standing wave (fig. 5.21) 

 

 
Fig. 5. 21 : standing wave 

 

 

The voltage in the transmission line is given by : 

 ( ) ( )i ci i i ci i ii iU Z a b Z a s a= + = +  (5. 74) 
Thus 
 ( ) ( ) 21 e j z

i ci i iiU z Z a z s β⎡ ⎤= +⎣ ⎦  (5. 75) 

The modulus of the voltage can be written as 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2

2

1 cos 2 sin 2

1 2 cos 2

i ci i ii ii

i ci i ii ii

U z Z a z s z s z

U z Z a z s s z

ϕ β ϕ β

ϕ β

⎡ ⎤= + + + +⎣ ⎦

= + + +
 (5. 76) 

 
 
 

 

Let us now consiider th eminimum and the maximum values of the modulus of the voltage : 

 
( )
( ) ( )

max

min

1     e   2 2

1     e   2 2 1

ci i ii i

ci i ii i

U Z a s n z n

U Z a s n z n

ϕ β π

ϕ β π

= + + =

= − + = +
 (5. 77) 

 
and take the ratio between these values, which is called the voltage standing wave ration :  

z

|U|

Transmission line
device
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 max

min

1
1

ii

ii

U s
ROS VSWR

U s
+

= = =
−

 (5. 78) 

 
For a matched load, the reflected vave is equal to zero, and thus the VSWR is equal to 1. For 
a total reflection the VSWR is infinite. Examples of standing ewaves for different reflection 
coefficients are depicted in figure 5.22. 
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6. Microwave components 

 

6.1  Single port element 
The scattering parameter of a single port element is a scalar, the reflection coefficient. 

 

 

Fig. 6. 1 : Component with a single access 
 

Its flow chart is elementary (Fig. 6. 2) 

 

 

Fig. 6. 2 : Flow chart of a single port element 
 

6.1.1 Lossless single port element 
To be lossless, a single port element must have 

 

 
2 2a b=  (6. 1) 

 

which is equivalent to  

 
1

b
s

a
= =

 
(6. 2) 

 

Thus, a lossless single port element is an element giving a total reflection 

 

a

b
s11=ρ=Γ

a

b
s11=ρ=Γ
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 e js ϕ=  (6. 3) 
 

There are two particular cases, the short circuit with 

 

    1b a s= − ⇒ = −  (6. 4) 
 

and the open circuit, where 

 

    1b a s= ⇒ =  (6. 5) 
 

The short circuit is a very important device in microwave measurements, as it is used to set the 
reference planes of the devices under test. Mobile short circuits are also of interest for microwave 
measurements, as this allows presenting a reflection with a controlled amplitude and phase. Fig. 6. 3 
illustrates some waveguide mobile short-circuits.  

 

 
Fig. 6. 3 : waveguide short circuits 

 
 

 

6.1.2 Matched single port element 
A single port element absorbing all the incident power is characterized by a zero reflection coefficient:  

spring contact

λg/4
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 0iis =  (6. 6) 
 

Note: it is manifestly not possible to match a lossless single port element. 

 

Matched loads are again very useful for microwave measurements. Indeed, as the s parameters are 
defined between matched loads, all the accesses which are not concerned by a measurement have to be 
terminated by a matched load during measurement. 

There are different technologies to manufacture matched loads: For relatively low frequencies, a 
resistor of the right impedance will generally do the job. At microwave frequencies, loads made using 
absorbing materials are preferred, as they give a better match. Examples for waveguides are shown in 
Fig. 6. 4 

  
Fig. 6. 4 : Wavguide loads 

 
 

 

6.2 Two-ports 
The scattering matrix of a two-port has four terms:  

 

 
[ ] 11 12

21 22

s s
S

s s
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  

(6. 7) 

 

where the terms on the diagonal are the reflection coefficient at the ports, and the terms outside the 
diagonal the transfer function between the ports. The flow chart is shown in Fig. 6. 5.  
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Fig. 6. 5 : Flow chart of a two-port circuit 

 

 

6.2.1 Characteristics of two-ports 

 
• For a reciprocal two-port s21=s12 
• For a lossless two-port 

 

2 2
11 21

2 2
12 22
* *
11 12 21 22

1

1

0

s s

s s

s s s s

+ =

+ =

+ =  

(6. 8) 

• For a lossless reciprocal two-port 

 11 22s s=  (6. 9) 

• In the case where 
  11 22s s=  (6. 10) 

 the two-port is said to be symmetric 
• For a matched two-port 
 11 22 0s s= =  (6. 11) 
 

 

6.2.2 Matched attenuator 
 

 
[ ] 12

12

0
0

s
S

s
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  

(6. 12) 

 

It is a reciprocal component that attenuates the power between the input and the output. The 
attenuation level is defined as: 

 

2
11

122 22 2 12

110log 10log 10log 20log
aP

LA s
P b s

= = = = −
 

(6. 13) 
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A matched attenuator is absorbing power, and is thus a lossy component. Attenuators may be fixed or 
variable. The first is used only when a fixed amount of attenuation has to be provided, for instance in 
order to protect a device. In most of measurement setups however, variable attenuators are used, and 
two examples are shown below.  

 

Example one: rotary waveguide attenuator.  
This attenuator design is shown in Fig. 6. 6. It consists of three section of circular waveguide, all 
loaded by a thin resistive sheet in their central plane. The middle section can rotate around the central 
axe of the cylinder.  

 

 
Fig. 6. 6 :  waveguide attenuator 

 
 

The principle of attenuation is explained in Fig. 6. 7. 
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Fig. 6. 7: rotary waveguide attenuator 

 
At the input of the device, the electric field is vertical (corresponding to the dominant mode of the 
rectangular waveguide TE10). At the input of the fixed cylindrical waveguide, the field is vertical, thus 
orthogonal to the absorbing blade. The field will thus not be affected by the latter. At the input of the 
mobile section, the field is vertical, making an angle θ with the absorbing blade. The field can be 
decomposed in a component parallel to the blade and in a component orthogonal to the blade. The 
former will be absorbed travelling through the waveguide section, while the latter will not be affected. 
The field encounters now the last absorbing blade in the third circular section. It is again decomposed 
in two componsnt, parallel and perpendicular to the blade. Again, the former will be absorbed, the 
latter unaffected. Thus, at the output of this third circular waveguide, the field is again vertical, but has 
been attenuated by a factor of cos2θ.  

 

Example two:  T attenuator. 
 

An attenuator working in the lower frequencies of microwaves can also be made of lumped resistors. 
In this case, a T circuit is often chosen (Fig. 6. 8) 

 

 
Fig. 6. 8 : T attenuator. 

 
 

It can easily be shown that if the attenuator is matched, we have: 

 
2 2

1
2

12
cZ RR

R
−

=  (6. 14) 

and that the attenuation is given by  
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 1
21

1
20 log 20 log c

c

Z R
s

Z R
⎛ ⎞−

− = − ⎜ ⎟+⎝ ⎠
 (6. 15) 

 

where Zc is the characteristic impedance at the ports of the attenuator 

 

 

 

6.2.3 Phase shifters  
The scattering matrix of a reciprocal lossless phase shifter is given by : 

 

 
[ ] 0 e

e 0

j

j
S

ϕ

ϕ

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦  

(6. 16) 

 
The easiest way to manufacture a phase shifter is just to insert a length of transmission line. 
Indeed, the scattering matrix a length of matched transmission line s given by : 
 

 [ ] 0 e

e 0

j L

j L
S

β

β

−

−

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦  

(6. 17) 

 

where β is the propagation coefficient in the line and L the length of the line.  

Many measurement setups require for elements with variable phase shifts. An example of realisation is 
the Fox phase shifter. Like the variable attenuator, it consists of three sections of circular waveguides, 
terminated at each end by a circular to rectangular waveguide transmission. The central section is 
mobile, and the three circular waveguides are loaded by a slab of dielectric in their centre, as depicted 
in Fig. 6. 9. 
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Fig. 6. 9 : Fox ' phase shifter 

 
Again, the electric field is vertical at the input of the device. It will thus arrive vertically at the input of 
the first circular waveguide, which is called a quarter wave line. It effect is explained in Fig. 6. 9. 
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Fig. 6. 10 : Quarter wave line 
 

A dielectric slab is located at the centre of the waveguide, making an angle of 45° with the field. The 
field is thus decomposed in two components, one parallel and the other perpendicular to the slab. The 
former will not be affected by the dielectric, whereas the latter will be slowed down due to the 
dielectric material. The length of the guide is selected in such a way that the two components will have 
a 90° phase shift at its end. The field is thus circularly polarized at the end of this guide. 

The signals enters then in the second waveguide, which is a half wave line (see Fig. 6. 11) 

 

 
Fig. 6. 11 : Half wave line 

 
This time the length of the line is such that the two field components will have a phase difference of 
180° at its end. The rotation sense of the circular polarization will thus be inversed. Moreover, as the 
slab makes an angle θ with respect to the slab in the quarter wave line, a phase shift of θ will be added 
to both components of the field. The signal goes then trough a fixed quarter wave line, where the 
dielectric slab makes an angle of –θ with respect to the slab of the half wave line. Due to this quarter 
wave line, a phase shift of 90° will be added between the two components of the field, thus leading to 
two fields having the same phase (90°+180°+90°=360°), and the two components are recomposed to a 
vertical linearly polarized field. Moreover, another phase shift of θ due to the rotation is added to the 
field (fig. 6.12) 
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Fig. 6. 12 : Quarter wave line 

 
Thus finally, the signal 's phase is shifted by a factor of 2θ (plus the phase shift due to the length of the 
transmission lines, which is fixed).  

 

 

6.2.4 Non reciprocal two ports 
An isolator is a non reciprocal element, which lets the signal flow in one direction but blocks it in the 
other direction. It is a very useful element to protect components from parasitic reflections (sources for 
instance, which are very sensitive). The scattering matrix of an ideal isolator is given by :  

 
[ ] 0 0

1 0
S ⎡ ⎤

= ⎢ ⎥
⎣ ⎦  

(6. 18) 

 
A gyrator is a particular case of a non reciprocal phase shifter, where difference of phase shift in the 
transfer function of the two directions in 180°. If the reference planes are chosen properly, the 
scattering matrix of a gyrator is  

 

 [ ] 0 1
1 0

s
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (6. 19)  

 

6.2.5 Frequency depending two-ports (filters, etc.) 
The scattering matrix of a frequency depending two port is given by  

 

 
[ ] ( ) ( )

( ) ( )
11 12

12 22

s s
S

s s
ω ω
ω ω

⎡ ⎤
= ⎢ ⎥

⎣ ⎦  
(6. 20) 
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The specific case of the filter will be treated in chapter 7. 

 

 

6.3 Three-ports 
The general scattering matrix of a three-port is given by 

 

 

[ ]
11 12 13

21 22 23

31 32 33

s s s
S s s s

s s s

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦  

(6. 21) 

 

and its flow chart by 

 

 

 

Fig. 6. 13 : Flow chart of a three-port 
 

 

6.3.1 Characteristics of a three-port 

 
• For a reciprocal three-port, s21=s12, s23=s32, s13=s31 
• For a lossless three-port 
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3

*

1
  , 1,2,3ij ik ik

i
s s j kδ

=
= =∑  (6. 22) 

• For a matched three-port 

 11 22 33 0s s s= = =  (6. 23 

• A three port cannot be at the same time lossless, reciprocal and matched, as is easily 
shown as follows: let us imagine that it would be possible. The losslessness relations 
would then be written as: 

 

 

22
12 13

22
12 23

2 2
23 13
*
13 23
*
12 23
*
12 13

1

1

1

0

0

0

s s

s s

s s

s s

s s

s s

+ =

+ =

+ =

=

=

=  

(6. 24) 

 
  
Suppose that s13 is non zero. We deduce immediately that s23=0 and s12=0, which is incompatible 
with the second relation above. The same contradiction is obtained when we start with s23 or s12 
different from zero. 

As it is not possible to have a three port device which is matched, reciprocal and lossless, we want to 
check if we can at least have a three port device which is lossless, reciprocal and matched at two of its 
ports, that could for instance work as a power combiner. It can however easily be shown that the only 
lossless reciprocal three-port matched at two of its ports is not very interesting, as the non matched 
port is entirely decoupled from the two other ports.  Its scattering parameters are given by: 

 
1      , , 1, 2,3ij ji kks s s with i j k= = = =

 
(6. 25) 

 

and its flow chart in Fig. 6. 14. 
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Fig. 6. 14 : Lossless reciprocal three-port matched at two ports 

 

 

We may however have a three port which is lossless, reciprocal and "nearly" matched at two of its 
ports. Its scattering matrix is given by 

 

 [ ]
12 13

12 23

13 23 33

s s
s s s

s s s

ε
ε

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (6. 26) 

 where ε << 1, and reference planes 1 and 2 have been selected in way that ε is real. Energy 
conservation rules gives us that  

 

 222
12 13 1s sε + + =  (6. 27) 

 222
12 23 1s sε + + =  (6. 28) 

 ( )* *
12 12 13 23 0s s s sε + + =  (6. 29) 

 * *
13 12 23 13 33 0s s s s sε + + =  (6. 30) 

 
from the two first, we find easily that 
 12 23s s=  (6. 31) 
 

Using this result and 
( )* *

12 12 13 23 0s s s sε + + =
 (6. 29), we write that  
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 ( )13 122 Res sε ε= ∼  (6. 32) 
 

Using 222
12 13 1s sε + + =  (6. 27),  we can then write 

 ( ) ( )2
12 12 121 2 Re 1 Re 1s s sε ε ε= − − ≅ − ≈  (6. 33) 

 

Moreover, 222
12 13 1s sε + + =  (6. 27) set the amplitude of s33 :  

 33 12s s≅  (6. 34) 
 
In conclusion, it is possible to have a three port which is lossless, reciprocal and nearly matched at two 
of its port. The third port will however be heavily mismatched. An example of this type of device is 
the slotted line, used in waveguide measurements. 

6.3.2 The circulator  
 

A non reciprocal three-port can be lossless and matched. In this case, the losslessness relations are 
written as : 

 

 

22
21 31

22
12 32

2 2
23 13
*
12 13
*
21 23
*
31 32

1

1

1

0

0

0

s s

s s

s s

s s

s s

s s

+ =

+ =

+ =

=

=

=  

(6. 35) 

 

We suppose again that s13 is different from zero. We get 

 

13 12 32 31 21 23 130 0 1 0 1 0 1s s s s s s s≠ ⇒ = ⇒ = ⇒ = ⇒ = ⇒ = ⇒ =  (6. 36) 
 

We may choose the reference planes in a way that the non zero terms are real, and we get the 
following scattering matrix :  
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[ ]
0 0 1
1 0 0
0 1 0

S
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦  

(6. 37) 

 

This element is a circulator, and its flow chart is depicted in Fig. 6. 15.  

 

 
Fig. 6. 15 : Flow chart of an ideal circulator 

 

 

6.3.3 Power splitters and combiners 
 

An useful application of a three port device is the ability of splitting the power from one input into two 
outputs, or to combine the power from two inputs into one output. Unfortunately, as we have seen 
above, we will not be able to design a device which is matched and lossless and able to act at the same 
time as splitter and divider.  

Let us consider first the problem of splitting the signal (or power) into two branches. In this situation, 
as we do have only one input, we can realise a device which is reciprocal, lossless and matched at one 
of its ports, the input. This can be done using three sections of transmission lines, as depicted in Fig. 6. 
16.  

a1

b1

b2

a2

1

a3
b3

1 1

1 2

3
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Fig. 6. 16 : power splitter made by transmission lines 

 

 

The condition that the input (port 1) is matched is given by:  

 

 2 3
1

2 3

Z ZZ
Z Z

=
+

 (6. 38) 

provided that output 2 and 3 are terminated by matched loads.  
 
In cases where all three ports can serve alternatively as inputs and output, we have seen can 
we cannot have losslessness, reciprocity and all ports matched. Thus, we have the choice of 
either adding losses, or allow a mismatch at the ports. 
An example of the latter is shown below. It consists of three identical sections of transmission 
lines, connected in a way to have a perfect central symmetry of the structure (Y junction).  
 

Z1

Z2

Z3
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Fig. 6. 17: non matched symmetrical power splitter (Y junction) 

 
In this case, the reflection coefficient at all the ports is identical, and we can place the 
reference planes in a way that this coefficient is purely real. All the transmission coefficients 
between the ports will also be identical, due to the symmetry of the structure and the reference 
planes. Thus, we can write : 
 

 11 22 33

12 13 23

s s s A
s s s B jC

= = =

= = = +
 (6. 39) 

As the device is lossless, the energy conservation relations can be written as : 
 

 
2 2 2

2 2

2 2 1

2 0

A B C

AB B C

+ + =

+ + =
 (6. 40) 

 
These two equations define a closed curve in the A,B,C space (see Fig. 6. 18). The maximal 
reflection coefficient is given for uncoupled ports (A=1, B=0, C=0) and the smallest possible 
reflection is obtained for (C=0, B=-2/3, A=1/3). In this latter case, the VSWR is equal to  
 

 

11
3 211
3

VSWR
+

= =
−

 (6. 41) 
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Fig. 6. 18: Solutions for the s parameters of a symmetrical three port junction (Y junction) 

 
 

As mentioned above, another solution to the problem of a three port serving as power splitter and 
power combiner is to allow for losses. A very simple crude solution is the resistive matched power 
splitter, shown in Fig. 6. 19.  
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Fig. 6. 19: resistive matched power splitter 
 

It is easy to show if we want this circuit to be matched at its three port 

 
3
cZR =  (6. 42) 

The scattering matrix of this device is given by 

 [ ]
0 1 1

1 1 0 1
2

1 1 0
S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (6. 43) 

Thus half the power is lost in the resistors!! 

 

A more clever device, which can work as power splitter and power combiner is the Wilkinson divider. 
An example of Wilkinson divider realised in microstrip technology is illustrated in Fig. 6. 20.  

 
Fig. 6. 20 : Microstrip Wilkinson divider 

 
To understand the way this devices works, let's start from its layout shown in Fig. 6. 21.  
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Fig. 6. 21 : Wilkinson divider layout 

 

We see that it consists of three transmission lines at the three port, where port 1 and 2 and ports 1 and 

3 are linked by a quarter wave line of impedance 2 oZ . Moreover, a resistor of value 2Zo is located 

between ports 2 and 3. A transmission line equivalence to this circuit is depicted in Fig. 6. 22.  

 
Fig. 6. 22: Wilkinson divider 

 

We notice that this equivalent circuit has an horizontal axis of symmetry. We normalise all the 
impedance to Zo, we enhance the symmetry by splitting the resistor and the impedance at port 1, and 
we add two voltage sources at ports two and three Fig. 6. 23)., where Z and r are unknowns to be 
determined in order to achieve the match at all three ports. 
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Fig. 6. 23 : Symmetric equivalent circuit of Wilkinson divider  

 
We will now excite ports 2 and 3 first using an even mode (Vg2=Vg3=2 V)  then using an odd mode 
(Vg2=–Vg3=2 V). The superposition of these two modes yields Vg2=4 V et Vg3=0. 

 

Even mode : 

In this case, Vg2=Vg3 = 2 V. As a consequence,  V2=V3  and no current flows through the two 
resistors r/2, or through the short circuit between the transmission lines at port 1. The circuit of fig 
6.23 can thus be divided by introducing two open circuits, as depicted in Fig. 6. 24 (where the 
grounded parts of the lines are not shown). 

 
Fig. 6. 24 : even excitation 

 

  

Looking into the circuit from port 2, we see an impedance equal to : 

 
 
Zin

e =
Z2

2
 (6. 44) 

as the transmission line acts as a quarter wave transformer. Thus, port 2 will be matched for   Z = 2  
and all the power will be delivered to port one, as no current flows through the resistor. In order to 

Vg2

Vg3

+ V3

+V2

+ V1

port 2

port 3
port 1

2

2

r/ 2

r/ 2

Z

Z

λ/ 4

1

1

+V2

port 2

2
r/ 2

Z
1

λ/ 4

o.c. o.c.

2 V+ V1
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determine s21, we need to compute V1, that we can find using transmission lines' equations. If x=0 at 
port 2 and x=λ/4 at port 1, the voltage on the line can be written as : 

 

    

V x( )= V + e− jβx + Γe jβx( )
V 0( )= V + 1 + Γ( )= V2 = V

V1 = V λ / 4( )= jV + 1− Γ( )= jV
Γ −1
Γ +1

 (6.45)

  
The reflection coefficient Γ  gives the reflection seen at port 1, looking towards the normalised resistor 
of 2, thus : 

 Γ =
2 − 2
2 + 2

 (6. 46) 

and 

 
 
V1 = jV

−1
2

 (6. 47) 

Thus 

 
    
S12 = S21 =

V1
V2

=
− j

2
= − j0.707 (6. 48) 

and by symmetry  

 
    
S13 = S31 =

V1
V2

=
− j

2
= − j0.707  (6. 49) 

 

 

Odd mode 
For the odd excitation mode, Vg2=–Vg3=2 V, and V2=–V3. Thus, the voltage is equal to zero along 
the symmetry line of the circuit, et we obtain the following equivalent circuit : 

 

Fig. 6. 25: odd excitation 
 

Looking into port 2, we see an impedance equal to r/2. Indeed, the short circuit at port 1 is viewed as 
an open circuit through the quarter wave line. Thus, port 2 will be matched if  r=2. In this excitation 
mode, all the power is delivered to the resistor, and is thus lost.  

 

+V2

port 2

2
r/ 2

Z
1

λ/ 4

s.c. s.c.

2 V+ V1
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In summary, all the following S parameters can be obtained from the above results using symmetry 
and reciprocity considerations: 

33 22

12 21

13 31

23 32

0  (ports 2and3are matched for even and odd excitations )
0.707 (the component is recprocal)
0.707 (the component is recprocal)

0 (due to the presence of open and short

s s
s s j
s s j
s s

= =

= = −
= = −

= = circuits on the symmetry line)

 

 

We must still compute the reflection coefficient at port 1, s11. In order to do this, we determine the 
impedance seen at port 1, when ports 2 and 3 are terminated by matched loads. The equivalent circuit 
is show in figure 6.26, the latter being identical to the even case, as V2=V3.  

 

Fig. 6. 26: Match at port 1 
   

Thus, there will be no current flowing from port 2 to 3, and no current through the resistor. We have 
the following equivalent circuit:  

 

Fig. 6. 27 : computation of Zin 
 

We have thus two quarter wave transformers in parallel, terminated by a matched load (normalized 
impedance of 1). The normalized input impedance at port 1 of the Wilkinson divider is thus given by  

 

  
Zin =

1
2

2( )2

1
= 1  

1
2

1

1
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1
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2

2
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Port 1 is thus also matched (s11 =0). 

 

6.4 The four-port 
The scattering matrix of a four-port is given by : 

 

 

[ ]
11 12 12 14

21 22 23 24

31 32 33 34

41 42 43 44

s s s s
s s s s

S
s s s s
s s s s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

(6. 50) 

and its flow chart by :  

 

 
 

Fig. 6. 28 : Flow chart of a four-port 
 

 

6.4.1 The directional coupler 
We can show using the power conservation relations that the only lossless, reciprocal and matched 
four-port has the following scattering matrix :  

 

a1

b1

b2

a2

s11

s21

s22

s12

b3

a3

a4

b4
s33

s34

s44

s43

s13 s31 s42s24
s23 s41

s32s14
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[ ]
12 14

12 23

23 34

14 34

0 0
0 0

0 0
0 0

s s
s s

S
s s

s s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

(6. 51) 

 

where we have moreover  

 

2 2
12 14

22
12 23

2 2
23 34

22
14 34

* *
12 23 14 34

* *
12 23 14 34

1

1

1

1

0

0

s s

s s

s s

s s

s s s s

s s s s

+ =

+ =

+ =

+ =

+ =

+ =  

(6. 52) 

 

This element, which links an input to two outputs, the last being isolated, is called a directional 
coupler. If we choose the reference planes in a judicious way, we get the following scattering matrix:  

 

 

[ ]

0 0 e

0 e 0

0 e 0

e 0 0

j

j

j

j

S

ψ

θ

θ

ψ

α β

α β

β α

β α

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (6. 53) 

with 

 

2 2 1
2n

α β
ψ θ π π

+ =
+ = +  

(6. 54) 

 

Proof: 

The losslessness equations give 

 

 

*
12 13 14 12 13 14

12 23 24 12 23 24

13 23 34 13 23 34

14 23 34 14 23 34

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

s s s s s s
s s s s s s
s s s s s s
s s s s s s

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦  

(6. 55) 
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The third line * the first column and the first line  * the second column yield : 

 

 

* *
13 14 23 24
* *
13 23 14 24

0

0

s s s s

s s s s

+ =

+ =  
(6. 56) 

 

We multiply the first expression by s14
*  and the second by s23

*  and we subtract the second from the 
first to obtain:  

 ( )22*
13 14 23 0s s s− =

 
(6. 57) 

 

This equation has two solutions: 

 

a) 13 0s =   

From this and the energy conservation relation, we get easily that 

  

 

 14 23 240, 0,  0s s s≠ ≠ =  (6. 58) 
 

and we obtain the following scattering matrix 

 

 

[ ]
12 14

12 23

23 34

14 34

0 0
0 0

0 0
0 0

s s
s s

S
s s

s s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

(6. 59) 

 

b) 14 23s s=  

 

We choose the reference plane such as : 

 

 14 23s s jδ= =  (6. 60) 
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We use two other energy conservation relations: the first line  1 * the first column and the third line  * 
the third column to get :  

 

22 2
12 13 14

2 2 2
13 23 34

1

1

s s s

s s s

+ + =

+ + =  
(6. 61) 

 

Thus  

 12 34s s=  (6. 62) 
 

We define the two last reference planes to obtain:  

 

 12 34s s γ= =  (6. 63) 
 

We take two new energy conservation relations: line 1  * column 4 and line 3 * column 4 

 

( )
( )

* * *
12 24 13 34 24 31

* *
13 14 24 31 24

0

23 0

s s s s s s

s s s s s s

γ

δ

+ = = +

+ = = −
 

(6. 64) 

 

This system of equations admits two solutions:  

 

a) 13 24 0s s= =  

 

we get in this case the same scattering matrix as before : 

 

[ ]
12 14

12 23

23 34

14 34

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

s s j
s s j

S
s s j

s s j

γ δ
γ δ

δ γ
δ γ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦  

(6. 65) 

 

b) 0γ δ= =  

 

This solution does not correspond to a four-port anymore, but to two decoupled two-ports :  
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[ ]
13

24

13

24

0 0 0
0 0 0

0 0 0
0 0 0

s
s

S
s

s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

(6. 66) 

 

Thus, the only possible solution for a lossless, reciprocal and matched four-port has the following 
scattering matrix:  

 

 

[ ]
12 14

12 23

23 34

14 34

0 0
0 0

0 0
0 0

s s
s s

S
s s

s s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

(6. 67) 

 

We apply now again the energy conservation equations to get the characteristics of this four-port :  

 

 

2 2
12 14

22
12 23

2 2
23 34

22
14 34

* *
12 23 14 34

* *
12 14 23 34

1

1

1

1

0

0

s s

s s

s s

s s

s s s s

s s s s

+ =

+ =

+ =

+ =

+ =

+ =  

(6. 68) 

 

From which we obtain 

 

 

12 34

14 23
2 2 1

s s

s s

α

β

α β

= =

= =

+ =  

(6. 69) 

 

We write these terms in polar form 
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12

34

14

23

e

e

e

e

j

j

j

j

s

s

s

s

ϕ

η

ψ

θ

α

α

β

β

=

=

=

=  

(6. 70) 

 

The two last energy conservation relations yield 

 

 ( ) ( ) 2nϕ η ψ θ π π+ = + + +  (6. 71) 
 

We choose the reference planes such as  

 

 0ϕ η= =  (6. 72) 
 

And we finally obtain for a lossless, reciprocal and matched four-port :  

 

 

[ ]

0 0 e

0 e 0

0 e 0

e 0 0

j

j

j

j

S

ψ

θ

θ

ψ

α β

α β

β α

β α

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

(6. 73) 

 

with 

 

2 2 1
2n

α β
ψ θ π π

+ =
+ = +  

(6. 74) 

 

Its flow chart is illustrated in Fig. 6. 29.  
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Fig. 6. 29 : Flow chart of a directional coupler 

 

 

6.4.2 Particular case: the symmetric coupler 
We choose   

 2
πψ θ= =

 
(6. 75) 

 

and we obtain 

 

[ ]

0 0
0 0

0 0
0 0

j
j

S
j

j

α β
α β

β α
β α

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

(6. 76) 

 

Its flow chart is depicted in Fig. 6. 30.  
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Fig. 6. 30 : Flow chart of a symmetric coupler 

 

Example: the hybrid coupler 
1
2

α β= =  

 

 

[ ]

0 1 0
1 0 01
0 0 12

0 1 0

j
j

S
j

j

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

(6. 77) 

 
An example of hybrid coupler realized in microstrip technology is illustrate in Fig. 6. 31.  
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Fig. 6. 31 : Microstrip Hybrid coupler, or branch coupler 

 
 

In order to understand and design these devices, we notice first that they have two axes of symmetry, 
one horizontal and the other vertical. We will use this fact, by introducing a general analysis theory for 
circuits with double symmetry: 

 

 
Fig. 6. 32   Four-port with a horizontal and vertical symmetry 

 

When a four port component has two symmetry planes, and when its reference planes are also 
symmetrical with respect to those symmetry planes, its scattering matrix has only four 
independent terms:  
 
 

1 2

3 4
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 s11 = s22 = s33 = s44 = s1 
 s12 = s21 = s34 = s43 = s2 
 s13 = s31 = s24 = s42 = s3 
 s14 = s41 = s23 = s32 = s4 (6. 78) 
 
Its matrix takes thus the following form  
 

 

1 2 3 41 1

2 1 4 32 2

3 4 1 23 3

4 3 2 14 4

s s s sb a
s s s sb a
s s s sb a
s s s sb a

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

 (6. 79) 

 
Symmetric and antisymmetric excitations 
The application of a symmetric excitation (signals with same amplitude and phase on the 4 
ports) yields:  
  
 

 

( )

1 2 3 4

1 2 3 4

1 2 3 4

ss

ss

ss ss ss

a a a a a
b b b b b
s s s s a aρ

= = = =

= = = = =

+ + + =

 (6. 80) 

 
Four a double antisymmetric excitation, we get:  
 
 

 
( )

1 2 3 4

1 2 3 4

1 2 3 4

aa

aa

aa aa aa

a a a a a
b b b b b
s s s s a aρ

= − = − = =

= − = − = = =

− − + =

 (6. 81) 

 
When we have a symmetric up-down excitation (excitation at ports 1 and 3, respectively 2 
and 4 are symmetric) and an antisymmetric left-right excitation, we get :   
  
 

 
( )

1 2 3 4

1 2 3 4

1 2 3 4

as

as

as as as

a a a a a
b b b b b
s s s s a aρ

= − = = − =

= − = = − = − =

− + − =

 (6. 82) 

 
And finally, when the excitation is symmetric left-right, but antisymmetric up-down, we have:  
 
 

 
( )

1 2 3 4

1 2 3 4

1 2 3 4

sa

sa

as sa sa

a a a a a
b b b b b
s s s s a aρ

= = − = − =

= = − = − = − =

+ − − =

 (6. 83) 
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In summary, the four reflection coefficients are linked to the four terms of the scattering 
matrix through: 
 

 

1

2

3

4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

ss

as

sa

aa

s
s
s
s

ρ
ρ
ρ
ρ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥− −
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦

 (6. 84) 

 
If we invert this relation, we obtain:  
 

 

1

2

3

4

1 1 1 1
1 1 1 11
1 1 1 14
1 1 1 1

ss

as

sa

aa

s
s
s
s

ρ
ρ
ρ
ρ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥− −
⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦

 (6. 85) 

 
Meaning of symmetric and antisymmetric excitations 
 
When two ports are excited symmetrically, the same currents flow into both ports. The directions of 
these currents are thus opposite, and in the symmetry plane, they cancel each other. This plane 
becomes thus an open circuit plane.  

 

Inversally, when two ports are antisymmetrically excited, the voltage at both ports have the same 
amplitude but the opposite sign. In the symmetry plane, these voltages thus cancel each other. We can 
then consider that the symmetry plane is a short circuit plane. 

. 
 
We obtain thus the four situations of Fig. 6. 33 : 

 

 
 

Fig. 6. 33 symmetric and antisymmetric excitations  
 
The complete analysis of a four-port with a double symmetry can thus be simplified into the analysis 
of four one port circuits, made of one quarter of the initial structure terminated by open or short 
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circuits in the symmetry planes. When the element is lossless, we know moreover that the amplitude 
of the four reflection coefficients is equal to unity, thus only their phase need to be determined. 

 
Matched and directive four port. 
A four port is matched when   s1 = 0, and we get:  
 
 0ss as sa aaρ ρ ρ ρ+ + + =  (6. 86) 
 
Moreover, one of the ports is isolated from the input port. Let us consider that access 3 is 
isolated from port 1, we have  s3 = 0, which yields : 
 
 0ss as sa aaρ ρ ρ ρ+ − − =  (6. 87) 
These two conditions are simultaneously satisfied for: 
 
 ss as sa aaρ ρ ρ ρ= − = −  (6. 88) 
The two non zero terms of the scattering matrix are then given by: 
 

 ( ) ( )2 4
1 1
2 2ss aa ss aas Sρ ρ ρ ρ= − = +    (6. 89) 

 
In the case of a symmetric coupler, α and β are given by: 
 

 ( ) ( )2 4
1 1
2 2ss aa ss aas j sα ρ ρ β ρ ρ= = − = = +  (6. 90) 

 
The four reflection coefficients become: 
 

 ss as aa saj jρ ρ α β ρ ρ α β= − = + = − = − +  (6. 91) 
 
 
The four reflection coefficients are situated on the four corners of a rectangle inscribed in the 
unit circle of the complex plane: 

 
 

Fig. 6. 34:  Position of the four reflection coefficients 
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Branch coupler 
 
A typical branch coupler is depicted in Fig. 6. 35.  
This geometry has a double symmetry, and in the case the coupler is matched, it is a 
symmetric coupler. 
 
 

 
 

Fig. 6. 35: Microstrip branch coupler. 
 
 
The length and characteristic impedance of the different line sections determine the power 
division between the two coupled ports. The four reflection coefficients are obtained using 
transmission line theory, using the relations for open circuited or short circuited transmission 
lines. We neglect the reactive effects at the discontinuities, and we get:  
 

 
ρss =

Yc − jY1 tan β1d1( )− jY2 tan β2d2( )
Yc + jY1 tan β1d1( )+ jY2 tan β2d2( )

ejϕ

 

 
ρas =

Yc + jY1 cot β1d1( )− jY2 tan β2d2( )
Yc − jY1 cot β1d1( )+ jY2 tan β2d2( )

e jϕ

 (6. 92) 

 
ρsa =

Yc − jY1 tan β1d1( )+ jY2 cot β2d2( )
Yc + jY1 tan β1d1( )− jY2 cot β2d2( )

ejϕ

 

 
ρaa =

Yc + jY1 cot β1d1( )+ jY2 cot β2d2( )
Yc − jY1 cot β1d1( )− jY2 cot β2d2( )

e jϕ

 
  

 
The phase shift ϕ has been introduced to take into account the fact that the reference plane 
does not coincide with the junction of the lines. 
 
The matching and directivity conditions require that  
 

 Y1 cot 2β1d1( )+ Y2 cot 2β2d2( ) = 0    and   Y1
2 −Y2

2 = Yc
2
 (6. 93) 

1

3

2

4

β1,Y1,2d1

β2,Y2,2d2



 

Microwaves  
 

180

 
With help of equation (6.91), we find that  ϕ  = π/2. 
 
The system of equations admits a "simple" solution, obtained by setting the two terms of the 
sum on the left hand side of equation (6.93) equal to zero, yielding :  
 
 β1d1 = β2d2 = π/4    Y1 = Yc /α    Y2 = -Yc β/α (6. 94) 
 
We find a negative value for β. (Note: be careful not to mix β1, β2, which are propagation 
factors with β, which is the coupling coefficient!!) 
 
 
The half length of the two lines are respectively of λi /8, with i = 1,2. For microstrip lines, the 
wavelength varies with the characteristic impedance of the lines, and the coupler is not 
square. In the case of a hybrid coupler, the power is equally distributed between the two 
outputs, and we must have  α = – β = 1/   yielding 
 
 Y1 = Yc    et    Y2 = Yc  (6. 95) 
 
The transmission of the signal through a microstrip hybrid coupler is shown in figure 6.36. 
We see clearly that the signal is equally distributed between two ports, the last being isolated. 
 
 

 
 

Fig. 6. 36 : Distribution of the signal on a hybrid coupler 
 
This figure represents the component of the electric field which is normal to the plane of the 
circuit, measured just above the circuit.  

2

2
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Equations (6.92) have more solutions, which are not so simple, having line lengths different 
from  λi /8 (one is shorter the other is longer). The characteristic admittances are then given 
by: 
 

 

Y1 =
Yc

1 − cot 2β1d1( )
cot 2β2d2( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2

 

 

Y2 =
Yc

cot 2β2d2( )
cot 2β1d1( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2

– 1
 (6. 96) 

 
And the terms of the scattering matrix are given by  
 

 
α =

2Yc Y1 tan β1d1( )+ Y2 tan β2d2( )[ ]
Yc

2 + Y1 tan β1d1( )+ Y2 tan β2d2( )[ ]2  

 
β =

Yc
2 − Y1 tan β1d1( )+ Y2 tan β2 d2( )[ ]2

Yc
2 + Y1 tan β1d1( )+ Y2 tan β2 d2( )[ ]2

 (6. 97) 
 
In these developments, we have again neglected the reactive contributions due to the spurious 
modes at the discontinuities.  
 
 

 
 

 

6.4.3 Particular case: the asymmetric coupler 
We choose  

0 , ψ θ π= =  

 

and we obtain 

 

[ ]

0 0
0 0

0 0
0 0

S

α β
α β

β α
β α

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦  

(6. 98) 

 

The flow chart is illustrated in Fig. 6. 37 
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Fig. 6. 37 : Flow chart of an asymmetric coupler 

 

 

Example: The hybrid T, the hybrid circle (magic T, rat-race) 
1
2

α β= =  

 

[ ]

0 1 0 1
1 0 1 01
0 1 0 12
1 0 1 0

S

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦  

(6. 99) 

 

 

6.4.4 The real directional coupler 
The ports are numbered in a way to obtain 

 

 α β≥  (6. 100) 
 

We define the following terms: 

 

• Attenuation level: 20 logLA α= −  

• Coupling level: 20 logLC β= −  

a1

b1

b2

a2

α

b3

a3

a4

b4

α

α

α

-β

β

β
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In the case of a real (non ideal) coupler, we have moreover  

 

13 24, ,   0iis s s small but ≠  

 

The coupler is then characterized by its reflection coefficients and by its isolation levels :  

• 13 1320logLI s= −  

• 24 2420logLI s= −  

 

The quality of a coupler is given by its directivity:  

 

• 13
13 13 20log

s
LD LI LC

β
= − = −  

• 24
24 24 20log

s
LD LI LC

β
= − = −  

 

The higher the directivity, the better the coupler 

 

 

6.4.5 Electric symbol of a directional coupler 
the electric symbol of a directional is shown in figure 6.38 
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Fig. 6. 38 : Symbol of the directional  coupler 
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7. Microwave filters 
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7.1 Introduction 
 

Filters are components (two-ports) used to control the frequency response of the signal, by allowing 
transmission in the pass band of the filter and attenuating the signal in the stop band. At lower 
frequencies, filters can be passive or active, the former being made of lumped capacitors and 
inductors, the latter using transistors as well. In the microwave domain, filters are mainly passive. The 
design principle is very similar to the design principle of passive low frequency filters. The used 
technology however is fundamentally different, as the required impedances of the different stages of 
the filters are obtained using transmission line sections rather than lumped elements. We talk about a 
distributed technology, versus lumped technology. This has two main reasons: the wavelength is small 
enough to allow us to have transmission lines of a length of few tens of wavelength without becoming 
prohibitively large, and lumped capacitors and inductors with a good quality factor are difficult to 
obtain in the microwave range.  

 

We will concentrate in the first section on the so called low pass prototype filter, which is a lumped 
element filter designed for a normalized frequency and for normalized terminators. This filter is 
important, as we can easily derive from it lumped low pass, high pass, band pass and band stop filters 
for any frequency band, which will be done in the following section. We will then see how we go from 
the lumped element prototype to the distributed element microwave filter, using Richard's 
transformations and Kuroda's identities. 

 

 

7.2 The low pass prototype filter 
 

An ideal low pass filter would have a transmission coefficient of 1 up to the cut-off frequency and a 
zero transmission coefficient above. This is clearly not realistic, and in practice a low pass filter is 
defined by (figure 7.1):  

• ωc, the cut-off frequency 
• A0, the maximal tolerated attenuation in the pass band 
• ω1, an angular frequency in the stop band, where we want to specify 
• A1, the minimal attenuation at this frequency 
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Fig. 7. 1 : Real low pass filter response 

7.2.1 The insertion loss method 
The insertion loss method gives us control over the pass band and stop band amplitude and phase 
characteristics, and is a systematic way to synthesise a desired response. Let us define the power loss 
ratio as: 

 

 
( ) 2
1

1
inc

LR
load

P
P

Pω
= =

− Γ
 (7. 101) 

 
and the insertion loss in dB as 

 10 log LRIL P=  (7. 102) 
 

The filter is passive network, and the causality requires that ( ) 2ωΓ is an even function of ω. We can 

therefore write ( ) 2ωΓ  as a polynomial in ω2:  

 ( )
( )

( ) ( )
2

2
2 2

M

M N

ω
ω

ω ω
Γ =

+
 (7. 103) 

where M and N are real polynomials. Substituting in (7.1) yields:  

 

ω

ω0 ω1

A[dB]

A1

A0
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( )
( )

2

2
1LR

M
P

N

ω

ω
= +  (7. 104) 

which must hold for the filter to be physically realisable. From this point, we can consider several 
practical filter responses. 

 

7.2.1.1 Normalization  
The normalized low pass prototype is shown in figure 7.2, and a possible lumped element low pass 
filter in figure 7.3 

 

 
Fig. 7.2 : low pass prototype filter 

 
 

 
Fig. 7.3 : Lumped element low pass filter 

 

 

The link between the two is given by the following relations:  

 

 

( ) ( )

( ) ( )

( ) ( )

0 0

0

0

0

g k
C k

Z
g k Z

L k

R k Z g k

ω

ω

=

=

=

 (7. 105) 

 
where Z0 is the characteristic impedance of  the line, which is supposed equal to the  source 
impedance.  

g(0)

g(1)

g(2) g(N-1)

g(N)

g(N+1)

R0

L(1)

C(2) C(N-1)

L(N)

RN+1
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In the previous example, the first stage is made of a series inductor. The dual solution, i.e. starting 
with a parallel capacitor would also have been possible. 

 

7.2.12 The Butterworth filter (maximally flat response) 
 

This filter is optimum in the sense that is provides the flattest possible response in the pass band. This 
response is defined as:  

 

 
2

21
N

LR
o

P k ω
ω

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (7. 106) 

 

where N is the order of the filter, ωo the cut-off frequency. The pass band extends from ω=0 to ω=ωo 
and the power loss ratio is 1 +k2 at the band edge. This point is usually chosen at -3dB, yielding k=1.  

 

In practice a Butterworth lumped element filter is synthesized as follows: 

 

• the degree of the filter (the number of stages of the filter) is computed as  
 

 
( )

1
10

1

ln(10 1)
2 ln /

A

o
N

ω ω
−

=  (7. 107) 

 

• the normalized elements of the filter (figure 7.2) are obtained as  
 

 
( )
( )

( )

0 1

1 1

( ) 2sin 2 1 1
2

g

g N

g k k for k N
N

π

=

+ =

⎛ ⎞= − ≤ ≤⎜ ⎟
⎝ ⎠

 (7. 108) 

 

• the de-normalized lumped elements are obtained from (7.5) 
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7.2.1.2 The Chebyshev (equal ripple) filter 
 

The equal ripple design is optimal in the sense that it yields the steepest cut-off in the stop band, at the 
cost of an undulation in the pass band. In this case, the power loss ratio is given by: 

 

 ( )2 21LR NP k T ω= +  (7. 109) 
 

where TN is the Chebyshev polynomial of order N. In this case the filter is synthesized using the 
following approach:  

• the number of stages is obtained using  

 

1

0

10

10

1

0

10 1Arcosh

10 1

Arcosh

A

A

N
ω
ω

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (7. 110) 

• and the normalized prototype elements by 

 

( )

( )

( )

( )

( ) ( )

1

2

1

1

0 1
2

1

1 1 if  N is  odd

g N+1 tanh if  N is  even
4

4
g k

1
k k

k

g
a

g

g N

a a
b g k

γ

β

−

−

=

=

+ =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=
−

 (7. 111) 

with 

 

 

( )
( )2 2

0

sin 2 1 / 2

sin /

ln coth
17.37

sinh
2

k

k

a k N

b k N

A

N

π

γ π

β

βγ

= −⎡ ⎤⎣ ⎦

= +

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (7. 112) 

A typical Chebyshev low pass response is illustrated in figure 7.4. 
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Fig. 7.4: Chebyshev low pass response 
 

 

 

7.3 Impedance and frequency transformations to lumped element high pass, band pass 
and band stop filters 
 

7.3.1 Lumped element high pass filters 
 

The frequency transform to transform a low pass prototype to a high pass is given by the substitution:  

 

 oω
ω

ω
← −  (7. 113) 

 
where the negative sign is used to obtain physically realizable elements. The substitution maps 

0 toω ω= = ±∞  and 0toω ω= ±∞ = . Cut-off occurs when 0ω ω= ± . Applying the transform to 

the impedances of the prototype filter of figure 7.2, yields the high pass filter of figure 7.5 with the 
following correspondences: 

 

ω

ω0 ω1

A[dB]

A1

A0
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( )

( )

1
k

o o

o
k

o

C
g k Z
Z

L
g k

ω

ω

=

=
 (7. 114) 

 

 

 
Fig. 7.5 : Low pass filter prototype 

 

The strategy in this case is thus to perform the frequency transformation, compute the stage of the 
filter N and the g(k) coefficients for the equivalent low pass prototype, and do the transformation back 
in frequency and obtain the Ck and Lk using (7.14). 

 

7.3.2 Lumped element band pass filter 
 

The frequency transformation used in this case is given by  

 

 
2 1

1o o

o o

o ω ωω ω ωω
ω ω ω ω ω ω

⎛ ⎞ ⎛ ⎞
← − = −⎜ ⎟ ⎜ ⎟− Δ⎝ ⎠ ⎝ ⎠

 (7. 115) 

with 

 2 1

o

ω ω
ω
−

Δ =  (7. 116) 

 
The centre frequency ωo is defined as the geometric mean of ω1 and ω2 1 2oω ω ω= . 
 
Applying the transform to the impedances of the prototype filter of figure 7.2 yields the band pass 
filter of figure 7.6. 
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Fig. 7.6: Band pass filter 
 

 

with the following correspondence : 
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 (7. 117) 

 

 

7.3.3 Lumped element band stop filter 
 

The transform used in this case in the inverse of the one used for the band pass filter, and is given by:  

 

 
1

o

o

ωωω
ω ω

−
⎛ ⎞

← Δ −⎜ ⎟
⎝ ⎠

 (7. 118) 

 

with ωo and Δ defined in §7.3.2. Applying the transform to the impedances of the prototype filter of 
figure 7.2 yields the band stop filter of figure 7.7. 

 

 
 

Fig. 7.7 
 

with the following correspondence: 
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 (7. 119) 

 
 

7.4 Low-pass and high-pass filters using transmission line stubs 
 

As mentioned in the introduction, passive lumped element filters as the ones designed above work 
well at low frequencies. At microwaves frequencies however, the quality of lumped elements is not 
good enough to make good filters. Moreover, lumped elements may be obtainable only for a limited 
range of value. Thus at these frequencies, we use distributed elements such as open or short-circuited 
transmission line stub as reactive elements. In addition, the distance between reactive elements is not 
negligible at microwave frequencies, but has to be taken into account. We will use Richard's 
transformation to convert lumped reactance to transmission line stubs, and Kuroda's identities to 
separate filter elements by transmission line lengths. Because such additional transmission line 
sections do not affect the filter response, this type of design is called redundant filter synthesis. 

 

7.4.1 Richard's transformations. 
 

The transformation defined by  

 

 0tan tan
p

l
l

v

ω
ω

βΩ = =  (7. 120) 

 

maps the ω plane to the Ω plane, which repeats with a period of 2o

p

l

v

ω
ω

π= . This transformation 

was introduced by P. Richard to synthesize an LC network using open and short-circuited stubs. 
Indeed, if we replace the frequency variable ω by Ω, the reactance of an inductor can be written as 
(figure 7.8): 
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 tanLjX j L jL lβ= Ω =  (7. 121) 
and the susceptance of a capacitor as : 

 tanCjB j C jC lβ= Ω =  (7. 122) 
 

 

 
 

Fig. 7.8 : Richard's transformations 
 

These results indicate that an inductor can be replaced by a short-circuited stub of length βl and 
characteristic impedance L, while a capacitor can be replaced by an open-circuited stub of length βl 
and characteristic impedance 1/C.  A normalized filter impedance is assumed here (Z0 =1). The cut-off 

of the prototype filter occurs at a frequency  or  1o
o

ωω ω ω= = . To obtain the same cut-off for the 

Richard's transformed filter, we must have : 

 

 tan 1lβΩ = =  (7. 
123)  
 
Which gives a stub length of λ/8, where λ is the wavelength at the cut-off frequency. At a 
frequency which is the double of the cut-off, corresponding to a stub length of λ/4, an 
attenuation pole will occur.  
We see that Richard's transformation can be used to build a distributed element low pass 
filter, where the inductors and capacitors of the prototype filter are made of shorted and open-
circuited transmission line stubs. All stub lengths will be of λ/8 at the cut-off frequency.  
 
At frequencies away from cut-off, the impedance of the stubs will be different from the 
impedances of the lumped element prototype, and the filter response will no longer be 
identical to the response of the lumped element prototype. We should also note that there is a 
periodicity of 4ωo in the response of the stub filter.  

L

C
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O.C.

Zo=L

Zo=1/C

λ/8

λ/8
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7.4.2 Kuroda's identities 
 

We have seen above that lumped element band pass and band stop filters are made by cascading 
resonant ant antiresonant branches in series and in parallel. Unfortunately when we come to 
distributed element filters, we cannot realize at the same time two different types of microwave 
resonators. We can either couple them in series or in parallel, as is illustrated in figure 7.9 for a case of 
microstrip lines.  

 

 
 

Fig. 7.9 : Microstrip resonators coupled in series or in parallel 
 

 

We will thus use redundant transmission line sections to achieve a more practical distributed element 
filter implementation, by performing any of the following operations:  

 

• Physically separate transmission line stubs 
• Transform series stubs into shunt stubs, or vice versa 
• Change impractical impedances into more realizable ones 

 

This is done via the insertion of additional transmission lines which have a length of λ/8 at ωo. These 
lines are called unit elements.  

 

The four Kuroda identities performing these transformations are illustrated in figure 7.10. 
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Fig. 7.10 : The Kuroda identities, where n2=1+Z2/Z1 

 

The proof of these identities is left to the reader.  

 

7.4.3 Design of a low pass filter using stubs 
 

We want to design a low pass filter using stubs. We first compute the low pass prototype filter, and we 
then compute the corresponding lumped element low pass filter. Let us suppose that we obtain the 
filters illustrated in figure 7.11 
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Fig. 7.11 : Low pass prototype and lumped element version 

 

We then used Richards transformation to convert series inductors to series short-circuited stubs, and 
shunt capacitors to shunt open-circuited stubs, and we obtain the circuit depicted in figure 7.12.  

 

 
Fig. 7.12 Low pass filter with series and parallel stubs 

 
Now let us imagine we want to realize this filter in a microstrip technology. The series stubs would be 
difficult to realize in this technology, so we will use Kuroda's identities to convert them to shunt stubs. 
First, we add unit elements at each end of the filter circuit, as is shown in figure 7.13.  
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Fig. 7.13 : Low pass filter with unit elements at the end 

 

We apply then the second Kuroda identity to both ends of the filter, computing for both cases 
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 (7. 124) 

 
and we obtain the following filter :  

 

 

 
 

Fig. 7.14 : Low pass filter after transformation 
 

Which can be easily realized in microstrip technology, as is shown in figure 7.15 
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Fig. 7.15 : Microstrip line layout of a 3 stage low pass filter 

 

 

7.4.4 Impedance and admittance inverters 
An impedance inverter is an ideal quarter-wave transformer. A load impedance connected at one end 
is seen as an impedance that has been inverted with respect to the characteristic impedance squared at 
the input. Impedance inverters can be used to convert a band pass filter network of the type shown in 
figure 7.16 into a network containing only series tuned circuits. By using admittance inverters, the 
band pass filter can be converted into a network containing only parallel tuned circuits. Furthermore, 
by choosing the inverters correctly, all the inductors and capacitors can be chosen to have the same 
values. Thus impedance and admittance inverters enable us to use identical resonators, either series or 
parallel tuned, throughout the network. 

 

 
Fig. 7.16 : (a) impedance inverter used to convert a parallel admittance into an equivalent series impedance; (b) 

admittance inverter used to convert a series impedance into an equivalent parallel admittance. 
 

Consider the parallel admittance Yp(ω) with an ideal impedance inverter with characteristic 
impedance K connected on both sides as shown in figure 7.16. A short circuit at the output will be 
transformed to an open circuit in parallel with Yp. The input impedance is given by :  

K=1 K=1

Yp(ω) Zs(ω)

J=1 J=1

Yp(ω)Zs(ω)

a)

b)
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Thus the shunt element with two impedance inverters converts the shunt admittance into an equivalent 
series impedance Zs(ω)=Yp(ω). If Yp is a parallel tuned resonator with  
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it is converted into a series tuned circuit with  
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 (7. 127) 

with the inductance L in Henries having the same numerical value as the capacitance C in Farads. If 
we want to convert an admittance  
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 (7. 128) 

 

into a particular series tuned circuit with arbitrary inductance L , then we must choose K so that 
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or 

 
1

LK
C

=  (7. 130) 

 
The same considerations can be done for the admittance transformer depicted in figure 7.16 b), and we 
obtain finally:  
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 (7. 131) 

 
We will illustrate the use of inverters to convert the circuit shown in figure 7.17 into one with two 
identical parallel tuned resonators or one with two identical series tuned resonators. 

 

 
Fig. 7.17 : Use of inverters to convert resonators 

 

For the first case, we choose K such as  
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For the second case, we choose J such as :  
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Impedance and admittance transformers are ideal quarter-wave transformers. There is no basic 
difference in their inverting properties. The only distinction that we make is to use the symbol K to 
denote the characteristic impedance of the impedance inverter and we use J to denote the characteristic 
admittance of an admittance inverter. 

 

Impedance and admittance level changing can be accomplished by using different input and output 
inverters as shown in figure 7.18. For example, as in figure 7.18 a) the parallel admittance appears as a 

series element 2
1 pK Y at the left side of the port, and as a series element 2

2 pK Y at the right side of the 

port. In figure 7.18 c), the impedance level 1
1

L
C  of the resonator is changed to o

o
L

C  by 

changing the impedance of the inverters form K' to K, where K is chosen as:  
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From the terminals, the new circuit is equivalent to the old one. A similar transformation is shown in 
figure 7.18d).  
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Fig. 7.18 

 

7.4.5 Design of band pass filter using quarter –wave resonators 
 

It can be shown that a short-circuited stub which has a length of a quarter wavelength looks like a 
parallel resonant circuit (figure 7.19) 

 

K1 K2

Yp

J1 J2

Zs

a)

b)
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L1 C1 Lo Co

K K

1
' oLK K

L
c)

J’ J’

L1 C1 Lo Co

J J

d)
1

' oCJ J
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Fig. 7.19: Quarter-wave resonator 

 

Thus, quarter-wave short circuited transmission line stubs can be used as the shunt parallel LC 
resonators for band pass filters. Quarter-wavelength connecting lines between the stubs will act as 
admittance inverters, converting shunt stubs to series resonators. Such a filter is depicted in figure 
7.21, where both the stub length and line length is θ=λ/4 for the centre frequency of the pass band ωo. 
The characteristic impedance of the connecting lines is Zo, the impedance of the filter.  

 

 

 
Fig. 7.20 : Band pass filter using shunt short-circuited quarter-wave resonators 

 

For a narrow band filter, the response of such a filter using N stubs is essentially the same than that of 
a lumped element filter of order N. 

 

Design example:  

 

A certain band pass characteristic leads to the lumped element filter of figure 7.21, and we want to 
find its equivalent in the distributed form of figure 7.20 

 

 

Ln Cn Z

θ

Zon Z

...Zo Zo Zo Zo Zo Zo

θ θ

θθ θ

Zo1Zo2ZoN-1ZoN
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Fig. 7.21 

 

The equivalent circuit of a short-circuited transmission line stub can be approximated as a parallel LC 
resonator when its length is near 90°. The input admittance of a short-circuited transmission line of 
characteristic impedance Zon is: 

 

 cot
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=  (7. 135) 

 

where θ=π/2 for ω=ωo. If we let ω=ωο+Δω, where Δω<<ωo, then 1
2 o

π ωθ
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, which allows the 

admittance to be approximated as 
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for frequencies in the vicinity of the centre frequency. The admittance near resonance of the parallel 
LC network of figure 7.19 can be approximated as: 

C1'

L2' Zo
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C2'CN’LN’

Y

a)

L2 C2LN CN
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L1 C1
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where 21n n oC L ω= . Equating (7.36) and (7.37) gives the characteristic impedance of the 

transmission line stub in terms of the resonator parameters as:  
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Next, we consider the quarter-wave sections of line between the stubs as ideal admittance inverters, 
with J=1/Zo. Then, the band pass filter of figure 7.20 can be represented by the equivalent circuit of 
figure 7.21 b), which in turn is equivalent to the circuit of 7.21a).  Thus, with reference to the 
terminated (by Zo) circuit of figure 7.21 b), the admittance Y seen towards the load is given by:  
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where we have used the fact that 1 1 2 2 2
1L C L C

ω
= = . The admittance at the corresponding point of 

the circuit given in 7.21 a) can be found as:  
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The two results are equivalent for all frequencies if: 
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We use the fact that 1 1 2 2 2
1' ' ' 'L C L C

ω
= = and solve these equations for L1 and L2, obtaining:  
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We then use (7.38) and (7.19) to obtain the impedance of the two stubs: 
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 (7. 143) 

By extension, we can show that  
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These results apply only to filters having input and output impedances of Zo, and so cannot be used 
for Chebyshev filters with an even number of stages. 

 

7.4.6 Design of band pass filter using capacitive coupled quarter –wave resonators 
The filters described in 7.4.5 have often very low line impedances, which render them hardly suitable 
for use in microstrip technology. a related type of bandpass filter is proposed in figure 7.22. In this 
topology, short circuited shunt resonators are capacitive coupled using series capacitors. An N order 
filter will use N stubs, which are slightly shorter than λ/4 at the filter centre frequency.  
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Fig. 7.22: a bandpass filter using capacitive coupled quarter wave resonators 
 

Usually, the short-circuited stub resonators are made using sections of ceramic loaded coaxial lines, 
resulting in a compact design. To design this type of filter, we begin with the general bandpass circuit 
of figure 7.23 a. In this design, shunt LC resonators alternate with admittance inverters, which convert 
shunt resonators to series resonators. The extra inverters at the ends serve to scale the impedance level 
of the filter to a realistic level. Using an analysis similar to the one of § 7.4.5, the admittance inverters 
constants can be derived as (the complete derivation of the equations can be found in: G.L. Matthaei, 
L. Young and E.M.T. Jones, "Microwave Filters, Matching Networks and Coupling Structures", 
Artech House, 1980.) : 
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Similarly, the coupling capacitor values can be found as : 
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The admittance inverters are in a second step replaced by their equivalent π network (figure 7.23b). 
The capacitors of the equivalent network are negative, and they are combined in parallel with the 
capacitor of the LC resonator to yield a positive capacitor. The resulting circuit is depicted in figure 
7.23c. The effective resonator capacitor values are given by: 

 

 1, , 1'n n n n n n n nC C C C C C− += + Δ = − −  (7. 151) 
Finally, the shunt LC resonators are replaced with short-circuited transmission stubs, as shown in 
figure 7.22. The resonant frequency of the stubs are no longer ωo, because the value of the capacitors 
was corrected into to take into account the impedance inverters. This implies that the length of the 
resonators is less than the quarter of a wavelength at ωo, the filter centre frequency.  The 
transformation of the stub's length to take into account for the change of capacitance is shown on 
figure 7.23d. A short circuited length of line with a shunt capacitor at its input has an admittance of: 

 

 ( ), cotL o L
o

jY Y j C Y l
Z

ω β−
= + =  (7. 152) 

 
We can replace the capacitor with a short length of line Δl, and obtain the following input admittance: 
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the approximation being valid for βΔl << 1 . From (7.52) and (7.53), we can get the final length of the 
stub: 
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where ΔCn is defined in (7.61).  
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Fig. 7.23: Bandpass filters using capacitive coupled quarter wave resonators. 

 

7.4.7 Parallel-coupled transmission line resonator filters 
The band pass filter described above are unfortunately not well suited for a realization using 
microwave printed circuit technologies (microstrip lines, striplines or co-planar waveguides), due 
either to the low characteristic impedances of the involved transmission line sections, to the presence 
of short circuited stub and lumped capacitors which are always cumbersome to realize or integrate in 
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printed circuit technology. This is why for these technologies, yet another bandpass filter topology is 
preferred: the Parallel coupled transmission line resonator filter. The topology of such a structure id 
depicted in figure 7.24. 

 

 

Fig. 7.24: parallel coupled resonator filter 
 

It consists N (N is the degree of the filter) sections of resonators of length approximately equal to λ/2, 
which are cascaded through parallel coupling. An approximate equivalent circuit of the half wave 
resonators is given in figure 7.25.  

 

 

Fig. 7.25: equivalent circuit of half wave resonator 
 

Moreover, it can be shown (the details of the analysis are beyond the scope of this course, but can be 
found in : S.B. Cohn, "Parallel  Coupled Transmission Line Resonator Filters", IRE Transactions on 
Microwave Theory and Techniques, MTT-6, nr 2, April 1958), that an appropriate equivalent circuit 
for a pair of open circuited parallel coupled lines having a length of λ/4 is given in figure 7.26, with 
the following conditions, which are valid for a narrow bandwidth : 
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where Zoe is the characteristic impedance of the even mode of the coupled lines while Zoo is 
the characteristic impedance of the odd mode of the coupled lines. 

λ/2

βl=θ

Lr Cr

B=-Yosinθ



 

Microwaves  213 

 
Fig. 7.26 : Equivalent circuit of quarter wave coupled lines 

 
 

Thus, an approximate equivalent circuit of the filter shown in figure 7.24 is depicted in figure 7.27. 
The lumped element equivalent is shown in figure 7.27, which is valid for a narrow bandwidth close to 
the resonance. 

From this lumped element equivalent circuit, we finally get the rules linking the prototype filter to the 
printed circuit : 
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 (7. 156) 

where f2 is the upper edge of the passband and f1 the lower edge of the passband. 

 

The even and odd impedances of the coupled lines are linked to the width of the strips and the gab 
between lines by transcendental approximate formulas, which have to be solved numerically (see M. 
KIRSCHNING AND R. H. JANSEN, Accurate Wide-Range Design Equations for the Frequency-
Dependent Characteristic of Parallel Coupled Microstrip Lines IEEE TRANSACTIONS ON 
MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO 1, JANUARY1984). 

The length of the lines is obtained by computing the effective permittivity of the coupled lines, and 
knowing that each coupled line section has a length of a quarter wavelength.  
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