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1. Introduction and Applications

1.1 Scope

The scope of this course is to familiarize the students with some fundamental aspects related to
microwaves. The following topics will be treated:

Applications of microwaves

Maxwell's model (brief reminder)

Transmission line theory, and modal transmission
Microwave network analysis

Microwave components

Introduction to microwave measurements
Introduction to microwave sources and amplifiers
Introduction to microwave filters

1.2 History

Electromagnetic theory and Microwaves are often considered being mature scientific disciplines, as
their fundaments were built by James Clerk Maxwell during the second half of the 19™ century.
Moreover, they had a tremendous growing during the Second World War due to the research done on
radar applications.

Nowadays, work in these fields is very active again, as the boom in telecommunication and data
transmisssion has reactivated the interest in microwaves, most of wireless links being done in the
microwave frequencies.

1872 : Publication of James Clerk Maxwell's "A Treatise on Electricity and Magnetism".
This work unifies all the previous work done on electricity, magnetism and
electromagnetism and summarizes the obtained results in four equations.

1887 : Heinrich Hertz performs the first demonstration of a wireless link. To this aim, he
built an experimental system using a spark generator coupled to a dipole antenna on
the emission side and a coil on the receiver side. These first experiments were done at
a frequency of 37 MHz and 1 GHz, and were enthusiastically received by the
scientific community, as it was the first experimental validation of Maxwell's theory.
The interest however remained confined to academic circles..

1885-1887 : Publication of Oliver Heaviside's comments on Maxwell's work. These
comments, introducing the vector notation, made Maxwell's theory more accessible
to the scientific community.

1887 : Lord Rayleigh proves theoretically the possibility to transmit through a waveguide.

Microwaves



1901 :

1903:
1920 :
1921 :

1930 :

1930 :

1936 :

1937 :

1938 :

Marconi repeats Hertz' experiments, and then decides to work at much lower
frequencies. He succeeded in doing the first transatlantic link on the 12" of
December.

First regular wireless telegraphic link between England and New Scotland..

First tube amplifiers (triodes) working above 1 MHz.

The 12th of December (20 years exactly after the first link performed by Marconi),
radio amateurs perform the first transatlantic link in medium waves, at 1.5 MHz
(nearly short waves). This was possible thanks to a new receiver, the super
heterodyne receiver.

First use of Radar in VHF band (54-88 MHz).

The crystal detector replaces the needle detector

Rediscovery of the waveguide by two scientists independently : G.C. Southworth and
W.L. Barrow both presented a paper on waveguide propagation at the same
conference.

Invention of the klystron by the Varian brothers. This tube can be used as a generator
or an amplifier, and works in the microwave range.

Motorola develops the first portable phone.

1939-1945 : Comeback of microwaves, thanks to RADAR

1948 : Principles of distributed filter theory by Richards.

1949 : First use of ferrites for the fabrication of non reciprocal components (isolators,
circulators)

1950 : First multiple cavity filters, synthesized using Butterworth of Chebyshev
characteristics.

1950 : Development of planar microwave transmission lines : first the striplines, then the
microstrip lines and the coplanar waveguide

1950 :  Apparition of TWT (Traveling Wave Tube) amplifiers and of masers, used as low
noise amplifiers.

1960 : First transistors and integrated circuits in microwaves.

1960 : First passive satellite "Echo 1", a metallized balloon of 30m of diameter, which was
used as a reflector at an altitude of 1600 km.

1962 : First active satellite, Telstarl, which enabled transatlantic telediffusion. It has an
elliptic orbit varying between 950km and 5650 km.

1965 : First geostationary satellite, "Early Bird or Intelsat 1", having 240 phone channels for
a satellite weight of38 kg.
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1970 : Beginning of MMIC (Monolithic Microwave Integrated Circuits), allowing a better
integration of microwave circuits.

1970 :  Apparition of first CAD tools for microwaves.

2004 : - Hundreds of geostationary satellites.
-Hundred of LEO and MEO satellites
- 3rd generation of cellular phone

- Wireless data transmission

2015 : - Internet of things
- Big Data

- Wearable connectivity

1.3 Definition of the Microwave band

The electromagnetic spectrum comprises all frequencies between zero and infinity. It is traditionally
divided in bands covering a decade, meaning that the upper limit of a band equals ten times its lower
limit. These limiting frequencies are chosen in a way that their associated wavelength is a power of 10,
when expressed in meters.
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1.3.1 Electromagnetic spectrum

A/m f/Hz
_ Gamma rays
L1018 X rays
10-9 —
—/_ Ultraviolet
1015
10-6 —
I Infrared
L1012
10-3—
= Microwaves
L 109
101 —
L Television
=106
103 — .
— Radio

Fig. 1. 1 : Subdivisions of the electromagnetic spectrum

Visible

Band Frequency Wavelength Applications
VLF 3-30kHz 100 -10 km Navigation, Sonar
Very Low Frequency
LF 30 - 300 kHz 10 -1 km long wave
Low Frequency radio
MF 300 kHz - 3 MHz 1 km - 100 m Goniometry,
Medium Frequency radio AM
HF 3-30 MHz 100-10m CB, short waves,
High Frequency 7 air traffic
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VHF 30-300MHz 10-1m _Radio FM, TV, radar,
Very High Frequency mobile
- communications
UHF 300MHz-3GHz  Tm-10em " Cellular phone,
Satellite, TV,
Ultra High Frequency
radar
SHF 3-30GHz 10-1cm Satellite, hertzian links,
Supra High radio astronomy
Frequency
EHF 30 -300 GHz 10 - 1 mm Satellite, radar,
Extremely radio astronomy,
High Frequency military applications

Fig. 1. 2 : Wireless communication frequency bands

The bands between 300 MHz and 300 GHz are called microwaves. They are characterized by the fact
that the size of circuits and components is of the same order of magnitude as the wavelength.

In comparison, at the power network frequency of 50 Hz the wavelength is of 6000km, while at visible
optical frequencies the wavelength is in the order of 0.6 micrometers.

The microwave band is subdivided in the following way :

Band Frequency

T 1-2 GHz

......................... S 7.4 GHz

......................... c 4-8 GHz
X 8-12 GHz
------------------------------- Ku 12-18 GHz
K 18-26 GHz
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Ka 26-40 GHz

Q 40-60 GHz

E 60-90 GHz

Fig. 1. 3 : Microwave sub-bands

We have seen about that the microwaves band was defined according to frequency. Alternatively, we
can also define it according to period, wavelength or energy. We have indeed the following

equivalences :

Frequency (f) 300 MHz - 300 GHz
Period (T) 3ns—3ps

Wavelength (1) I m—1mm

Energy (hf) 1210%eV-1210"eV

These different points of view in the definition of the microwave band will have different
consequences on their properties, as will be seen in the next section.

1.4 Properties of microwaves

1.4.1 Bandwidth

The absolute bandwidth of a transmission system is directly linked (proportional) to the carrier
frequency. If the latter is in the microwave area, i.e. in the upper part of the electromagnetic spectrum,
the bandwidth will be higher than if we work at lower frequencies. The same is of course also true for
transmissions using optical fibers.

1.4.2 Transparency of the ionosphere

The ionosphere is formed by several ionized layers, which surround the Earth at an altitude between
50 and 10000 km. The propagation of electromagnetic waves inside the ionosphere is similar to the
propagation in a waveguide. Signals at frequencies below some tens of MHz (cut off) are partially or
totally reflected. Signals having a higher frequency can cross the ionosphere, and suffer a distortion
which becomes smaller as the frequency increases. In the range of microwaves, the distortion is so
slight it is negligible.

An effective dielectric permittivity is associated with uniform plasma. It is given by :

Microwaves
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(1. 1)

With

N: number of ions/volume
q: charge of the electron
m: mass of the electron

g0 = 8.854 10-12 As/Vm : permittivity of free space.

We can distinguish three regions :

D o<< ®p

The effective permittivity of the medium tends towards -oo, and the characteristic impedance of the

y7,
Zmilieu =J;

is imaginary and close to 0. An incident wave will thus be totally reflected (Figure 1.4)

/\ Plasma

0 0

medium, given by

0o<o®

<<
® (DP

Fig. 1. 4 : total reflection due to ionosphere at low frequencies

1I O =0p

The effective permittivity of the medium is zero, thus the wave number k of the wave is also equal to
Zero :

Microwaves
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k= oyeu

The wave is absorbed by the plasma (figure 1.5)

penetration
and absorbtion

absorbtion y 4 plasma

Fig. 1. 5: absorption of a wave by the plasma

1) o >> ®p

The effective permittivity of the plasma tends towards unity, and the wave is nit disturbed by the

plasma (Fig. 1.6)

air

plasma

w>>
p ® > o

air

Fig. 1. 6 : High frequency wave undisturbed by plasma.

1.4.3 Partial transparency of the atmosphere
The gases composing the atmosphere and the different suspended molecules do not affect signals
below 10 GHz. The first absorption ray (24GHz) is corresponding to the presence of water.
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Fig. 1. 7: absorption due to atmosphere

altitude

To the absorption due to gazes present in the atmosphere, we must add the effect of clouds, rain, snow
and hail (Fig. 1.8)

f>10MHz

___-----------------_--
-

Inosphere free electrons

‘-_------- R L T,

f<10MHz

ground surface

Fig. 1. 8: effect of atmosphere and ionosphere on microwaves

1.4.4 Inhomogeneity of the atmosphere

The dielectric constant of the earth atmosphere varies slightly with the altitude, as the air becomes less
dense. The refraction index of a typical "average" atmosphere is depicted in figure 1.9. for light and
microwaves, and is given in (1.2).

Microwaves
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5
2014 79p_11v+3.8 107v

107° 1.2
T T T2 (1.2)

where p is the barometric pressure in millibar, T the temperature in Kelvin, v the water vapor pressure
in millibar and n the refraction index.

altitude

ondes radio

1 Ondes

lumineuses
| | >

100 200 300 (n-1)*106
Fig. 1. 9 : inhomogeneity of the atmosphere

The effect of this inhomogeneity is that microwaves do not travel along a straight line, but are curved
as they gain altitude. Indeed, let us suppose a slab of atmosphere which is made of three layers, having
each a different refraction index (Fig. 1.10) :

r1 \ \

rlsinel"=rosine0

Fig. 1. 10: inhomogeneous atmosphere

Microwaves
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Let us consider the spherical interfaces given by r, and r;, which separates the three regions. Snell's
law tells us that :

NgSinfy =n;sind;’

. . (1.3)
npsiné, " =n,sin6,
Moreover, geometry tells us that :
fsing "=rysing;’ (1. 4)
If combine those relations, we get
Nolp SINGy = My sin @) ' =Ny sin @) " =Ny, sin 6, (1.5)
which can be generalized for a continuously varying medium into :
nrsin @ = Nyl sin 6, (1. 6)

The practical significance of this for engineering purposes is, that in the planning of a Hertzian link
(see applications), the curvilinear path of the wave through the air is replaced by a straight line, but
where the Earth is considered to have a fictive radius of

Rr =—R (1.7)

Thus, if we consider the case depicted in figure 1.11, the two path lengths are considered equivalent.

S ) G — )
&
~ ~
$ P
° S
&/ i
@ N
a
(b)

Fig. 1. 11 : Real versus fictive Earth radius.

More generally, we can define an equivalence between a rectilinear and a curved path for
different atmosphere configurations in the following way:

Rr =kR

with k given in the following table

k zone weather
1.33 temperate without fog
1-1.33 arid mountainous without fog

0.68-1 temperate light fog

Microwaves
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0.5-0.68

littoral

heavy fog

0.4-0.5

tropical, water

fog and rain

1.4.5 Electromagnetic noise

The noise power received by an antenna pointing towards the sky is minimal between 1 and 10 GHz.

In this band, the equivalent noise temperature is below 10 K. The corresponding noise power received
is obtained by multiplying the noise temperature by Bolzmann's constant (kz=1.3804 10> J/K) and by

the bandwidth of the receiver. This means that it is in the band between 1 and 10 GHz that we will be

able to detect the signals with the smallest amplitude, thus having the most sensitive receivers. For
instance, signals used for deep space observation use a band close to 3 GHz.

température
d’antenne T3/K

108

10° A _
A, soleil
R N
|
bruit| galactique |
1074
0°| = horizon
10°4
10° |
30° |
90° =|zénith
10 +
bruit
atmosphérique
1 | -
0, 1 10 100 f/GHz

1.4.6 Antenna directivity

Fig. 1. 12 : Antenna noise temperature

The antenna beamwidth is proportional to the wavelength divided by the largest dimension of the

antenna. For the same physical dimensions, an antenna will be more directive at higher frequencies.

Microwaves

16




>
>

Fig. 1. 13 : Point to point link (Hertzian link or satellite link) using microwaves

Fig. 1. 14: omnidrectional Radio diffusion using ultra short waves
Indeed, in a first approximation the 3dB Beamwidth of antenna is given by

A
5 (1. 8)

where o is the beamwidth, A the wavelength and d the largest dimension of the antenna.

o>

|

1/2

Yo

Fig. 1. 15 : Half power beamwidth

1.4.7 Interaction with matter

The absorption of electromagnetic waves by matter depends on the frequency. In particular, water
absorbs microwaves over the entire band, a property which allows applications like microwave heating
or the thermal treatment of certain illnesses.

Microwaves
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1.4.8 Non ionizing radiation

The molecular cohesion energy is much larger than the photonic energy in the microwave band. This
means that a photon in the microwave band is not able to modify a chemical link in a molecule, by
inducing a photoelectrical effect. Microwave radiation is thus non ionizing ( in comparison, X rays
which have a much larger photonic energy can produce ionization of the matter).

1.5 Applications

1.5.1 RADAR

RADAR stands for RA Detection And Ranging. It is based on the use of the echo produced by an
obstacle located on the trajectory of an electromagnetic wave. In most cases, the system is as depicted
on the schema of figure 1.16.

B

TX R
Rx
\
Detection
Analysis
Results

Fig. 1. 16 : Principle of RADAR

where the received power is linked to the transmitted power by the RADAR equation :

P _ 92/120' (1.9)
Pt (4z) R* '
7z) R

where P, is the power at the receiver, Py the transmitted power, g the antenna gain, A the wavelength, G
the equivalent radar surface and R the distance to the target.

The equivalent radar surface depends on the shape of the object and its material. It is usually also
frequency dependent : Fig 1.17 gives the equivalent radar surface of a metallic sphere- We see that

Microwaves
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when the sphere is much larger than the wavelength, its equivalent radar surface is equal to its surface
projected on the plane normal to the direction of propagation. On the other hand, when the object is
much smaller than the wavelength, the radar signal hardly sees the object, thus its equivalent radar
surface is very low. In the area where the object is of the same size than the wavelength, we can see
that the behavior of the object shows resonances.

o/ naz 4

10

resonances

. /\ OPTICAL REGION
N\
\_/ N_"

01 | MIE REGION
0.01 |
RAYLEIGH REGION
0.01 0.1 1 10 a/\

Fig. 1. 17 : Equivalent RADAR surface of a perfect conductor sphere

It is not possible to find closed form formulas for most of radar targets. For some canonical structures
however, it is possible to find analytical expression for the equivalent radar surface in the optical
region. Some examples are shown in figure 1.18.

Microwaves
19



PEC targets optical limit of effective radar
surface

sphere —> Q nal

cone (axial 22tan?0
incidence) - - T A

\
a-’
P

. RN
disk 4 / rnacot20J, 2(4nall sin 6)

-

surface A
large planar > 47A2
surface -
A

AN

0\ ak cos6 sin2(2nL 1/A sing)
circular cylinder . ")

271 sin<0

radius a ‘L/V

Fig. 1. 18 : optical limit of equivalent radar surface for some canonical perfect electric conductors

Pulse radar
For the measurement of the distance to the target, we use a pulse modulation of the radar (fig. 1.19).
The distance to the target is simply given by

R= _Co;ar (1.10)

where R is the distance, t,, the time between the emission of the pulse until the arrival of the reflected
pulse and c, the velocity of light in free space. The advantage of pulsed radars is that the peak power
can be much larger than the average power used by the system (typically a factor of 1000). The

Microwaves
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frequency of repetition of the pulses f; is set by the longest distance the radar has to detect (see fig.
1.19).

tar t

=1,
- >
Fig. 1. 19 : pulse radar

Chirp radar

For the measurement of short distances (automatic door opening systems, steering aids), another type
of radar, the chirp radar is used. The principle of this radar system is depicted in figure 1.20. It consists
of a frequency sweeper connected via a circulator to an antenna. The frequency of the signal emitted
by the antenna changes thus linearly with the time. The signal reflected back by the target received by
the antenna will thus have a different frequency than the signal emitted by the antenna at a specific
instant of time (see fig. 1.21). This returning signal is mixed with the transmitted signal, and the
difference in frequency is detected, giving a measure of the distance of the target.

Microwaves
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Radar "'chirp"

frequency sweeper

or synthsizer circulator

mixer

|
S — >
amplifier target

lowpass filter

loud speaker

co tar COAf
R= =
2 2m
Fig. 1. 20 : Principle of the chirp radar
f2 / |
|
f1 :
/ |
o |
| | >
| tl tl+tar |
| |
- g
Tr

Fig. 1. 21 : Transmitted and received signals at the antenna of the chirp radar
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Doppler effect and Doppler radar

The Doppler ef fect is the shift in wavelength, thus in frequency, due to a relative movement between
a source and a receiver. This phenomenon was first described four acoustic waves by Christian
Doppler in 1848.

Let us consider the four cases of an acoustic wave due to a point source shown in figure 1.22 :

a) b)
@ @ |
c) d)

Fig. 1. 22 : lllustration of the Doppler effect for an acoustic wave

The first case illustrates an immobile source, on fig 1.22b) the source is moving with a velocity which
is lower than the speed of sound, on figl.22 ¢) the source is moving with a velocity equal to the speed
of sound while on fig1.22d) the velocity of the source is larger than the speed of sound. In the second
case, we see clearly that an observer towards which the source is traveling will perceive a signal with a
wavelength shorter that the effective wavelength of the emitted signal, while in an observer placed in a
position such as the sound source moves away from him will perceive a signal with a larger
wavelength. The first observer will thus perceive a higher frequency, while the second a lower
frequency. The frequency shift is directly correlated to the relative velocity of the source and the
receiver.

Microwaves
23



This phenomenon exists of course also for electromagnetic waves, but in this case, we will have only
the situations describes in figs 1.22 a) and b), as the velocity of the source can not be larger than the
speed of light.

The Doppler effect in electromagnetic waves is used for velocity measurement, anti intrusion systems,
etc.

Doppler radar

Let us consider the situation of figure 1.23, where a static emitter is transmitting a signal of frequency
f, towards a receiver travelling with a certain velocity V.

k

o
receiver O———»
v

emitter
Fig. 1. 23 : Doppler radar

The frequency of the signal perceived at the receiver is given by :

c

Conversely, consider a moving emitter is transmitting towards a static receiver as presented in
fig 23.b.

fr =1, (1+Xcosa] (1.11)
O receiver

o

emitter Vv
Fig. 1. 24 : Doppler radar

The frequency of the signal perceived at the receiver is given by :

Microwaves
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where c is the speed of light.

1.5.2 Telecommunication

Microwaves are often used for telecommunication links, either between two fixed terrestrial antennas
(Hertzian links), for space applications or for mobile communications. Indeed, for the two latter
applications, waves are the only alternative.

In a transmission in free space, between two fixed antennas, the received power is given by Friis'
formula :

1 2
R =P10i9 (_szj (1.12)

where P, is the received power, P; the transmitted power, g;,g, the antenna gains, A the wavelength and
L the distance between the antennas. The term in brackets is called the link path loss, and is caused by
the spherical wave nature of electromagnetic waves propagating in free space.

As we have seen in §1.4.4, the atmosphere is slightly inhomogeneous, which leads to a slight change
in permittivity with altitude at microwave frequencies. This is taken into account in the planning of
Hertzian links (point to point links on Earth) by substituting the radius of the earth by a corrected
value when computing the length L of the link.

Another characteristic that has to be considered when planning point to point Hertzian links is the fact

the propagation takes place over the Earth. Moreover, other obstacles (mountains, trees, buildings, etc)
can perturb the transmission. The reflected wave will arrive with a different phase to the receiver than

the direct wave, as the length of these paths is usually different (figure 1.24).

Microwaves
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DIFFRACTION ON OBSTACLES

R

EARTH
Fig. 1. 25 : Diffraction on the Earth

In order to avoid destructive interference between the direct and the reflected waves, Hertzian links are
planned such that there is no obstacle in the link that would yield a reflected path which has a path
length difference of half a wavelength with the direct path, as a difference of half a wave length would
lead to a reflected wave being in phase opposition with direct path (destructive interference). This
destructive interference will of course also happened for path length differences of 3A/2, 5A/2, etc., but
as the path length of the reflected wave becomes much longer than the path length of the direct wave,
the former will be sufficiently attenuated with respect to the latter to avoid a complete destructive
interference.

We want thus to avoid to have obstacles such that (see fig. 1.24)

Ra|+[Rel-[R| =% (1. 13)

which is the equation of an ellipsoid of revolution : The Fresnel ellipsoid. From this equation, the
height of the antenna masts such that the ellipsoid is empty of obstacles can be determined (figure
1.25)

Microwaves
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1st Fresnel ellipsoid : h0= L 2

Fig. 1. 26 : Fresnel ellipsoid

In the case of mobile communication, it is not possible to avoid the reflection of the obstacles. Multi
path communication is the rules, and different models exist to approximate the characteristics of the
channel according to the environment : urban, suburban or countryside.

1.5.3 Other microwave applications

. Microwave heating

. Material characterization
. Radiometry

. Remote sensing.
Microwaves
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2. Maxwell's model: short summary

In this chapter the basics of Maxwell's model necessary for the following of the course will be
summarized.

2.1 Definition

2.1.1 Electric Field E

A motionless particle with an electric charge q sustains an electrical force Fe called electrostatic force
due to all other electrical charges. This force is proportional to g, thus the ratio Fe/q is independent of
the considered particle, but indicates a local property of space. This property is called the electric field:

Fe(t, r)/a=E(t,r) [V/m] (2.1)

The electrostatic force and the electric field are vector quantities, which depend on time and position.

2.1.2 Induction field B

In addition to the electrostatic force, a moving loaded particle sustains a magnetic force Fm. This
force is orthogonal to the velocity and to another vector property of space, called the induction field
B(t,r). :

Fm(t,r)/q = wv(t,r) xB(t,r) [V/m] (2.2)

The dimension of the induction field B(t,r) is the tesla [T = Vs/m®].

The magnetic force produced by the induction field B on moving charge is the basis for all
electromechanical conversions (motors, generators, etc.)

2.1.3 Electric charge density
The electric charge can be a point or distributed in space. The following four charge densities exist:

q [C=As] point charge

ol [As/m] line charge density
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Ps [As/m*]surface charge density
p [As/m’] volume charge density

2.1.4 Electric current density
In some media, the electric charges may move freely. The application of an electric force leads to a
motion of the charges, which creates an electric current, whose density is defined by :

L= av; [As/m’] (2.3)
i

The summation ports on all the types of charges particles moving in the considered medium. In many
situations, it is the mean velocity v; and not the acceleration which is proportional to the electric
field. This is due to collisions between the particles. We define the conductivity o [S/m]

J(tr)=oEt,r) [A/m?] (2. 4)

This is Ohm's law. We find free particles in classical conductors (metals), semiconductors, salt
solutions, plasmas and electric arcs.

2.1.5 Surface current density Js

A surface charge density p; can also move, producing a surface current density Jy(r,t). A surface
current can flow on the surface between two different media, in particular when one of the media is a
perfect electric conductor.

2.1.6 Dielectric properties

In insulating media, the charges are bound to the atoms and molecules. When an electric field is
applied, the charges sustain a force but are tied by the atom's cohesion forces. They can thus only
moves slightly. Small dipoles form then in the medium, producing a polarisation field P(t,r), which
depends on the applied electrical field. The combined effect of the electric field and the polarisation is
called electric flux density.

D(t, r) = gE(t,r)+P(t,r) (2.5)

where £,=8.854'10"? is the dielectric constant. In free space, and by extension in air, there is no
polarisation.
In a lossless, isotropic and linear medium, the polarisation is a linear function of E(r, t). We can thus
write:

D(t,r) = ¢E(t,r) = gy&,E(t,r) (2.6)
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where ¢, is the relative permittivity of the medium.

2.1.7 Magnetic properties
The magnetic properties of materials result of a quantum property of the electron, called magnetic
spin, which can be positive or negative.

In most elements, the number of positive spins equals the number of negative spins and the considered
medium does not have any magnetic properties. In some materials, the so-called ferromagnetic
materials (iron, nickel, cobalt, some rare earths, their oxides and their alloys), the numbers of positive
and negative magnetic spins are different. The resulting magnetic moment yields a magnetization
moment M(t,r). The magnetic field is then defined as:

B(t,r) = u[HE )+ M ()] (2.7)

where py=4110" Vs/Am. In free space and non ferromagnetic materials, there is no magnetization. In
a lossless, isotropic and linear medium, the magnetization is a linear function of the magnetic field.
Thus:

B(t,r) = s H(t, 1) (2.8)

where p, the relative permeability of the medium.

2.1.8 Properties of vacuum
Vacuum, and by approximation air, are linear. There is neither polarization nor magnetization, and
their relative permittivity and permeability are equal to one.

The constants €, and i, are linked by :

:00;3-108 [m/s] (2.9)

1
Yéolto

which yields the free space light velocity, and

/ﬂ =7, =1207=3766 [Q] (2. 10)
)
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which yields the characteristic impedance of free space.

2.2 Maxwell's equations

2.2.1 In time domain
The four vector fields defined above are independent. They are linked by Maxwell's equations in all
points which belong not to an interface between two media:

Vx E(t,r):_%t’—r) V.D(t,r) = p(t,r)
(2.11)
VxH(t,r):g;l’—r)JrJ(t,r) V.B(tr)=0

If we take the divergence of the second equation and use the third, we get the continuity equation:

%t’r)JrV-J(t,r):o (2.12)

2.2.2 In frequency domain

In this course, we will consider time harmonic waves. Indeed, even non harmonic phenomena like
transients are often studied by decomposing the time domain wave in its frequency spectrum using
Fourier's transform. For a sinusoidal wave of pulsation = 27xf, the time dependence is of the type cos
(ot +¢) and we can write

A cos(ot +¢) = Re [Aeit exp (jot)] = V2 Re [Leit exp (jot)] = VZRe [Aceit exp (jot)] (

2 2.13)

A is the peak value and A, = A/2is the effective value.

The true time dependent physical values f(r.t) (f=E, D, H, B, J,p) are replaced by complex time
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f(t,r)=\/§Re&)ej‘“t] (2.14)

The factor \/E is introduced in the definition in order that the modulus of the phasor corresponds to
the effective value of the signal. In some textbooks, this factor is not introduced in the phasors's
definition. The norm of the phasor is then the peak value of the signal, and a factor ¥ appears in
power and energy related formulas.

The introduction of phasors allows replacing time domain derivation by a multiplication by jo.
Maxwell's equations in phasor notation become:

VxE(r)=-joB(r) V-D(r)=p(r)
- 2.15
VX H(1)= joD()+ 3) V-B)=0 >
and the continuity equation :
V-J(N+ jop(r)=0 (2.16)

From this point on, we will always work in the frequency domain, and in order to simplify notation
phasors will not be underlined anymore.

In this course, we will limit ourselves to linear media. We have seen that in this case

where now ¢ and p are two constants defining the medium (permittivity and permeability), which can
in general be frequency dependent and complex.

e=¢-je" ;5 p=p-ju" (2. 18)
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A complex value for € implies, when we transform back to time domain, that D(r,t) et E(r,t) have the
same pulsation o but are not in phase. Moreover, if Im(g) < 0, D is late with respect to E. A negative
imaginary part of ¢ is linked to causality (Kramers-Konig relations which are similar to Bode's
relations in circuit theory) and correspond physically to the existence of losses in the medium. The
same consideration can be done for B, H. As an example water at 1 GHz has .= (80 —j10), p,. =1.

Finally we must note that the pulsation of an electromagnetic phenomenon is unchanged by a linear
medium.

Relations (2.17) imply that only two vectors E, H, are necessary to describe an electromagnetic
phenomenon in a linear medium. We can thus rewrite Maxell's equations as :

V x E=-jouH VE=p/e
VXH:J‘FjQ)SE VeH=0 (219)

2.3 Boundary conditions

In presence of a boundary separating two different media #1 and #2, Maxwell's equations must be
completed by the following boundary conditions (Fig 2.1)

n  Milieu #2

Milieu #1

Fig. 2. 1: Boundary conditions

for the tangential components
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n-[enEr —&2E2]= o5 N-[uaHL —upHR]= 0 (2.21)

for the normal components. n is the unitary vector normal to the surface pointing from medium #1 to
medium #2, Jq is an eventual surface current [A/m] exiting at the interface and p; is the surface charge

density which my exist between the media. .

2.4 Electric and magnetic energy
The following definitions are valid for time harmonic fields:

we=(1/2) eE°E [J/m3] : Mean value of the electric energy density at one point
W = (1/2) uHeH  [J/m3] : Mean value of the magnetic energy density at one point
S=E xH" [W/m2]: Poynting vector ( mean value of the power flux at one point)

The integration of Maxwell's equations over a volume v, enclosed by a surface S yields Poynting's
theorem:

fdss-ﬁ - jmf dV(We+wm)=-fdv JE , [w]
S v v (2.22)

where N is the unitary normal vector to s pointing towards outside. The first term to the left is the flux
of the Poynting vector, i.e. the power escaping from the volume through the surface s. The second
term on the left side corresponds to the reactive power in the volume. The sum of those two powers is
equal to the power given by the current sources.

2.5 Potentials

2.5.1 Magnetic vector potential

Knowing that the divergence of a rotational is always identical to zero and that the divergence of the
induction field B(r) is zero, we define the magnetic vector potential in the following way :
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V.-VxA=0and V-B=0, thus B=VxA (2.23)

This relation defines the magnetic vector potential short to an irrotational factor. We may thus replace
A by A + VO where @ is an arbitrary function, as the rotational of a gradient is always equal to zero.
On have thus a certain degree of freedom in choosing the definition of A.

2.5.2 Electric scalar potential
Combining (2. 24) with Maxwell's first equation, we get :

Vx(E+joA)=0 (2. 25)

As the rotational of a gradient is always zero, we can define a scalar function V such that :

E+joA=-VV (2. 26)

This function is called electric scalar potential and is defined short to a constant. We have chosen a
negative sign, because the convention states that the field lines go from the positive potential to the
negative potential

2.6 Wave equation

2.6.1Source and induced currents
In all electromagnetic problems, we admit the existence of source currents Jsyc which are not modified

by the fields they create or by any other field. These sources generate the electromagnetic excitation
fields. If any object is placed close to these excitation fields, they will produce induced currents Jing

on the object. In turn, these induced currents in the object will generate diffracted fields. The total
fields are the sum of the excitation and the diffracted fields.

There is no physical difference between source currents and induced currents, as in both cases they are
merely moving electrons. We will however establish a conceptual difference, subtle but essential :
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* Jsrc 1s a known imposed current. it is not affected by the existing fields. It is the fundamental

source of the problem.

* Jind is a current depending on the total field, in general unknown.

In Maxwell's equation

VxH=joeE +J

the current J is total current and depend thus on the fields. We want to put in evidence the field
independent part of the current, which will play the mathematical role of the inhomogeneous term in
the differential equation. We write thus J = Jsrc + Jing where Jgrc is the known "source" part
independent of the field and Jjng is the induced part. For object made of linear materials, this induced

current is linked exclusively to the total electric field via Ohm's law : Jijng= oE . We can then write :

joeE+J=jocE +Jing TJsrc =(joe+ o) E +Jgc =joerE +Jsrc (2.27)

and we obtain finally Maxwell's equation in the wanted form:

V x H = :j(DSTE + ‘]SFC (2 28)

where a global permittivity has been introduced.

eT=¢-jo/o. (2.29)

V.E =p/e is replaced V.E = pgc/eT in an analogue way.

2.6.2 Maxwell's equations far away from the sources
In this course we shall focus on the propagation phenomena that occur when the signal has quit the
generator (source) and propagated towards a receiver. Thus, we will consider a medium without
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sources and write Maxwell's equations in the following way, which we will often use during this
course:

V xE=-jouH VE=0

However and in order to simplify the notation, the permittivity will be write as € instead of €T,

implicitly meaning that this complex value takes into account not only the dielectric losses but also an
imaginary part 6/ in the presence of ohmic losses.

2.6.3 Wave equation
We take the rotational of the two first Maxwell's equations, and using vector calculus we show that in
a source free region the electric and magnetic field satisfy the following wave (or Helmoltz) equations:

VE+ousE=0 ; V’H+w’ueH =0 (2.31)

or in compact notation

(VHE =0 ; (VHK)H =0 (2.32)
For a given medium and frequency, k = o\(ue) is a complex constant called the wave number.

2.6.4 Plane waves

The simplest solution to the wave equations in an infinite unbounded medium is the electromagnetic
plane wave, whose fields are given by:

E(r)=Egexp(-jka-r), or E(rt)= \/EEO cos(wt—kA-r) (2.33)

N being the unitary vector in the propagation direction. The product of kn, written K, is sometimes
called the propagation vector. The propagation velocity of a wave is given by
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=—= = (2. 34)
o Jue s

where c is the free space light velocity. The associated wavelength is then given by

A=2n/k =v/f (2. 35)

Plane waves are characterised by the fact that the three vectors E, H and k (propagation vector) are
mutually orthogonal and form a direct system of reference. E x H is in the direction of k. Moreover,
the phase of E and H are constant on planar surfaces, which are named equiphase planes, and are
orthogonal to the direction of propagation of the wave.

Example:

Lets define a Cartesian system of reference along E, H and K respectively, so that the only non-zero
components of the fields and the wave vector are Ex, Hy and kz. The wave equation becomes:

2
d—EzX+k2EX =0
Z (2.36)

The solutions to this equation are linear combination of elkZ et eJKZ. Let consider the solution

_ — jkz
Ex = Ege (2.37)

which is a wave travelling in the positive direction of z. The associated magnetic field is obtained by

jouH=-VxE=Y jk E,

-,
& (2.38)

The proportionality factor between the two fields has the dimension of impedance. It is the
characteristic impedance of the medium.
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Lo = £ In free space:Z, =120z = 377 (2.39)
&

This quantity has for radiating waves the same role than the characteristic impedance for transmission
lines.

The fields in time domain are given by
Ey = Ej cos(mwt — kz)

E
Hy = Z—jcos(a)t —kz)

(2. 40)

In a lossless medium (free space for instance), the Poynting vector is purely real and directed along k.
The transmitted power density is equal to

(2. 41)

2.6.5 Spherical waves

Another very useful solution to the wave equations is obtained by resolving the latter in spherical
coordinates. The obtained solution is then called spherical wave, and its equiphase surfaces are
spheres. This means that, if the origin of a spherical coordinate system is placed on the source of a
spherical wave, the propagation is radial.

The electric and magnetic fields and the propagation vector are mutually orthogonal and form a direct
reference system, so we can choose the reference system in a way that :

k = ke,
E= Egeg
H=H,e,
_ _ |
Eg—ZCH¢, = 8H¢, 0.2

A spherical wave has the following form:
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r (2. 43)

for a wave travelling away from the origin

2.6.6 Wave polarisation
The orientation of the electric field is called the polarisation of the electromagnetic wave. It can be of
three types: linear, circular or elliptical.

Linear polarisation

The orientation of the electric field remains unchanged as a function of time at a specified point of the
space. For a wave travelling close to the earth's surface, we often use the terms vertical or horizontal
polarisations for a vertical or horizontal electric field.

A

Fig. 2. 2: linear polarisation

Circular polarisation

The polarisation of a wave is circular when at a fixed point in space the extremity of the phasor
representing the electric field describes a circle. If the phasor turns clockwise we talk about right hand
circular polarisation (RHCP), id it turns counter clockwise we talk about left hand circular polarisation
(LHCP).
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POLARIZATION POLARIZATION

Fig. 2. 3: Circular polarisation

Elliptical polarisation

The polarisation of a wave is elliptical if the extremity of the phasor representing the electric field
describes an ellipse at a fixed point in space. This is the most general case.

1 (.
J

2a
-l

Fig. 2. 4: Elliptical polarisation

2.6.7 Polarisation characteristics of a field.

A time harmonic electric field is defined as:
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E(t) = V2 [exEoy cos(at + o) + &y gy cos(et + oy )+

eZEOZcos(a)t + ¢ )+] (2. 44)

which can be written as

E(t) = E(0)cos(wt)+ E(T / 4)sin(wt) (2. 45)
where

E0)= \5 [eXEOXCOS(¢X)+ eyEoy cos(qpy)+ e;Ep; cos(qu)]

E(T /4) =2 [exEoxsin(px) + ey Eoysin(py )+ ezEoz sinfor)] 4

or in term of phasor vector
E(0)=Re [JEE]

E(T /4) = -Im[V2E] (2.47)

Vectors E(0) and E(T/4) are two conjugated axes of the polarisation ellipse. In the case of a linear
polarisation they are collinear, which can be written as :

E(0)xE(T/4)=0

<E2> 0 (2. 48)

In the case of a circular polarisation, the two half axes of the ellipse are orthogonal and have the same
length. We write thus:

E(0)-E(T/4)=0
[EC0) =|E(T /4)#0 (2. 49)

Which is term of phasors yields:
E-E=0 (2.50)
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Chapter 3: Transmission lines

Transmission line theory has a great kinship to standard circuit analysis, with one major difference,
being the electrical size : In circuit analysis we assume that the physical dimensions of a circuit are
much smaller than the wavelength, whereas a transmission line can have any dimension between a
fraction of wavelength (electrically short) to many wavelength (electrically large). Thus, a
transmission line is a distributed parameter network.

3.1 Incremental model

Let us consider an incremental length of a transmission line, as represented by a section of a two wire
line in figure 3.1a. If the segment Az is short, its equivalent circuit can be represented as in figure 3.1b,
where R, L, G and C are per unit length quantities :

R = series resistance per unit length, for both conductors [(2/m]
L = series inductance per unit length, for both conductors [H/m]
G = shunt conductance per unit length [S/m]

C = shunt capacitance per unit length [F/m]

The series inductance represents the total self inductance of the conductors, while the shunt
capacitance is due to the proximity of the conductors. The series resistance represents conductive
losses and the shunt conductance dielectric losses. A transmission line of finite length can be viewed
as a cascade of incremental transmission lines.
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i(z,t)

_O O_
lu(z,t)
z
_O O_ >
< AZ >
i(z,t)

i(z+Az,t)

— CAz u(z+Az,t)

Az

< >

Fig. 3. 1: Definition of an incremental transmission line

We can apply Kirchhoff's laws to the circuit of figure 3.1, and obtain :

i(z,t
v(z,t)-RAzi(z,t)- LAZ%—V(Z +Az,t)=0

ov(z+Az,t) G-

i(z,t)-GAzv(z+Az,t)-CAz —i(z+Az,1)=0

Dividing those relations by Az and taking the limit as Az->0 yields the following differential equations

for the voltage and the current on the line :

v(z.t) __Ri(20)-L di(zt)

_az ot 3.2)
di(z,t) _Gv(zt)-C ou(zt)

0z ot

These equations are the time domain form of the telegrapher or transmission line equation. For
harmonic waves (sinusoidal steady-state condition) and in phasor notation, (3.2) simplifies to :

d\giz) ——(R+jol)1(z)
(3.3)
d'd(zz) — (G+jaC)V (2)
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These equations can be solved simultaneously to give a wave equation for either V(z) or I(z) :

2
d VZ(Z)—]/ZV(Z)=0
ZdZ( ) (3. 4)
d-l(z
d22 —7/2|(Z)=0
where
y=a+jf=y(R+joL)(G+ joC) (3.5)

is the complex propagation constant. The imaginary part, 3, is called the phase constant, while the real
part, o, is the attenuation constant. Note that the propagation constant is in general a function of
frequency.

The solutions to (3.4) are called travelling waves and can be described as :

V(z)=Vy e 7?4V e”?

(3.6)
1(z)=1ge7?+1ye*

were the ¢ 77 term represents a wave travelling in the +z direction, and the ¢” 2 awave travelling in
the —z direction. Applying (3.3) to (3.6) gives the current on the line :

_ Y + —yZ _\y— V2
|(z)_—R+ij(v0 7=V e 3.7)

If we define the characteristic impedance of the line as

7 _R+joL  |R+ joL (3.8)
0 y G+ joC ’

we can write :

Vo -V,
Zg=-"2=—0 (3.9)
lo lo
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Then the second equation of (3.6) can be rewritten as :

+ —
|(z)=vie‘ﬂ—vie7Z (3. 10)
Z0 ZO

Converting into time domain, we get :

Vo

v(z,t)=\/§’\/(;r

cos(wt— Bz+6" |e ¥ +2
(a4-p2+07)

cos(a)t + P+ 9_)60‘2 (3.11)
where 0 is the phase of the complex voltage V.

The wavelength of the travelling wave is defined as the distance between two successive points of
equal phase at a fixed instant of time, which is given by :

1= (3. 12)

The phase velocity of the wave is defined as the speed at which constant phase points travel along the
line :

dz o
Ty (3.13)

since m=27f.
3.2 Lossless transmission lines

In many practical cases, the loss of the line is very small and can be neglected. Setting R=G=0 in the
above results yields

3 (3. 14)
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where 3 and Z, are real numbers. The general solution for the voltage and the current on the
transmission line can be written as

V(2)=Vy e P2y elP?

: . + - 3.15
1(2) =10 ¢ P24 15 102 V0 mipz Vo ip G3-13)
Zy Zy
The wavelength on the line is
2 2
A=—= (3.16)
p  wJLC
and the phase velocity of the line is
dz_o__ 1 3.17)

V,, =—=
? dt p JLC
3.3 Terminated transmission lines

A lossless transmission line terminated by an arbitrary impedance is depicted in figure 3.2

V(2), 1(z)

L
-

vy

0

Fig. 3. 2 : A terminated transmission line

We suppose that we have an incident wave of the form V0+ e 1P? travelling on the line. This wave is

generated at a source at z<0. We have seen that the ratio of voltage to current for such a travelling

wave is Z,. When the line is terminated in an arbitrary load Z| # Z, the ratio of voltage to current in

the load must equal Z;. Thus, a reflected wave must be generated at the load, with appropriate
amplitude to satisfy this condition. The total voltage on the line can be written as in (3.15), as a sum of
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an incident and a reflected wave. The total voltage and current at the load are related by the load
impedance, so at z=0, we must have :

V(o) _Vo' +Vo ,
= 0

Z = — (3. 18)
1(0) vy -V
Solving for the reflected wave, we get :
_ -7
Vy ==L—2ovy (3. 19)
Z L+ ZO
We can thus define the voltage reflection coefficient I :
Vo Z,-Z
r=-0--L "0 (3. 20)
V(;r Z +Z,

A reflection coefficient for the current could also be defined, and will be exactly the negative of the
voltage reflection coefficient. We will thus not use it in this course.

The voltage and current on the line can be written as :

V(z)=Vy (e_jﬁz—i-l"ejﬂz)
_— | (3.21)
1(2) =L(e—1ﬁ2_rejﬂ2)
Zy
Thus, the current and voltage on this terminated line are a superposition of an incident and a reflected

wave, called standing waves. To avoid reflection, we must have ['=0, which is obtained when the load
impedance is equal to the characteristic impedance of the line.

The time average power flow along the line at a point z is :

Ny
0

0

Pay =Re| V (2)17(2) |-

Re[l—l"*e_zjﬂz—i-l" ezl'/”z—|r|2} (3.22)
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The combination of the two middle terms is purely imaginary, the power flow reduces thus to :

(1-Ir?) (3.23)

which shows that the average power flow is constant at any point on the line, and that the total power
delivered to the load is equal to the incident power minus the reflected power. If ['=0, the maximum of
power is delivered to the load, while no power is delivered if the modulus of the reflection coefficient
equals 1. The preceding results assumed that the source is matched (there are no re reflections at the
source).

When the load is mismatched, then not all of the available power is delivered to the load. The "loss" is
called return loss, and is defined in dB as :

RL =—20log)(|T| dB (3.24)

If the load is matched to the line, the magnitude of the voltage on the line is constant : ‘V (Z)‘ = ’\/0+ .

When the load is mismatched, the reflected wave leads to a standing wave, where the magnitude of the
voltage is not constant along the line :

1+ e21h7

‘V(Z)‘:’VJ Z’VJ 1+Fe_2jﬁ|‘:’\/0+

where I=-z is the positive distance measured from the load back toward the generator, and 6 is the
phase of the reflection coefficient. We see that the magnitude of the voltage oscillates with z along the

j(0-2p)

1+|r|ej(‘9‘2ﬂ)" (3.25)

line. The maximum occurs when € =1, and is equal to

Vi = ’\/J (1+]r)) (3. 26)

j(e-2p)

while the minimum occurs at € =—1 and is equal to
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Vinin =o' |(1-|T) (3.27)

As the magnitude of the reflection coefficient increases, the ratio of V.x to Vi, increases, so a
measure of the mismatch of line, called the standing wave ratio, is defined as :

SWR = Vmax — (l+|r|) (3 28)
Vinin - (1-[T1)

It can be see that the SWR is a real number such that 1 < SWR < oo, where SWR=1 implies a matched
load.

The reflection coefficient can be generalized to any point along the line :

VO_ e Jﬁl

_ —2jpl
r(l)= Vi 7P =T'(0)e (3.29)

where ['(0) is given by (3.20). We have seen that the power flow on the line is constant, while the
voltage amplitude on a mismatched line is oscillatory. We can thus deduce that the impedance seen
looking into a mismatched line must vary with the position. Indeed, at a distance 1=-z from the load,
the input impedance looking towards the load is given by

Zin = =7, : A, H (3. 30)

This result can be transformed using (3.20), and we obtain :

(ZL+Z5)ePla(z -24)e A
(2, +24)e P~ (2 -24)e 1P

Z| cos fl+ jZ,sin fl
0 Zycos fl+ jZ| sin gl

Z| + jZytan gl
©Z,+ jZ, tan Sl

Zin={2

3.31)
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This result is the transmission line impedance equation.

3.4 Special cases of terminated transmission lines

Consider first the case where the line is terminated by a short circuit, as depicted in figure 3.3

V(2), I(z) .
L
Zy, B lVLO

—{ !

N

|
0
Fig. 3.3

In this case, Z; =0, and we see immediately that ['=-1. The voltage and the current along a short
circuited line can be written as

V(2)=Vg (7=l ) =2 v sin 2

(3.32)
I (z):ﬁ(e_mz+emz):%cosﬂz
Zy Zo

which shows that, as expected for a short circuit, the voltage is 0 at the load while the current is
maximum. The input impedance can be found from (3.31) :

Ziy = JZ, tan Sl (3.33)

which is purely imaginary for any length 1, and takes all values between — joo < Z;, < joo. For
instance, we have Z;,=0 when 1=0, but for I=A/4, Z;,, = Joo . We see also that the impedance is

periodic in 1, with a periodicity of A/2.
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Consider next an open circuited line, as shown in figure 3.4

V(2), I(z)
—( (—

Zo’ p VL

—( -

I =0

vy

O_

Fig.3.4

In this case, Z| =00, and we obtain I'=1. The voltage and current along the line are given by

V(z)=Vy (e—jﬂz+ejﬂz):2V0+ cos 32

L (3. 34)
I(Z)=\;L(e_mz—emz)=%sinﬂz

o (0]

which shows that the current is zero at the load and that the voltage is maximum at the load. The input
impedance can be found as

Zin = —jZ, cot Bl (3.35)

which is also purely imaginary.

3.4 Generator and load mismatches

We have assumed above that the generator was matched to the line. We will study now what happens
when both the generator and the load are mismatched. Let us consider the circuit depicted in figure 3.5
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Fig. 3.5

It consists of a transmission line circuit with arbitrary generator and load impedances Z, and Z;, which
may be complex. We assume that the transmission line is lossless, with length 1 and characteristic
impedance Z,. Multiple reflections can occur on the line, as waves reflected from the load can be re
reflected by the generator and form an infinite sequence of reflections. In the steady state, the result is
a single wave travelling towards the load and a single reflected wave travelling towards the generator.
We analyze circuit 3.5 by finding first the impedance looking into the terminated transmission line
from the generator end. We get :

Z. -7 ﬂ:z Z) + 12, tan Sl (3. 36)
N e 28 0 25+ jZ) tan I

where

I _4=% (3.37)
Z| +ZO

is the reflection coefficient of the load. The voltage on the line is given by (3.21), and we can find VO+

, the amplitude of the incident wave from the generator end of the line, where z=-1 :

V() =Vg 50— =V (eI eI ) (3.38)
so that
Zin 1

=V : : (3. 39)
9 Zin + 24 (eJﬁ|+r| e—Jﬂl)
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This can be rewritten using (3.36) as

N 7 1Al
Vo :Vg 0 — (3. 40)
Zo+Zyg (1—F|Fg e 21 )
where I', is the reflection coefficient seen looking into the generator :
Zy—-Z
Fg=ot—- (3. 41)
Ly+Lg
The power delivered into the load is then obtained as :
* 2 1 2 | Zin |2 1
R =Re[vm|m}=|vm| Re| —— | =[Vq| Re (3. 42)
Zin ‘Zin +Zy4 ‘ Zin
If we write Zjn = Rjn + JXj and Zg =Rg + jX g, we obtain
2 R
- \vg ‘ in (3. 43)

(Rin+Rg)2+(Xin+Xg)2

Let us consider several case of load impedance. First, let us assume the case where the load is matched
to the line, so that Z;=Z,. In this case I'; = 0 and SWR=1 on the line. The input impedance is Z;, = Z,,
and the power delivered to the line is

(3. 44)
1 ’Vg‘ (z,+R ) + X4

Next, consider the case when the generator in matched to the input impedance of a mismatched
transmission line. In this case we have Z;,=Z, and the overall reflection coefficient I" seen at the input
of the line is zero :
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Zi,—Z
r=—=" 99 (3. 45)
Zin + Zg
However, in this case, Fg # 0and I'| # 0 in general, and there may be a standing wave on the line.

The power delivered to the load is

2 Rg
A=No| = (3-46)
4(Rg +Xg )

We see that even if the terminated line is matched to the generator, the power delivered to the load
may be less than the power delivered to the load from (3.44), where the line was matched to the load,
but not the generator. This leads to the question of what is the optimum load impedance, or
equivalently, what is the optimum input impedance to achieve maximum power transfer to the load for
a given generator impedance.

Let us assume that Z, is fixed, and that we may vary the input impedance Z;, until we achieve the
maximum power delivered to the load. Knowing Z,, it is easy to find the corresponding load
impedance Z,, via an impedance transformation along the line. To maximize P,, we differentiate with
respect to the real and imaginary parts of Zin. Using (3.43), we get :

oR 2 ~ 4Rin(Rin "‘Rg)

R =0-> P 2 2 2
in (Rin"'Rg) +(Xin+xg) [(RerRg) +(Xin+xg) }

==0 .
47)
or in other terms
2
Rg —Rin +(Xin+Xg) =0 (3. 48)

—4xin(xin+xg)

{(Rin +Ry )2+(x in+xg)2}2

R
Xin

=0—>

=0 (3. 49)
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or

Xin (Xin + Xg) =0 (3. 50)

Solving (3.48) and (3.50) simultaneously for R;, and X, gives Ri,=R; and Xj, =-X,, or

*
Zin="~1g4 (3.51)
This condition is known as conjugate matching, and results in maximum power transfer to the load, for
a fixed generator impedance. Under these conditions, the power delivered to the load is :

>
H%%\Eg (3.52)

which is equal to or greater than the powers of (3.44) or (3.46). The reflection coefficients may be
nonzero.

Physically, this means that in some situation the multiple voltage reflections on a mismatched line may
add in phase to deliver more power to the load than would be delivered if the line were matched (no
reflections). If the generator impedance is real (X;=0), then the last two cases produce the same result,
which is that the maximum power is delivered to the load when the loaded line is matched to the
generator.

Finally, note that neither matching for zero reflection (Z=Z,) nor conjugate matching (Z;=Z2,*)
necessarily yields the best efficiency for a system. For instance, if Z,=Z,=Z,, then both the load and the
generator are matched (no reflections), but only half the power produced by the generator is delivered
to the load (half is lost in Z,), yielding a transmission efficiency of 50%. This efficiency can only be
improved by making Z, as small as possible.

3.5 Impedance matching

The basic idea of impedance matching is to place an impedance matching network between a load
impedance and a transmission line (figure 3.6)
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Z Matching 7
networ k

Fig. 3. 6

The matching network is ideally lossless, to avoid loss of power, and is designed so that the
impedance seen looking into the matching network is equal to the characteristic impedance of the line.
Reflections are then eliminated on the transmission line to the left of the matching network, although
there will be multiple reflections between the matching network and the load. Impedance matching is
important in wireless systems in order to ensure maximum power transfer to the load, to improve the
signal to noise ratio and to minimize the RF power required by a system.

As long as the load impedance is passive (having a positive real part), a matching network can always
be found, at least for a small frequency band. Some basic matching networks will be described below.

3.5.1. The quarter wave transformer

Zo Zl I:I
o 2y =Ry
1
—>
Fig.3.7

The circuit is shown in figure 3.7, where the impedance of the matching section is given by :

Z) =\Z4Z, (3. 53)

where Z; is a real load impedance. At the design frequency fo, the electrical length of the matching
section is A./4, but at other frequencies the electrical length is of course different, and a perfect match
is no longer obtained.

The input impedance seen looking into the matching section is given by :

Z| + jZ tan gl
12, + iz, tan gl

Zin=2 (3. 54)

where [3 corresponds to the design frequency fy, and pl=n/2 at this design frequency. The reflection
coefficient seen at the input of the transformer is then :

Microwaves 57



2,7, (277 )+jtan,BI(Z|2—ZOZ|_)
“Zin+Zs z,(z,+2, )+jtan,BI(Z|2+ZOZL)

(3. 55)

Using (3.53), we get :

— ZL_Zo
Z| +Zo+ j2tan plJZ,Z|

(3. 56)

The magnitude of the reflection coefficient is

=4

r:
\/(ZL +2,)° +4tan2 B1Z,Z,

(ZL+Z,) 4tan P22,
(2L -2Z,) (ZL Z)

3.57)

zL Zo)  (ZL-2Zo)

[4267( Jsec 21
(2L -2, )

\/1+ 22y | dtan® pIZeZ,

since 1+ tan’ Pl = Seczﬂl

If we assume that we are considering a narrow frequency band around the design frequency f,, then

zﬁ and Sl =—. Then, SecC ,Bl >>1, and we can write :

r;|2 2 Zo||cosﬁl| (3. 58)
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Which gives the approximate mismatch of the quarter-wave transformer near the design frequency
(figure 3.8)

0.4 ! ! ! ! !
0.35
0.3

0.25

Il

0.2

014

0.1

0.05

0 a0 B0 40 120 140 180

Bl
Fig. 3.8

3.5.2 Matching using L sections

Another matching network is the L-section, which uses two reactive elements to match an arbitrary
load at a given frequency. In contrary to the quarter wave transformer, the load does not need to be
real. This technique is extensively used at lower frequencies, where lumped reactive elements having a
good quality factor can readily be found. There are two possible configuration for a L-section network,
depicted in figure 3.9.
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Zo Zo

a) b)
Fig.3.9

VA
If the normalized impedance Z | = ZL s inside the 1+jx circle of the Smith' chart, then the circuit of
o
figure 3.9a should be used. In either of the configurations, the reactive elements may be either

inductive or capacitive, depending on the load impedance.

While analytic solutions for the required values of series reactance jX and shunt susceptance jB are
available, it is often more convenient in practice to use the Smith chart to find these values for a given
load impedance.

Let us consider the following example, where we want to design an L-section matching network to
match a series RC load having an impedance Z; =200-j100 Q, to a 100 Q line, at a frequency of 500
MHz.

The normalized impedance is z;=2+j, which is plotted on the Smith chart of figure 3.10. This point is
inside the 1+jx circle, so we will use the matching circuit of figure 3.9a. Since the first element from
the load is a shunt susceptance, it is helpful to convert to a load admittance y;, by drawing the circle
representing the amplitude of the load reflection coefficient , and a straight line from the load through
the centre of the Smith chart. The load admittance is a the intersection of the circle and the line (figure
3.10). Now, we want to be on the circle 1+jx on the impedance chart after having added a shunt
susceptance jB, which means that this susceptance must allow us to reach the 1+jx circle on the
admittance chart, which we construct as shown in figure 3.10. (It is the axial symmetry of the 1+jx
impedance circle, with respect to a vertical axis going through the centre of the Smith chart). We see,
then that the normalized susceptance required is jb=j0.3, and we reach the point y=0.4+j0.5.
Converting back to impedance leaves us at z=1-j1.2, indicating that the addition of a series reactance
x=j1.2 will bring us to the centre of the Smith chart.
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Fig. 3. 10

The matching circuit consists of a shunt capacitor and a series inductor, as shown in figure 3.11. Ata

frequency of 500 MHz, the values are given by

61
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C= =0.92 pF
2nfZ,
xZ
L= 0 —38.8nH
27
38.8 nH
0.92 pF — Z, =200-100j
Zo T
2.61pF
| |
|
46.1nH Z, =200-100j
Zo
Fig. 3. 11

There is a second possible solution for this problem. If instead of adding a shunt suscpetance b=0.3,
we use a shunt susceptance of b=-0.7, we will move to a point on the lower half of the rotated 1+jx
circle, to y=0.4-j0.5. Converting to impedance yields x=-1.2, which leads to a match as well. This
matching circuit is also shown in figure 3.11. The values are given by :

L _oeipF
2r X2,
L= —Zo =46.1nH
27 fb
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3.5.3 Single-Stub tuning

Finally, we consider a matching technique which uses a single open-circuits or short-circuited length
of transmission line (a stub), connected either in parallel or in series with the transmission line at a

certain distance from the load (figure 3.12)

Such a circuit is convenient at microwave frequencies from a fabrication point of view, since no
lumped elements are required. In single stub tuning the distance d, from the load to the stub position,
and the value of the shunt susceptance (or series reactance) provided by the stub, are adjustable
parameters. These two degrees of freedom can be used to match an arbitrary passive load impedance
to any feed line. For the shunt stub case, we select d in order to achieve an admittance of Y=Y, +jB

)
©

Yo Yo
L G
Yo
openor |
shorted :
stub |
|
d
- >
O O O
Zo Zo
Q Q O
Zo
Qo———m =,
open or
shorted
stub
Fig. 3.12

(Y,=1/Z,)looking towards the load from the end of this section of transmission line of length d. Then,
the stub is chosen as —jB.
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For the series case, the length d is chosen so that the impedance towards the load from that point is
7=7,+jX. Then, the stub reactance is chosen as —X.
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4. Guided electromagnetic propagation

In chapter 2, we made no assumptions regarding the geometry of the medium supporting the
considered electromagnetic phenomena. The obtained equations were thus very general. In this
chapter, we will specialize the results of chapter 2 to the case of guided waves.

References :

F.E: Gardiol, Traité d’Electricité de ’EPFL, vol.IIl : “Electromagnetisme”, Presses Polytechniques Romandes

S. Ramo, J.R. Whinnery, T van Duzer : “Fields and Waves in Communication Electronics”, Wiley, New-York,
1984

4.1 Generalities

4.1.1 Reference, coordinates and components

We will consider that all the geometries we will study have translation symmetry along the z axis.
Thus, the z (or longitudinal) axis will play a specific role, which is very different from the role played
by the transverse components X,y (or p,@, or any system defined in the transverse plane). We introduce
the generic notation t = (t], tp) for these transverse coordinates.

\/

Fig. 4. 1 : wave guiding structure

We can write any vector V as: V = VZ/Z\ + V¢ , emphasizing the z component and grouping the
transverse components in a vector. The vector operator V becomes:
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4.1
20 2
V = —2 + Vt
0z
We use classical variable separation to write
f(tlatZaZ) = T( tlatZ) Z(Z) (4 2)

All the six scalar components of the electromagnetic fields E and H have to satisfy a wave equation :

(V2+K)f=0 ; £=E,Ep E, Hy, Hp, H,

4.3)
We get:
2
T Z 422 (4. 4)

where y is the complex constant associated to the separation process.

4.1.2 Longitudinal dependency : propagation exponent
The equation for Z(z) has a simple analytical solution. We find that the z dependency of guided waves
is always of the kind :

Z(z) = A exp (yz) + B exp (1yz) (4. 5)

exactly as for voltages and currents in transmission lines.

We have incident exp(-yz) and reflected exp(+yz) waves, and the physical meaning of the separation
constant y becomes clear : Its real part o is the linear attenuation [Np/m] or [dB/m], while its
imaginary part is the linear phase constant [rad/m].

To simplify the expressions above, we will consider only incident waves propagating along the
positive z axes. In this case, B=0, and we can integrate the amplitude of the incident wave into the
transverse function T, and write in compact vector form :
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E(t17t27z) = e(tlatZ) eXp(_yZ)
H(t1,t,2) = h(t;,t2) exp(-yz) (4. 6)

where the transverse vectors €, h depend on the transverse section of the guiding structure.

To find the relations for the reflected wave, we only have to replace y by —y.

4.1.3 Transverse dependency: eigenvalues and eigenvectors
The transverse vectors e, h are solution to eigenvalue equations:

(Vi+K2+y9) e =(Vi+k2)e =0
2 2
(Vi+k+y)h=(Vi+kHh=0 (4.7)

The admissible eigenvalues k. (k2 = k% + y2) are determined by the boundary conditions associated

to the transverse geometry of the waveguide. For each eigenvalue, the corresponding eigenvectors €, h
can be found. The latter are often called the modes of the guiding structure.

Thus, to each eigenvalue we can associate a longitudinal propagation exponent:

y=VK2 - k2 =k - 0?pe (4.8)

The relation between the eigenvalues and the frequency will determine the nature of y (real, imaginary
or complex), and thus the propagation characteristics.

4.1.4 Transverse and longitudinal components

The transverse vectors e and h contain in general six scalar components. In principle, we have thus to
solve 6 scalar eigenvalue problems, with each its particular boundary conditions. It is however evident
that these six components are not independent from each other, as they are linked by Maxwell's
equations. It should thus be possible to solve the eigenvalue problem for two of the components, and
obtain the others from these two.

The most logical choice is to consider the longitudinal components, e, h, as basis functions from

which we will try to derive the other components. The sought for relations are found easily by
introducing the following field expressions in Maxwell's equations:
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E=(e,Z+egexp(-yz) ; H=(hZ+hexp(-yz) ; V=(002)Z+Ve (4,
9)

where the transverse-longitudinal decomposition has been used. We find:
Vixer=-jop (h,2) ; Vix(eZ) -vZxer=-jop h
Vix hi=+oe (e,2) ; Vix(h2) -yZx hi=+oe e (4. 10)

and finally:

kZet=-v Ve, +jonZ x Vih,

k2 hy =- vy Vih, —jms? x Ve, (4.11)

As mentioned, we only have to replace exp(-yz) by exp(+yz) and +y by -y to obtain the expressions for
a reflected wave.

4.1.5 Summary: computing procedure
The study of a guiding structure will in general include the following steps :

a) The resolution of the eigenvalue problem in the transverse section of the structure

2 2
(Vi +k3)e,=0 ; (Vi +kdHh,=0 (4. 12)

with the pertinent boundary conditions. In particular, the eigenvalues k. and the associated modes e,,
h, have to be found.

b) Compute the longitudinal propagation constant ¥ = a. + jp =4 k2 - k . For an incident wave, we

choose the sign of the square root so that Im(y)>0.

¢) Compute the transverse components
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kZey=-y Ve, +jonZ x Vi,

kZ h; =- v Vih, -jo)s/i x Ve, (4.13)

d) Construct the incident fields:

E(t,1,2) = (et + €,2) exp(-z)
H(t,%,2) = (hy + h,2) exp(-y2) (4. 14)

e) Redo the procedure for the reflected fields. We only have to choose the other branch in the square
root defining y, which formally is equivalent to substitute +y by -y in the formulas.

f) Find the amplitude if the incident and reflected waves using transmission line theory. To this aim,
the load conditions at the end of the line must be known.

g) If time domain expressions are wanted, they are readily obtained using the definition of phasors.
For instance, the incident field component E; of a complex amplitude A =|A| exp (jpa) is given by:

EZ(tl :t2azat) = ﬁ |A| eZ(tbtz) eXp(-(XZ) COS((Dt_BZ+(PA) (4 15)

4.2 Propagation modes

The possible solutions to the transverse Helmoltz equation are called the modes of the guiding
structure. Each mode represents a specific configuration of the electromagnetic fields in which a signal
can propagate. To evaluate the characteristics of a transmission channel, it is thus very important to
know the modes that may exist for a given combination of geometry, frequency and medium.

References:

S. Ramo, J.R. Whinnery, T van Duzer : “Fields and Waves in Communication Electronics”, Wiley, New-York,
1984
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4.2.1 Classification

The solutions to Helmoltz' equations

(Vi +k2) e, =0 ;

can be ordered in the following way :

(Vi +k2)h,=0

(4.16)

TEM modes TM or E modes TE or H modes Hybrid modes
ez 0 #0 0 #0
h, 0 0 #0 #0

All these mode types exist in nature. In general, a guiding structure with a given geometry can support
several mode families. We will for instance see that a coaxial cable supports TEM, TE and TM modes,
while Hybrid modes propagate along optic fibres.

The characteristics of each mode family will be briefly described hereafter.

4.2.2 TEM Modes

A TEM (Transverse Electro Magnetic) mode is characterized by the absence of longitudinal
components (e; = h = 0), and we have purely transverse fields as for a plane wave in an unbounded

medium. In any guided structure, the transverse fields are given by (§4.1.4)

kZ et =-v Ve, +jouZ x Vih,

k2 h; =- v Vih, -jo)s/i x Ve, 4.17)

Thus, we see that when e, and hy are zero. The transverse fields are also zero which would be a trivial

solution. The only solution allowing non-zero transverse fields is to force the eigenvalue k=0, which

implies ¥ = jK = jw,/gu , which is identical to the case of a plane wave in an unbounded medium.

The transverse fields are then computed using directly Maxwell's equations:
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~
Vixe=0 ; -yzxei=-ou hy
N

Vixhi=0 | -yzxh=+Hoe & 4.18)

The rotational of the transverse fields is thus equal to zero, which means that they derive from a
potential :

2
et =-V¢{V et Ei=(-Vi{V)exp(yz) avec Vi{V=0 (4. 19)
It is thus enough to solve Laplace's equation in the transverse section of the structure using the
appropriate boundary conditions, just as in Electrostatics.

In particular, we know that the electrostatic field is equal to zero inside a hollow conductor. It is thus
not possible to obtain a TEM propagation mode for metallic waveguide like structures, indeed we need
in general two or more distinct conductors to ensure the presence of a TEM wave.

Maxwell's equations show also that for a TEM mode, the magnetic field is linked to the electric field
by :

hi=(y jop) zxe, = (joe/y) Z x & (4. 20)

The factor |et|/|h¢| has the dimension of an impedance, and is called the wave impedance or the mode

impedance, Zyod. For TEM modes, we have:

Zanod(TEM) = jowy = vlios= ... .21)

Thus, the wave impedance of a TEM mode is equal to the impedance of the medium supporting the
propagation, as for a plane wave.

Current, voltage and characteristic impedance

We have seen that the fields of a TEM mode have static behaviour. This implies that a current and a
voltage can be univocally defined along the guiding structure. Let's for instance consider the following
arbitrary bifilar transmission line :
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Fig. 4. 2: Bifilar TEM line

The potential difference between the positive and the negative conductors is given by the integral of
the electric field between the conductors. Because of the static behaviour of the field, this integral will
be independent of the chosen integration path, and an unique voltage is defined in the transverse plane
as:

V:j E-dl (4.22)
+

A voltage wave can thus be defined in the same way as the field waves :

V(z)=V*te 172y~ elr? (4.23)

In the same way, the total current circulating on the positive conductor can be obtained using
Ampere's law, which for a TEM mode is written :

|=C§ H-dl (4. 24)
C+
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where C+ in any closed path enclosing the positive conductor but not enclosing the negative
conductor. The current wave is then written as :

l(2)=1"e 2= el?? (4.25)

+ —
\Y . . . .
The factors — and — are constants along the line and have the dimension of an impedance, and
| I~
represent the characteristic impedance of the line, which depends essentially on the geometry of the
conductors.

4.2.3 TM Modes

A TM mode (transverse Magnetic) is characterized by a zero longitudinal component for the magnetic
field. The magnetic field is thus transverse, while the electric field is not. The component ey is solution
of :

2
(Vi +kde,=0 (4. 26)

with the appropriate boundary conditions. The transverse fields are obtained as :

JOE ~

k%etZ-theZ 5 ht:TZXet

(4.27)

We note that for TM modes, the propagation constant is equal to Y =4 kZ - o? pe and the modal
impedance Zmod is given by :

Zod=7/ =¥ o3ue —k%) / o (4. 28)

These parameters depend on the eigenvalue k.
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4.2.4 TE Modes

A TE mode (Transverse electric) is characterized by a zero longitudinal component for the electric
field. Thus, the electric field is transverse, but the magnetic field is not. The characteristic equation of
these modes is thus:

2
(Vi +k3)h, =0 (4. 29)

with the appropriate boundary conditions. The transverse fields are then obtained using:

jop oA
k2h=—yVh ; &= — hyxz
c''t tHz t Y t (4'30)

We note that for TE modes, the propagation constant is equal to y =4 kZ - ? pe and the wave
impedance Zyod is given by :

A T T @.31)

These parameters depend on the eigenvalue k.

4.2.5 Recapitulation

Here are in a compact form the fields and parameters characterizing TEM, TE and TM modes. The
square root in the value of the propagation exponent y is always taken in a way to have

arg (y) € [0 ; m/2] . This corresponds to a wave travelling in the positive direction of the z axis. The
following table is thus valid only for incident waves. In order to obtain the corresponding values for a
reflected wave, we only have to replace y by —y.

Modes TEM Modes TM Modes TE
Characteristic equation VtZV =0 (VtZ + k%) e,=0 (Vtz + kzc) h,=0
Y V- olue = jp/mE »/kg—wzus ;/m
Bz 0 e, exp (—72) 0
Hz 0 0 h, exp (—vz)
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Et —VVexp (—7z) — (/KD VE, (fon/y) (Hyx?2)

Ht (v/ pow) (2% Ey) (joe/v) (2% Ey) ~(y/k2)VH,

Zmod = [et] / |ht] Ve »/oozus - k% / we o/ »/oozus — k‘?‘:

4.3 Dispersion and distortion

When the linear phase constant B is a non linear function of the frequency, the propagation is said to
be dispersive. Waveguides and optic fibres are dispersive transmission lines, and the signal travelling
on them will be distorted.

As

®
>

Fig. 4.3 : Dispersion diagram of a guiding structure

This effect is illustrated on a Gaussian pulse travelling along a dispersive line, as this gives a simple
mathematical development.
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V\/ VV

Fig. 4.4 : modulated Gaussian pulse

A modulated Gaussian pulse is described by:

12

f(t,z=0)= cos(a)ot)e—E (4.32)

where 27 is the width of the pulse at level y\/g =0.606 of the maximum. The Fourier transform

(spectrum) of the Gaussian pulse has also a Gaussian dependenc :

1
Fw,2=0)= 27¢ 2 -] (4.33)

The signal propagates along the dispersive lines and sustains a phase shift 3z

1
Flw,z)= 2 e_z[r(w_wo )]2 L

(4.34)

To find the corresponding function in time domain, we take the inverse Fourier transform:
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4o Lo
w2z [ e_z[f(“’ on)f i oty

27
—00

+00 .
f(t, z):%r [F(@.2)e*dor = (4.35)

But B is not a simple linear function of ®, so this integral cannot be simply evaluated. The spectrum of
the pulse is usually narrow, so we can develop it in a Taylor series in the vicinity of ®

0
ﬂ:,BO+,81(a)—a)0)+'B—22(a)—a)0)2+... (4.36)
. "
with By = Blwy) et S, :ﬂ_aﬁ (4.37)
6020)0
The integrand takes the following form:
1 2 oS 2}
e—E[r(a)—wo)} . J{ﬂo +Pi(@=ap )+ (w0-ap) ot 4.38)

Grouping the terms in ®, we obtain a term ¢ Jot=iprez _ o Jot ,with t' =t — £z, which

corresponds to a translation with velocity yﬂl =Vg (group velocity). Grouping the terms in

(a) — )2 , we obtain :

o i B @20V 2 (0-09)’ 72
St Ry LT, Lo .

Taking now the inverse Fourier transform (4.35) we find, after some approximations, that the width of
the Gaussian pulse becomes

2
Te

2
N ﬁ(ﬁ—gzj (4. 40)

T
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At a large distance z, if the dispersion [3, is important, we tend towards

z
7= bz
T
Thus a very narrow pulse in z=0 widens faster than a large pulse in z=0

(4.41)

4.4 Parallel plate waveguide

One of the simplest electromagnetic transmission systems is the parallel plate waveguide, made of two
parallel conductive plates separated by a distance a (the height of the guide, figure 4.4)

Fig. 4.5 : parallel plate waveguide

For the analysis, the plates are considered to be infinite and placed at x=0 and x=a respectively. The
propagation occurs as usual along z, and the medium between the plates is defined by ¢, .

Because the structure is supposed to be infinite in the y direction, the fields will be independent of this
coordinate. The solution of the relations given in §4.2.5 is then simple, and the following results are
obtained:
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TEM Mode TM Modes TE Modes
Ke 0 mn/a mn/a
o, 0 mn/ (a/TiE) mr / (a/TE)
Y V-0l = jp/iE V- (/02 | N1 (0,/0)
Ez 0 E, sin anX e V2 0
Hz 0 0 H, cos anX e~z
o Ep ke d E, cos e Jou Hy sin mzx ye 7t
ke o a
At ELVG_VZ —Jo Eq cos mﬂxfle_yZ j—’BHO sin mﬁxf(e_yZ
Ve ke a ke a
070 % 2 e _bRE 5 e Ho§ e 2
3 (x=a) - 3(x=0) (— )M I(x=0) (- )M I (x=0)
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4.5 The rectangular waveguide

The geometry of the rectangular waveguide is shown in figure Fig. 4.6. It consists of a rectangular
tube a*b, which is supposed to be infinite in the z direction.

d
- >

v

Z

Fig. 4.6 : Rectangular waveguide

The guide is formed of four conducting walls, placed at x=0, x=a, y=0 and y=b. The propagation of
the wave occurs along the z direction. As this type of guide is made of only one distinct conductor, it
is not able to support a TEM wave: indeed, no static field can exist inside a hollow conductor made of
a single conductor.

4.5.1 TM Modes
Transverse magnetic modes (TM) have a non zero longitudinal component for the electric field (E, #
0), whereas H, = 0.

The wave equation will thus be solved for e, :

2 2
(Vt2+k§)e2=6 e22+a °2 ke, =0 (4. 42)
OX oy

This equation can be solved using separation of variables. We suppose first that the solution can be
written as

ez =€ (X)ezy (Y) (4.43)
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The wave equation becomes then

— Y —k? (4. 44)

This relation has to be valid for all values of x and y. It is thus necessary that both terms of the sums
are constants :

2
_ &A= X s 3 R

=—k2 , k2 +k2=k? (4. 45)
a2 ey dy y » fx TRy =Fe

ezy

The solutions to these differential equations are given by :

e, = Acosky X+ Bsink, X
e;y =Ccoskyy+Dsinkyy (4. 46)

2 2 2
K2 +K2 =K
and
¢, =(AcoskyX+Bsin kxx)(C coskyy+ Dsin kyy)

(4. 47)
kg +ky =k¢

The six constants A, B, C, D, kx and ky are determined using the boundary conditions: A has to be

equal to zero in order to satisfy the condition that the tangential electric field is zero at x=0, C has to
be equal to zero in order to satisfy the condition that the tangential field has to be zero at y=0. In order
to obtain zero tangential fields at x=a et y=b, we have two solutions : either B or D is equal to zero,
and the solution is trivial, or

k=% K =”T” mn = 0 (4. 48)

We get finally
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e, =E sinMXsinn—ﬁy
z 0 a b
E, =E, sinmxgn%” ye (4. 49)
a
2 2
y =+ki -0 eu

We note that these modes can propagate only for an imaginary v, thus for

1 mz ¥ (nz )

For values blow this angular frequency, y is real and the wave is attenuated in the guide.

4.5.2 TE modes

Transverse electric modes have a non zero magnetic longitudinal component, and the characteristic
equation to solve is :

2 2
o’y o,

+kZh, =0 (4. 51)
o oy?

(V7 +kd |, =
Again, this equation is solved using the variable separation technique, to obtain:

h, =(Acoskyx+ Bsin kXX)(C coskyy+ Dsin kyy)
(4.52)
kg +ky =k¢

The computation of the constants is a little less straight forward than in the TM case. We first derive
the electric field components ex and ey from hy :

_ jou oh, o ja),uky

(Acoskyx+ Bsin kxx)(—C sinky y + D cos kyy)

2oy k2
| e 4. 53)
o,
ey =— Jlj)zﬂ ‘Zhyz __J I('L; y (—Asinkyx+ Bcos kxx)(—C sinkyy + D cos kyy)
C C
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Two constants, B and D have to be equal to zero in order that ey is equal to zero at y=0 and ey at x=0.

Moreover, ex has to be equal to zero at y=b and ey at x=a. The only non trivial solution is given by:

ke =27 K =”T” m+n =0 (4. 54)

and finally:

ms Nz
h, =H, cos— Xcos—
z 0 a b y
H,=H, COSEXCOS% ye /* (4. 55)
a
}/:\/kg—a)zg,u

We note that these modes can propagate only for an imaginary y , thus for

1 mz\* (nz)?
—— e 0.5

For values below this angular frequency, 7y is real and the wave is attenuated in the guide.

4.5.3 Summary

TM Modes TE Modes
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B 2 2
1) 1)
k(l-| = | ., @>ao k(l-| = | ., @>a
® ®
Ez . mzr . - 0
E, sin— xsin—ye?
Hz 0 mz nr  _
H(cos——Xxcos— ye 7?
a b
Ex mz mz_ . Nm  _ joenz mr . nw_ _
L 5 Epcos——Xsin——ye r? J 5—Hocos—xsin——ye r?
akg a bk a
E nc_ . Mr nr  _ josmz .z nr  _
Y L 5 Egsin—xcos—=ye vz —J—ZHosm—Xcos—ye rz
bk¢ a akg a b
Hx joenzr - . mx nr_ _ mz . mzx nr. . _
J 5—Egsin—Xxcos——ye r? 7/—2H0s1n—Xcos—ye r?
bkg a akg a b
H josmr mrz_ . Nm_ _ nrz mr_ . nwr_ _
Y —J—ZEOCOS—XSIH—yC r? 7/—2H0 cos—— Xsin—ye 7?
ak; a b bk a b
Z 2
“ 1{&} £
&
& ®
2
1-| %
®
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4.6 The circular waveguide

The geometry of a circular waveguide is described in
Fig. 4.7. It consist of tube having a circular section of radius a, and supposed to be infinite in the

propagating direction z.
p m /a_.f\ V4
- >

Fig. 4.7 : Circular waveguide

For the same reasons as in the case of the rectangular waveguide, this structure cannot support a TEM
wave. Before studying the TM and TE modes, we will express the transverse fields (§4.1.4) in
cylindrical coordinates:

~1[ de, jou ﬁhz}
ep =—2 +
kL 9p P Op
2L pop op
- (4. 57)
oL | Joe de 8hz}
= y
P 2L e o9 "op
h, = _21 ja)g(aez +1%}
k¢ dp p Op
where
k2=y%+k3 =k3 - p* (4. 58)
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4.6.1 TM modes

We have to solve the wave equation for e, in cylindrical coordinates:

2 2
8—2+li+%a—2+k§ e, =0 (4.59)
op° POP p° op
We apply again the variable separation technique:
e;(p.0)=R(p)P(p) (4. 60)

Which yields:

2 42 2
p_d_R+ p dR pk2 __1a’p (4.61)

The left hand side of this equation depends only on the radial coordinate p whereas the right hand side

only on the azimuthal coordinate @, thus both sides must be equal to a constant ke? :

;d P—k2 d* '; Pk =0
d " d
v’ 4 (4. 62)
P_d_R+£d_R+pzkg K2, p? d’r ,,d_R+R( 2kg_k;)=
R dp? Rdp dp?
The general solution for the equation in ¢ has the form :
P(¢)= Asink,p+Bcosk,p (4. 63)
The solution has to be periodic in ¢, meaning that k,, has to be an integer.
P(¢) = Asinng+Bcosng (4. 64)

The equation in p takes the form :
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2
pzd—§+pd—R+R(p2kg—n2):O (4. 65)
dp do

This equation is a Bessel equation, which has solutions of the following form:

R(p)=Clpn(kep)+ DY (kep) (4. 66)

Jn and Yy, are Bessel function of order n of the first and second kind. Bessel functions of second kind

become infinite at the origin, which would not have any physical meaning. Thus D has to be equal to
zero. We get finally:

e, (p,9)=Jn (kep)(Asinng+Bcosng) 4. 67)

where the constant C has been absorbed in A and B. We have now to determine the cut off wave
number k¢. The boundary conditions imply that e,(p,¢p) becomes zero at p=a. We have thus:

Jn(kea)=0 donc k, =p%am (4. 68)

where ppm is the mth zero of the Bessel function of first kind and order n. The zeros of the Bessel

functions are readily available in tables or numerical databases.

The propagation constant for the TMpy, mode is given by:

2
ﬂnm:ng_kg: k&-[pnmJ (4- 69)

a
and the cut-off frequency by

k p
fo =——t _—_Thm 4.70
m oz ue  2maiue ( )

The first TM mode to propagate is the TM(| mode, obtained for the first zero of the Bessel function of
order zero, pg1=2.405. There is no TMjq, as m > 1. All the components of the electric and magnetic

fields are readily from ez(0,¢).

We notice that the solutions contain two independent variables A and B. The value of the latter will
depend on the source exciting the waveguide. The fact that we have two constants comes from the
circular symmetry of the problem, having solutions with either a sinusoidal or cosinusoidal
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dependency. It is possible to choose either A or B equal to zero, by a proper position and orientation of
the coordinate system.

4.6.2 TE modes
The calculus is the same as for the TM case. The wave equation to solve is:

2 2
5_2+11+L25_2+k02 h, =0 (4. 71)
op~ POP  p” op

Applying the same procedure as for the TM case, we get:

h, (p.9) =3, (kep)( Asinng+ Bcosng) (4.72)

The wave number is obtained using the boundary conditions: e(0,¢) has to be zero at p=a. Using the

beginning of §4.6, we have

e(p(p,(z))= J;U’U(Asinn(p+ Bcosn(z)).]ﬁ(kcp)

c (4.73)

where J'n is the derivative of J;; with respect to its argument. The boundary condition imposes that :

, Pr
Jh(kea)=0 thus Keom = gm (4. 74

where p'nm is the mth zero of the derivative of the Bessel function of the first kind of order n. The TE

modes are thus defined by the cut-off wave number kCnm' The propagation constant is given by

, 2
u 4.75)

and the cut-off frequency by:
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(4.76)

Again, we have m>1. It is interesting to note that the smallest cut-off frequency is the one of the mode
TE11, corresponding to p'11=1.8141. Indeed, p'91=3.832, which yields a higher cut-off frequency for
the TE(] mode.

The TE11 mode is called the dominant mode of the circular waveguide, because it has the lowest cut-
off frequency of all TE and TM modes.
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4.6.3 Summary

Modes TM Modes TE
ke Pnm Phm
a a
®c Pnm Phm
aue a;}yg
o 2 2
Ke 1—{2} , @< Ke 1_£ﬁj , 0< o
@ IO
B 2 2
k 1—(&j , O> @ k 1_(&j , 0> o
@ @
Ez Jn (kep)(Asinng + Beosng)e 7? 0
Hz 0 Iy (kep)(Asinng + Bcosng)e 7?
Ep ;—y(Asinn¢+ Bcos n(/))Jr’](ka)e_ﬂ —%(Acos ne—Bsin n(D)Jn(ka)e_ﬂ
¢ cP
£ n i : jou , .
_kg—p(ACOS np—Bsinng)Jy, (kcp)e 7t k_c (Asm ng+ Bcos ngo)Jn(kcp)e "
Hp jowen ) _ _ . , B
Jk_czp (Acosng-Bsinng)J, (kep)e 7t k—:(Asm ne+ Bcos n(p)Jn(ka)e 7"
e %(Asinn(0+Bcosn(p)\]ﬁ(kC,o)e_7Z —kj/Tn(Acosngo—Bsinngp)\]n(kcp)e‘?Z
¢ cP
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4.6.4 Zeros of the Bessel functions of the first kind

Pnl Pn2 Pn3
2.405 5.520 8.654
3.832 7.016 10.174
5.135 8.417 11.620
4.6.5 Zeros of the derivative of the Bessel functions of first kind

P'nl P'n2 P'n3
3.832 7.016 10.174
1.841 5.331 8.536
3.054 6.706 9.970

Microwaves

92



4.7 Printed microwave transmission lines

References:

S. Ramo, J.R. Whinnery and T. van Duzer, “Fields and Waves in Communication Electronics”, Wiley, 1984,
§ 8.6.

F. E. Gardiol, "Hyperfréquences", volume XIII du Traité d'Electricité, Presses Polytechniques Romandes, § 2.11.
K.C. Gupta, R. Garg & 1.J. Bahl, "Microstrip Lines and Slotlines", Artech House, Dedham MA, 1979

R.K Hoffmann, "Handbook of Microwave Integrated Circuits", Artech House, Dedham MA, 1987

4.7.1 Introduction

Printed microwave circuits gradually replace since the early fifties the more conventional waveguides
and transmission lines, especially in consumer products. Their advantages are their light weight and
bulk and low production cost, while their drawbacks are relatively high losses and the fact they are
dispersive. Indeed and like all printed circuits, they are manufactured using photolithographic
processes, which ensure a high repeatability and easy mass production.

Several kinds of printed circuits devoted to microwaves exist, but the most popular one is without any
doubt the microstrip circuit. In the frame of this course, we will first introduce the stripline, which is
homogeneous and thus non dispersive, then the microstrip line and finally the coplanar waveguide,
which is used manly at mm-wave frequencies, where the losses of microstrip lines become prohibitive.

4.7.2 Stripline
Definition

The stripline structure is illustrated in Fig. 4.8. It consists of a conductive strip sandwiched between
two ground planes.
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3

ground plane

Fig. 4.8: Stripline

This structure is characterized by two conductive surfaces (ground planes) separated by a distance 2h.
The volume between the ground planes is filled by a homogeneous dielectric medium of permittivity
gr. A strip of width w is located between the two planes.

Stripline propagation modes

The analysis of this type of structure is unfortunately quite complex, and no analytic solution to
Maxwell's equations exists for these specific boundary conditions. We will thus concentrate on the
dominant mode only, as in most situations it will be the only propagating mode.

The dominant mode of this type of homogeneous structures is a TEM mode, as the structure is formed
of two distinct conductors: the ground planes and the strip. We need thus to solve Laplace's equation
for this structure, in order to characterize the TEM mode. An exact solution can be obtained using
conformal transforms (see for instance "Stripline Circuit Design", by H.Howe Jr., Artech House,
Dedham Ma, 1974), but this is a complicated procedure which yields results in a cumbersome form.
We prefer here to give analytic expressions that are a good approximation of the rigorous solution, and
which are much more convenient to use.

Propagation constant

In the case of a non magnetic medium, the phase velocity of a TEM wave is given by
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1 c
VvV, = =
N N (4.77)

where c is the free space velocity of light. We deduce the propagation constant :

\Y

ﬂ=£=w\/m=x/;ko
4

(4.78)
Characteristic impedance
The characteristic impedance of a line supporting a TEM mode is given by :
L
Z. = |— 4.79
0= (4.79)

where L is the linear inductance of the line and C its linear capacitance. These two quantities are
obtained solving Laplace's equations numerically, and doing a curve fitting of the obtained solution.
We obtain finally the following approximation for the characteristic impedance :

307z 2h

Ly = 4. 80
° Jer We+0,441(2h) (350
where we is the effective width of the central strip, given by :
0 for 2—":] >0.35
W,
e % - ) 4. 81)
035-—| for <035
2h 2h

These expressions are valid for a central strip which is infinitesimally thin, and have an accuracy of
about 1%. We note that the characteristic impedance becomes smaller when the strip becomes wider.

In a circuit conception process, we often want the inverse relation, yielding the width of the strip as a
function of the characteristic impedance. This is obtained via the following approximation:
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w X for \JerZy <120
— = (4.82)
2h 10.85-v0.6-x  for /e Zy>120
with
x =39 _0.441 (4. 83)

JrZs

Attenuation of a stripline

There are two kinds of losses in a stripline transmission line: dielectric losses and ohmic losses. The
first are the same for all TEM lines and are given by:

3 k tan &

ay [Np/m] (4. 84)

where k is the wave number in the medium and 9 its loss angle :

04§
K= ayerguo = -

c

tano=—
& (4. 85)

The ohmic losses are computed using a perturbation method. We get the following approximation:

0.0027Rsé, Z,
SO A for [, 2, <120
307(2h—t) o

e 01Rs 5 for JerZo > 120 e

Z,2h o
A=1+ ;Vi’t "= (2;h+_tt) 1n(4ht_tj (4. 86)
2h (0_5+o.414t 1 47zwj

b — 2=
(0.5w+0.7t) W 27 t

where t is the thickness of the strip and Rg is the surface resistance of the conductor.
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20 (4. 87)

where o is the conductivity of the metal.

4.7.3Microstrip

Definition

A microstrip line consists of a thin metallic conductor, the strip, placed on one face of a dielectric
plate, the substrate. The other side of the plate is entirely covered by a conductor, the ground plane.
This structure is illustrated in Fig. 4.9.

e

&r
h

ground plane
Fig. 4.9 : Microstrip line

The main characteristics of the line are:

* The relative permittivity of the substrate &,

* The height of the substrate, in general some fractions of wavelength.

» The width w of the strip. This width has usually the same order of magnitude as the
height of the substrate (0.1 h<w <10 h).

* The thickness of the strip, usually small (b/h <<'1).

These characteristics have an influence on :

* The concentration of the electric field in the substrate (no radiation). The higher the
dielectric constant, the more the fields are concentrated in the substrate and the less

the line will radiate.
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* The characteristic impedance of the line, which depends mostly on the permittivity

and the relation w/h.

Propagation modes

In first approximation, we can consider a microstrip structure as the half of a stripline structure (Fig.
4.10).

e

R
Fig. 4.10

In the absence of the dielectric substrate, a microstrip line could be viewed as a bifilar line, constituted
by two conductors of width w separated by a distance 2h (the ground plane acting like a mirror). Such
a structure would support a TEM wave.

The presence of the dielectric beneath the strip makes the structure inhomogeneous in the transverse
plane. The propagating modes are thus hybrid modes. It is indeed easy to understand that such a
structure cannot support a TEM wave : the phase velocity of this mode would indeed be equal to

c/\/& inthe dielectric, while it should be equal to the velocity of light in the air. The resulting

phase mismatch leads thus to the introduction of longitudinal components for the electric and magnetic
fields, so that the boundary condition can be satisfied at the air dielectric interface.

In most practical applications of microstrip lines, the dielectric substrate is electrically thin:

h < 0.05 A. In consequence, the longitudinal components of the electromagnetic fields are very weak,
and we have a quasi TEM mode. This means that the field distribution is very similar to the one
obtained for the structure of Fig. 4.11, where the strip is placed in a homogeneous dielectric. .
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Fig. 4.11 : Equivalent homogeneous structure

This type of structure supports a TEM mode, with the following characteristics:

C

B =koJee (4. 88)
I<e, <&

Microstrip lines have also been studied using numerical techniques, and the obtained results
approximated by analytic expressions.

Effective permittivity of a microstrip circuit

The effective permittivity of a microstrip circuit is the equivalent homogeneous permittivity
simulating best its characteristics. For a zero thickness strip, an approximation of this effective
permittivity is given by :

-0.5 2
ge=%(gr+1)+%(gr—1) (1+12£j +o.04(1—%) for %31

w
- (4. 89)
-0.5
1 1 h w
go=—(er +1)+=(& —1)| 1+12— for —2>1
e =5 ler+l) e e l) w} h
The relative error of these approximations is smaller than 1 % when
W
0.05< " <20 and & <16 (4.90)

We obtain for the phase velocity and the wave length :
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c

¢ 4.91
o o

N

™

Characteristic impedance

For a strip of zero thickness, the following formulas yield a good approximation for the characteristic
impedance of a microstrip line (relative error smaller than 1% for 0.05<w/h<20):

Z;

8h w w
— for —<1
(w 4h} h

27r\/7

-1
zc=—0(%“.393+0.6671n(%+1.444n for %21

(4.92)

where Zy =1207 is the characteristic impedance of the vacuum.

In a circuit conception process, we often want the inverse relation, yielding the width of the strip in
function of the characteristic impedance. This is obtained via the following approximation:

-1
%:4{%6A—6_A:| for %£2
(4.93)
W_a 1y (B-1)+039- 2! 3(5—1—111(25—1)) for ~>2
h  7g &y 7 h
with
z g —1 0.11
A==Crz [2(g +1)+—]023+——
Z, (e +1) gr+1( gr]
(4. 94)
T Ly
2 & ¢

We see that, as for striplines, the characteristic impedance of a microstrip line becomes smaller when

the strip becomes wider.

Attenuation in a microstrip line

There are two type of losses in a microstrip line, dielectric losses and Ohmic losses. The dielectric

losses are given by

Microwaves 100



_ ko&r (g —1)tans

. 2\ (& —1)

where kg is the wave number in free space and d the loss angle of the dielectric.

ay [Np/m] (4. 95)

The Ohmic losses are approximated by :

o = Rs [Np/m] (4. 96)

Ry =, [2£ (4.97)

and o is the conductivity of the metal.

Radiation of microstrip lines

Radiation in a microstrip is linked to the apparition of higher order non guided modes. These
are excited at the vicinity of discontinuities, like a step in width, a bend or the end of the line.
For a line having a characteristic impedance of 50 €, we can compute the frequency fy, for
which the proportion of the radiated power remains smaller than 1% of the total power :

2.144
fon [GHz] = h[Tﬁ (4.98)

For a high frequency application, we should thus select a high permittivity substrate, and/or use a thin
substrate.

Dispersion in a microstrip line

The quasi-TEM approximation used in the sections above neglects the longitudinal components of the
electromagnetic fields, and allows thus no prediction for the dispersion. The concentration of the
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electric fields in the substrate will increase with the frequency, which leads us to think that the
effective permittivity, the propagation constant and the characteristic impedance of the line will be
frequency dependent. The rigorous study of these phenomena is complex and out of the scope of this
course. But for practical applications, we can use the following approximation for the effective
permittivity:

& —€&
ged (f)=6r ———5
1+[f] G
fp
fp= Zc (4. 99)
2hug

G =0.6+0.009Z,

We use ged rather than ge in the computation of the characteristic impedance, the wavelength and the
phase velocity. In the cases when f<<f, this correction is not necessary.
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4.7.4 coplanar waveguides

References:
K.C. Gupta, R. Garg & 1.J. Bahl, "Microstrip Lines and Slotlines", Artech House, Dedham MA, 1979.

T.Q. Deng, M.S. Leong & P.S. Kooi, "Accurate formulas for coplanar waveguide synthesis", Electronics Letters,
Vol. 31, 1995, pp. 2017-2019.

Definition

Coplanar waveguides are meeting a new interest since some years, mainly as transmission lines in the
mm-wave domain (30GHz-300GHz). They are indeed much cheaper to manufacture than traditional
waveguides, and have fewer losses than microstrip lines. A coplanar waveguide is depicted Fig. 4.12.
It consists of a strip situated on the same substrate side as the ground plane. The strip, of width s, is
separated from the ground plane by two slots, of width w. The dielectric substrate has a height h.

/i

Fig. 4.12: coplanar waveguide

Effective permittivity

The effective permittivity of such a structure can be approximated by :

£ =ngH[tanh(IJSSInH+1.75)+%(0.04—0.7k +0.01(1—_‘f—6j(0.25 + k)D
w
(4. 100)
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Again, the effective permittivity allows us to obtain the phase velocity, the propagation constant and

the wavelength by :

Characteristic impedance

The characteristic impedance is approximated by:

, Ag _ At (4.101)

z 0<k<0.707
log ( , 1k j
7, =397 1=k (4.102)
\/g log (2 1+
1k 0.707 <k <1
V4
4.7.6 Summary
Characteristic coaxial cable Waveguides Stripline microstrip
Dominant mode TEM TE10 TEM Quasi TEM
Other modes ™, TE T™, TE T™, TE Hybrids
Dispersion none medium none weak
o ik - ik h1gh .......................
Losses medium small high high
Max. power medium high small small
S bie b T TR
Eo peT T casy easy .......................
manufacturing.
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Integration of difficult difficult medium easy
components : : :
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5. Microwave network analysis

References:

F. E. Gardiol, "Hyperfréquences", volume XIII du Traité d'Electricité, Presses Polytechniques Romandes, Chap
6.

R.E. Collin, "Foundations for Microwave Engineering", Mc Graw Hill, 1992, Chap. 4.

5.1 Introduction

We will see in this chapter how the concepts of low-frequency circuit analysis can be extended to
microwave circuits and networks. We will reconsider familiar concepts like current, voltage and
impedance, find out if and when they can be used in microwave circuit analysis. We will learn to view
currents and voltages as sums of incident and reflected waves. We will then introduce generalized
waves and the scattering matrix as very efficient and practical tools for microwave circuit analysis.

5.2 Voltage, current and impedance

Currents and voltages are difficult to define in the microwave bands, excepted for the case of
transmission lines supporting only a TEM wave. In all other cases, it is not possible to define these
quantities in a univocal way. Moreover, they are extremely difficult to measure in a reliable way.
Nevertheless, Kirchhoff's model is a very convenient tool for describing a circuit, and we would like
to retain it. We will thus try to define equivalent currents and voltages on transmission line,
remembering that excepted for the TEM case, these values are concepts without physical meaning and
are not uniquely defined.

Each propagating mode will be described by a separate voltage current pair.

5.2.1 TEM Modes

The measurement of currents and voltages is very difficult if not impossible at microwave frequencies,
excepted when access ports can be clearly defined. This is the case only for TEM or quasi TEM
modes.

Figure 5.1 illustrates the electric and magnetic fields for an arbitrary TEM transmission line.
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Fig. 5. 1 : Arbitrary TEM line

The voltage difference between the two conductors is defined as :

sz E.dl 5

In the case of a TEM wave, the field has a static behaviour, and the voltage will not depend on the
integration path, as long as the latter goes from conductor + to conductor -. Thus, the voltage is
uniquely defined and there is no ambiguity.

The total current in conductor + is defined by Ampere's law :

|=3[>C+ H-dl 52

where C+ is a closed integration path containing conductor +, but not conductor -. The characteristic
impedance is the written as :

VoL
|

== (5.3)

Where L is the inductance per unit length of the TEM line and C its capacitance per unit length.

5.2.2 Non TEM modes

The situation is less clear for non-TEM modes, as a simple example can show :
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The transverse fields of the TE{g mode of a rectangular waveguide are given by :

Ey (x,y,2)=E 08 iy X ipT Egey (x, y)e_j'gZ
i a (5. 4)

Hy (%, Y,2)=Ey Jﬂ " X mibr hy (x,y)e 1#?

The voltage should thus be defined as

Vv :EO_JZ'U : X Jﬂzj dy (5.5)

This voltage would depend on the x position we place the integration path in the guide, and of the
geometry of this path. The result is clearly different if we choose a path 0<y<b at x=a/2 or at x=0. So
what is the voltage ?

The answer is that in this case there is no "correct” voltage, which could be measured. We may
however define a voltage and a current in many different ways for a non-TEM mode.

In order to obtain useful results, we will follow the following rules in our definition :

» The voltage and current are defined for one mode only. We decide (arbitrarily) that
the voltage has to be proportional to the amplitude of the transverse electric field,
while the current has to be proportional to the amplitude of the transverse magnetic
field.

* In order to enable the use of Kirchhoff's model, the product of the current and the
voltage should yield the power flux of the considered mode.

* The voltage divided by the current should be equal to the characteristic impedance of
the line. The latter should also be equal to the mode impedance of the considered

mode.

In an arbitrary guide, the transverse fields can be expressed as a function of an incident and a reflected
wave. The voltage and current must thus be expressed in the same way :
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: : (5. 6)
Hi (%, y,2) =y (x y)(Eg e 172~ 17
:ht(x,y)(|+ —jﬂ2_|—ejﬂ2)
Cy
We write thus :
V(z)=V*e 1Ly elpt 5.7
1(z)= 1" 1F2_ |~ ¢if? '
The characteristic impedance of this wave is defined (by analogy to the TEM case) as
+ - E+
7, -V YV _GE G 5. 8)

It 1T CES G

If we want moreover that the characteristic impedance is equal to the wave impedance of the mode,
we get :

(5.9)

5.2.3 Impedance concepts
It is important to make the difference between :

* The characteristic impedance of the medium. It depends only on the material
constituting the medium :
Z, =2 (5. 10)
£
* The wave impedance of a mode. It will depend on the type of the mode (TE, TM,
TEM), on the guide, and on the materials used. It is also dependent on the frequency

and the geometry :
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_|E]

Zmod - W

(5. 11)

* The characteristic impedance, defined as the voltage divided by the current. It is

univocally defined only for a TEM transmission line :

vt v~ L
CﬁTiTZE (5.12)

5.3 The impedance matrix

The concepts of voltage, current and impedance defined for transmission lines above can also be used
to characterize microwave components, circuits and systems. The latter will then be defined by an
impedance matrix, obtained from the voltage and current waves flowing on the transmission lines
which are linked to the ports of the element.

References:

R.E. Collin, "Foundations for Microwave Engineering", Mc Graw Hill, 1992.

5.3.1 Impedance of a single port element

The simplest possible microwave component has only one access. Its impedance matrix reduces to a
scalar, defined as the voltage divided by the current, both "measured" at the access of the component,
the reference plane.

refernce plane

Circuit with a single
access

acCess

n

Fig. 5. 2 : Single port element
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V
Zin="—
I (5.13)
5.3.2 Impedance characteristics of a single port element
The complex power supplied to the element is given by Poynting's vector :
P=(ExH -ds=PR +2jo(Wn - W) (5. 14)

S

The E and H fields on the transmission line are by definition linked to the voltage and the current :

Eexy.2)=v (o) L) i

C
) ! (5. 15)
X, i
Ht(x,y,Z)zl(z)—t( y)e 151
C,
Thus, with the chosen definition for voltage and current :
1
CiCy 'I
Thus
1 * %
P=——|VI e xh¢-ds=Vi (5.17)
GG, £

Moreover, the input impedance can be written as a function of the mean power :
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(5.18)

Where P, is the real mean power, W, is the stored magnetic energy and W, the stored electric energy.
We can deduce from the above relation :

. R is proportional to the real power dissipated in the system (losses)

. X is proportional to the mean reactive energy stored in the system
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5.3.3 Impedance and admittance matrices
Let us consider the generic element depicted in figure 5.3. It is characterized by a certain number of
accesses defined by reference planes located on the transmission lines linking the component to the

outside world. These planes, noted t,, are the reference planes between which the component is
defined.

t
+. + +. +

V2l a— — V5 i

B3 +. o+

+. +
V3 ,13 .l < V6 ,16

V3_"i3_4—|— —>V6',—i6'

[Z]

Fig. 5. 3 : Multi-port microwave component and its access ports

An axis of coordinates z; is linked to each transmission line i. By definition, the origin of this axis is
located in the reference plane. We have thus at ports tq, t2, ..., ty

V=V +V,
noonoen (5. 19)
=1y —In
The impedance and admittance matrices characterizing the component are defined by :
Vi=|Z|[I
VI=[2][1] 520
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with

V.
Zi j = I—I
i =0 for k=]
k ’ (5.21)
I
V.
Vv =0 for k= j
In consequence,
. The impedance matrix is obtained in open circuit conditions.
. The admittance matrix is obtained in short circuit conditions.
The impedance matrix is the inverse of the admittance matrix
Y]=[z]" (5.22)

5.3.4 Properties of the impedance and admittance matrix

5.3.4.1 Reciprocity

Let us consider the case where the basic conditions for Lorentz' reciprocity theorem are respected, thus
the case where the component is isotropic, linear and passive. Consider the component depicted in
figure 5.4, where all the accesses excepted for two are short circuited. Consider now Ey, Hy, Ep, et Hy

which are due to independent sources located somewhere in the circuit. Lorentz' reciprocity theorem
states that :

$Eq xHp -ds =§Ep, x Hg -ds (5.23)

S S

where s is a closed integration surface enclosing the component.

We select the closed surface s as the external limit of the component passing through the reference
planes, such that E{3,=0, excepted for reference planes 1 and 2. (If the transmission lines are made of

conductors, this is always true. Otherwise, we can always select a surface sufficiently far away so that
Etan 1s negligible).
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a1

[Z]

a

Ep.Hp

Fig. 5. 4 : Illustration of the reciprocity principle

The only contributions to the integrals come then from reference planes 1 and 2, the only ones which

are not short circuited.

We write on these planes :

e h
Eia :Vlac_ll Hia = IlaK_l
1

e h
E1p =V1bC—1 Hip = |1b?1
1 1

e h
Esa =Vzac_22 Ha = |2aK_22
hy

e
Eop :V2bc_22 Hop = lop <

And the reciprocity theorem becomes :

Microwaves
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But, by definition

Thus

We have

Thus

1
(Vialib ~Viphia )Ll CK oL hy-ds+

1
(Vaala _V2b|2a)_[52c i €2xhy-ds=0

212

ethl‘dS:j e2Xh2'dS:1

'[Sl Cl Kl 51 C2 Kz

Vialib =Vipha +Vaalop —Vaploa =0

I =YV + Y12V
lo =Y5 V] +Y20V,

(ViaVab —VipVaa ) (Y12 = Y21) =0

This relation has to hold for any sources, thus for any voltage. This means that :

Yi2 =Ya1

(5. 25)

(5. 26)

(5.27)

(5.28)

(5.29)

(5. 30)

This relation can be generalized to all the ports of the component. We can thus write in a general way,

for a circuit or component having neither active elements, plasmas or ferrites that :

Thus the impedance and admittance matrices are symmetric for a reciprocal component.

Microwaves

(5.31)

117



5.3.4.2 Lossless circuit

Let us consider a lossless component with N ports. We can write that for this component the average
power consumed by the circuit is zero

Re{P,,}=0 (5.32)
By definition of the voltages and the currents at the ports, the mean power delivered to the component

is given by :

P =[VI'[IT (5.33)
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Which can be written in term of the impedance matrix as

P =([2]01]) 11T

=01 zZInT (5.34)
N N

= Z Z |mzmn|:
n=1m=1

The currents I, are independent, thus the real part of each m=n term has to be zero :

Re{InZnnI:}:|In|2Re{Znn}:O (5. 35)

We deduce from this that the diagonal terms of the impedance matrix of a lossless circuit must be
purely imaginary.

Re{Zp,}=0 (5.36)

We suppose now that all the currents flowing into the circuit are equal to zero, excepted for

In and Iy, We write

%

Re{(lnl,’; n |m|n)zmn} =(Inlm+ Il JRe{Zm} =0 (5.37)

From which we deduce that

Re {Zmn }=0 (5. 38)

We have thus shown that the impedance (and admittance) matrix of a lossless component has to be
purely imaginary

5.3.5 Examples of impedance matrices
1) Transmission line

Consider the transmission line section depicted in figure 5.5
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1(0) | > I(d)
> >
u©) | | I U

Fig. 5. 5 : Transmission line of length d

Its equivalent two-port is given by

Fig. 5. 6 : Equivalent two-port

Where, by definition
U;=U(0),1;=1(0), (5. 39)
U, =U(d),12=-1(d) '
Knowing that
U(z)=U,e7*+U_¢""*?
(2)=U, e +U_e (5. 40)
1(z)=1 e 7?—1_e™?
We write
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U(d)=U,e7%+u_et7d
1(0)=1,-1_  1(d)=1,e79-1_¢"d

The impedance and admittance matrices are then written as

{Ul}:{zll Zu}{h}
Us | [Zo1 2l a

coth(yd
. (rd) sinh (yd) {ll}
~4c
1 I
coth(yd 2
sinh (yd ) (rd)
{ I } {Yn le}{ul}
L] [Yar Yoz J[U2
-1
coth(yd) ———
y (rd) sinh (yd ) [Ul}
=Tc
— U
—— coth(yd 2
sinh (yd) (rd)
2) Equivalent T circuit of a reciprocal two-port
A reciprocal two-port has the following impedance matrix :
{Zl 1 Zi2 }
Zip Iy
It can be represented by an equivalent T circuit
> I ———
Uy Ze U2

Microwaves
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Fig. 5. 7 : Equivalent T circuit of a reciprocal two-port

where

Zya=1Z11-1L
Zy=~Ly -1y
Zo=1y,

example : equivalent T circuit of a transmission line section

Il Za Za 12

— l -
Z

Uy C U2

Fig. 5. 8 : Equivalent T circuit of a transmission line section

with

Za = Lcaract (COth (7/d ) -

ch(yd)-1 d
= Zcaract (Sll’gh—(;d)) = Zcaract tanh (%}

_ Zcaract
¢ sinh ( yd )

3) Equivalent 77circuit of a reciprocal two-port

A reciprocal two-port has the following admittance matrix :

Microwaves
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{Yn le}
Yio Yo

Such a two port can be represented by an equivalent IT circuit

> .' | —g
Uy Y, Yy U,

Fig. 5. 9 : Equivalent /7Zcircuit of a reciprocal two-port

with

Ya=Y11+Y12
Yp =Y22 + Y12
Ye =12

Example : equivalent IT circuit of a transmission line section

> .' | —<¢
Uy Yo Ya U2

Fig. 5. 10 : Equivalent /7Zcircuit of a transmission line section

With
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1
Ya =Ycaract (COth(ﬂ/d)— Sinh (7d )J

ch(yd)-1 yd
=Ycaract (snﬁh—(}zd)J = Ycaract tanh (7] (5.48)

— Yca ract

¢ sinh(yd)
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5.4 The scattering matrix

References:
R.E. Collin, "Foundations for Microwave Engineering", Mc Graw Hill, 1992.

F. E. Gardiol, "Hyperfréquences", volume XIII du Traité d'Electricité, Presses Polytechniques Romandes, chap.
6

We have seen in the preceding sections that voltages and currents are not really well suited for the
microwave range. One of the direct consequences of the non uniqueness of these values are that they
are often not measurable. They can thus be used for the theoretical characterization of circuits and
components, as we have seen above, but these theoretical impedances and admittances cannot be
corroborated by measured results. This is why we introduce normalized wave amplitudes, which are
linked to power, in order to characterize microwave circuits.

5.4.1 Normalized wave amplitudes
We define the normalized waves amplitudes a and b as

Vi + Zgi b Vi — Zily

a = » O =
242 242

(5. 49)

Note : These normalized wave amplitudes have the dimension of the square root of the power, and
power is easily measurable in microwaves.

The inverse relation is given by

V= Za (3 +by) i = D) (5. 50)

Zci

These normalizes amplitudes are defined on the transmission lines linking the ports of a component.
But on these transmission lines, we have :
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v =vi e 1Py gt Ipt

. . (5.51)
i =it e 1P 4i eI
From which we deduce
d; =—Vi+ e—jﬂZ
[7 .
“ (5.52)

b = Vi oA
\/Zci
Thus

* aj: isa purely progressive (incident) wave giving the signal (square root of the power) flowing
into the port i

* bj: is apurely retrograde (reflected) wave, giving the signal flowing out of the port i.

5.4.2 Reference planes

A microwave component is defined between its ports, which are planes transverse to the transmission
lines linking the component to the outside world. On these planes are located the origin of the
longitudinal coordinate zj related to the transmission line i (figure 5.11)

/(1

Fig. 5. 11 : Microwave component with its reference planes

By definition, the reference planes have to satisfy the following criteria :

The reference planes are sufficiently far away from the component, to ensure that all evanescent
modes have decayed.
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*  The transmission lines support only the dominant mode.

e The transmission lines are lossless

The active power at port i is given by

P = Re| v | :Re[(ai +by)(af _b;")] = laif* - (5.53)

|ai|2 is thus the active power flowing into the component at port i, while |bj|? is the active power
flowing out of the component at port i.

5.4.3 Scattering matrix of a component

A microwave component is characterized as a function of the generalized wave amplitudes flowing on
the transmission lines at the reference planes (figure 5.12). It is then characterized by its scattering
matrix as :

Reference p lanes
Y iy
G q‘_l a4
l |
by - / -~ { —I—b- by
ta t
B el 5| as
| |
by - —|—p-h5
t3 % tﬁ
a3 - : 7 | ”
| . o T"_I
b - —!—.—]’Jﬁ
[51

Fig. 5. 12 : Microwave component with its reference planes

[b]=[s][a] (5. 54)
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with

Sij = (5.55)

5.4.4 Properties of the scattering matrix

 The impedance matrix characterizes a component between open-circuits (Zjj = vi/ij, 1x=0
for k#j), while the admittance matrix characterizes a component between short-circuits (Y
= 1j/vj, k=0 for k#j). The scattering matrix characterizes a component between matched
loads (Sjj = bi/aj, ax=0 for k#)).

* The term s;j is the transfer function of the signal between port j and port i.

» The scattering matrix depends on the component itself, but also on the environment of the
component through the transmission lines.

* Changing the characteristic impedance of the transmission lines means changing also the

scattering matrix.

5.4.4.1 Reciprocity

In the case of a passive, linear and isotropic component, we have seen that

Zij :Zji (5. 56)

It is easy to show through matrix transforms that for a reciprocal circuit

Sij =Sji (5.57)

Thus, a reciprocal circuit has a symmetrical scattering matrix.
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5.4.4.2 Lossless circuit

A lossless circuit is circuit where no active power is dissipated. This means that for such a circuit, the
sum of the active power flowing into the circuit must be equal to the active power flowing out of the
circuit :

3 lail” =S |bif? (5.58)

In a matrix notation, this is equivalent to

[a][a]-[b][b]=0 (5. 59)

Where the tilde sign means the transpose complex conjugate of a matrix :

t
[a]=|a" | (5. 60)
Moreover, by definition,
(5.61)

Thus

[a]{[]-[S]s]}[a]=0 (5. 62)

This can be written as

%s-*-s- PR L R (5. 63)
_lljlk—Jk Jk_OSij;tk .
1=
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5.4.4.3 Moving the reference plane

The origins of the axes zi, thus the position of the reference plane, are arbitrarily defined, as long as
we are in single mode propagation. It can thus be interesting to study the effect of a translation of the
reference plane along the axis on the scattering matrix (figure 5.13).

-

&

th

—

|
|
[S]
%!
|
|
|
|
|
i—»
b, a—I
D |
[ST]
g
| |
| |
| |
| |
Az
-

Fig. 5. 13 : Translation of the reference plane

The normalized wave amplitudes a';j et b'j linked to the translated coordinates system can be expressed
in term of the normalized wave amplitudes a;j et b;, linked to the original coordinate system, by

a'i = g; e—jqf,
b =bj el (5. 64)
¢ = A,

But we have also
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[b7]=[s"][a] et [b]=[S][a] (5. 65)

We write

S'ii =S5jj enga, (5. 66)
And in general

(5. 67)
b']=| diag ¢ |[b]
With
el g 0 |
[diag elﬂz 0 el : (5. 68)
0 elon
Thus
[b']=| diag e}* |[5]| diag 17 |[a]
[5]=| diag 17 |[]| diag 7 | (5. 69)
S'ij S” ej(qu+¢j)

5.4.4.4 Relation between impedance matrix and scattering matrix

We define the two diagonal matrices
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2.Z¢ (5. 70)

|

[F]z{diag 2\/12:

(5.71)

and

[2]=[F]"' [+ [s11-[s]] ' [F]G] (5.72)

where [1] is the identity matrix.

5.4.5 Flow charts

The terms of the scattering matrix are transfer functions, linking an input port to an output port. They
can be represented graphically by flow charts.

example 1 : two-port
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> O B O >
11 $22
by S12 )
¢ O < O ¢

Fig. 5. 14 : Flow chart of a two-port

example 2 : three-port

a 521 b,
> Q t> O >
511 $22
b $12 a
< <
$31\1 523
513 532
$33
A

Fig. 5. 15 : Flow chart of a three-port

example 3 : two two-ports cascaded

Microwaves
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a SH1 by='a; 591 b
51 ) 11 s'y
b 1 S 12 s' 12 3'2
~¢ O < < O
a='b;

Microwaves

Fig. 5. 16 : Cascaded two-ports
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5.4.5.1 Flow chart reduction rules

1) multiplication

a Sl
> O s

O
A

a Sl'Sz
> O P

Y
Q
Y

J

Fig. 5. 17 : Two flow chart in series

2) addition

51

$2

.
—P O s

Sl+82

o)
\

Fig. 5. 18: Two flow charts in parallel

3) retroaction

$2

v
O
74

1-5152
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Fig. 5. 19 : Retroaction of two flow charts

5.4.5.2 Example

Find the reflection coefficient at the input of a reciprocal two-port terminated by a short circuit

a) 521 by
> O B oO—»
r=? 511 522 =
by $12 )
¢ O <
a $21
> O >
,—> -1
S
Fin: ? b 11 1+522
1 $21
¢ O =
a1
>
2
,—> S 521
_p 11 o
in ¢ b
¢
a
>
2
21
I'. =s;,+
in °11
~

Fig. 5. 20 : Reduction of flow chart
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5.4.5.3 Example : two cascaded two-ports

a $71 by=a'y 521 by
> O B O s O >
S11 599 S S22
bl S 12 s' 12 a'2
¢ O < < O |
a2=b'1
First stage : we look for the possible paths going from aj to bq :
a) 521 by=a;
> ) l‘,\ )
S11 522 11
by S12
- O <
a2=b'1

Stage two : we reduce
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a $21

- O B
11
511
b S ]
1 12 1-s 11 822
¢ O <
a1
-
S'11
S11%%21812
o1 1-s'1189p
|
Stage three : we look for the possible paths going from aj to b'2 :
2y 521 by=a'; 591 by
- O P O B O -
$22 3'1 1
a2=b'1
Stage 4 : we reduce
1
a 591 I-s'189) s by
O s O—»—0 s O -
521571
1 -S' 11 S22 b'
al 2
- O B> O >
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Stage 5 : we look for the possible paths going from a'p to by :

b2=a'1
522 S11

by 512 s'1o aly
- O < < O -

a2=b'1

Stage 6: we reduce
1
by 512 1-5558'1] 12 )
- O < O—4—00 < O -
512512
1 a'
by 1892811 2
~¢ O < O ~¢
Stage 7 : we look for the possible paths going from a'y to b?' :
by=a'y S21 b'y
s O >
S s' s'
22 11 22
S'12 ay
< O -
a2=b'1

Stage 8 : we reduce
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71 b

> o >
522
Sl
1-s', s ' 22
11522 Sy a
4 O—
b'y
>
522
227512571 =
-s'. .8 ,
11522 a')
-

And we get finally the scattering matrix of two cascaded two-ports :

5) + $215128 "1 12812
{bl}: 1-511"Sp 1-5558" {al}
b’y $218'21 5yt S'128182 |2
1-5s'"182 1-58"152

5.4.6 Summary of the general characteristics of the scattering matrix

. sijj - transfer function between port j and 1
. Sjj : reflection coefficient at port i
2 PR . C
. ‘Si j ‘ = P—' normalized transferred power from j to 1
. The scattering of a reciprocal network is symmetric
. The scattering matrix of a lossless network is of the type [S][g ] = [1]
. The scattering matrix of a matched network has zeros on its main diagonal.

5.5 Voltage standing wave ratio

Microwaves

(5.73)

140



The voltage standing wave ration, or VSWR, is another useful mean to characterize the refflection
coefficient at the ports of a device. It results from the fact that a reflection at a port will induced a
reflected wave along the feeding line. This reflected wave will combine itself to the incident wave, in
order to form a standing wave (fig. 5.21)

Transmission line

| | device

U]

Fig. 5. 21 : standing wave

The voltage in the transmission line is given by :
Ui =*,ZCi (ai+bi):«/ZCi (ai+siiai) (5.74)
Ui(z)zw/Zciai(z)[Hsii eziﬁz} (5.75)

The modulus of the voltage can be written as

Ui (2)] = yZat [as (2 [1+ sl cos(+ 252) ] s sin? (9+282)

Thus

(5.76)
‘Ui (Z)‘ = \/Z_Ci‘ai (Z)‘\/1+|Sii |2 + 2|Sii |COS((0+ 2,82)
Let us now consiider th eminimum and the maximum values of the modulus of the voltage :
U ax :\/ZTi|ai|(1+|sii|) en ¢+2pz; =2nx 57

Umin =\/Z_ci|ai|(1_|sii|) en p+2pz =(2n+1)x

and take the ratio between these values, which is called the voltage standing wave ration :
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|Umax| _ 1‘|'|sii|

ROS =VSWR = =
|Umin| 1_|sii|

(5.78)

For a matched load, the reflected vave is equal to zero, and thus the VSWR is equal to 1. For
a total reflection the VSWR is infinite. Examples of standing ewaves for different reflection
coefficients are depicted in figure 5.22.

511 =1
511=0.4

511=0

o
o
o
Y
= F
o
~a
2
o
<
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6. Microwave components

6.1 Single port element

The scattering parameter of a single port element is a scalar, the reflection coefficient.

a
>

sj=p=I

b
<

Fig. 6. 1 : Component with a single access

Its flow chart is elementary (Fig. 6. 2)

a
>

a

f s11=p=Il
b
-

Fig. 6. 2 : Flow chart of a single port element

6.1.1 Lossless single port element

To be lossless, a single port element must have

which is equivalent to

bl

—r=ls|=1

g

Thus, a lossless single port element is an element giving a total reflection

Microwaves
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s=el? (6.3)

There are two particular cases, the short circuit with

b=-a=s=-1 (6.4)

and the open circuit, where

b=a = s=1 (6.5)

The short circuit is a very important device in microwave measurements, as it is used to set the
reference planes of the devices under test. Mobile short circuits are also of interest for microwave
measurements, as this allows presenting a reflection with a controlled amplitude and phase. Fig. 6. 3
illustrates some waveguide mobile short-circuits.

spring/éontact
YA, //\/g

N\

YA,

/
N 7
7777777777777

A g/4
<>

Fig. 6. 3 : waveguide short circuits

6.1.2 Matched single port element
A single port element absorbing all the incident power is characterized by a zero reflection coefficient:
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Sii =0 (6. 6)

Note: it is manifestly not possible to match a lossless single port element.

Matched loads are again very useful for microwave measurements. Indeed, as the s parameters are
defined between matched loads, all the accesses which are not concerned by a measurement have to be
terminated by a matched load during measurement.

There are different technologies to manufacture matched loads: For relatively low frequencies, a
resistor of the right impedance will generally do the job. At microwave frequencies, loads made using
absorbing materials are preferred, as they give a better match. Examples for waveguides are shown in
Fig. 6.4

LT T

N

LTy Ty o oo

A/,

NN

A A

Fig. 6. 4 : Wavguide loads

N\

6.2 Two-ports
The scattering matrix of a two-port has four terms:

[s]:[s“ 312} 6.7)

S21 S22

where the terms on the diagonal are the reflection coefficient at the ports, and the terms outside the
diagonal the transfer function between the ports. The flow chart is shown in Fig. 6. 5.
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ay 821
> B >
< < <
b, 12 a

Fig. 6. 5 : Flow chart of a two-port circuit

6.2.1 Characteristics of two-ports

. For a reciprocal two-port sp1=s12
. For a lossless two-port

|311|2 +|321|2 =1

Isi2]* + s ]* =1

* *

S11812 +821822 =0

. For a lossless reciprocal two-port
[st1] =522
. In the case where
S11 =522
the two-port is said to be symmetric

. For a matched two-port
Sj1 =82 =0

6.2.2 Matched attenuator

%)= Lloz Sid

It is a reciprocal component that attenuates the power between the input and the output. The
attenuation level is defined as:

2
LAlelogi:IOIOg%zlmog ! 5 :—2010g|512|
£ oo [s12

Microwaves
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(6. 10)

6.11)

(6. 12)

(6. 13)
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A matched attenuator is absorbing power, and is thus a lossy component. Attenuators may be fixed or
variable. The first is used only when a fixed amount of attenuation has to be provided, for instance in
order to protect a device. In most of measurement setups however, variable attenuators are used, and
two examples are shown below.

Example one: rotary waveguide attenuator.

This attenuator design is shown in Fig. 6. 6. It consists of three section of circular waveguide, all
loaded by a thin resistive sheet in their central plane. The middle section can rotate around the central
axe of the cylinder.

rectangular to
circular waveguide
transition

circular waveguides

\

fixed blade

mobile blade

fixed blade

rectangular to
circular waveguide
transition

Fig. 6. 6 : waveguide attenuator

The principle of attenuation is explained in Fig. 6. 7.
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2 *Ecosze * Ecos26

] e A D
N 7

Fig. 6. 7: rotary waveguide attenuator

Ecos6sin®

At the input of the device, the electric field is vertical (corresponding to the dominant mode of the
rectangular waveguide TE,¢). At the input of the fixed cylindrical waveguide, the field is vertical, thus
orthogonal to the absorbing blade. The field will thus not be affected by the latter. At the input of the
mobile section, the field is vertical, making an angle 6 with the absorbing blade. The field can be
decomposed in a component parallel to the blade and in a component orthogonal to the blade. The
former will be absorbed travelling through the waveguide section, while the latter will not be affected.
The field encounters now the last absorbing blade in the third circular section. It is again decomposed
in two componsnt, parallel and perpendicular to the blade. Again, the former will be absorbed, the
latter unaffected. Thus, at the output of this third circular waveguide, the field is again vertical, but has
been attenuated by a factor of cos’0.

Example two: T attenuator.

An attenuator working in the lower frequencies of microwaves can also be made of lumped resistors.
In this case, a T circuit is often chosen (Fig. 6. 8)

R1 R1

—1 T

R2

Fig. 6. 8 : T attenuator.

It can easily be shown that if the attenuator is matched, we have:

_ZE-RY

R
27 R

(6. 14)

and that the attenuation is given by
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Z.-R
—20logsy = —2010g(zc—+RlJ (6. 15)
c 1

where Zc¢ is the characteristic impedance at the ports of the attenuator

6.2.3 Phase shifters

The scattering matrix of a reciprocal lossless phase shifter is given by :

[S]=| . (6. 16)

The easiest way to manufacture a phase shifter is just to insert a length of transmission line.
Indeed, the scattering matrix a length of matched transmission line s given by :

0 e IBL
[S]=| . (6. 17)
e 1AL 0

where B is the propagation coefficient in the line and L the length of the line.

Many measurement setups require for elements with variable phase shifts. An example of realisation is
the Fox phase shifter. Like the variable attenuator, it consists of three sections of circular waveguides,
terminated at each end by a circular to rectangular waveguide transmission. The central section is
mobile, and the three circular waveguides are loaded by a slab of dielectric in their centre, as depicted
in Fig. 6. 9.
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M4

M 2

M4

Fig. 6. 9 : Fox ' phase shifter

Again, the electric field is vertical at the input of the device. It will thus arrive vertically at the input of
the first circular waveguide, which is called a quarter wave line. It effect is explained in Fig. 6. 9.
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Quarter wave line

* /TN

mode 2 mode 1

linear polarization
(By-B,)l=n/2 circular polarization

Fig. 6. 10 : Quarter wave line

A dielectric slab is located at the centre of the waveguide, making an angle of 45° with the field. The
field is thus decomposed in two components, one parallel and the other perpendicular to the slab. The
former will not be affected by the dielectric, whereas the latter will be slowed down due to the
dielectric material. The length of the guide is selected in such a way that the two components will have
a 90° phase shift at its end. The field is thus circularly polarized at the end of this guide.

The signals enters then in the second waveguide, which is a half wave line (see Fig. 6. 11)

Half wave line

/]
/ AN
6 0
mode 2 mode 1
circular polarization : .
(B, -B..)l=n inverted circular
172 polarization

rotation of +0 = phase shift of +06 for noth components
Fig. 6. 11 : Half wave line

This time the length of the line is such that the two field components will have a phase difference of
180° at its end. The rotation sense of the circular polarization will thus be inversed. Moreover, as the
slab makes an angle 6 with respect to the slab in the quarter wave line, a phase shift of 6 will be added
to both components of the field. The signal goes then trough a fixed quarter wave line, where the
dielectric slab makes an angle of —0 with respect to the slab of the half wave line. Due to this quarter
wave line, a phase shift of 90° will be added between the two components of the field, thus leading to
two fields having the same phase (90°+180°+90°=360°), and the two components are recomposed to a
vertical linearly polarized field. Moreover, another phase shift of 8 due to the rotation is added to the
field (fig. 6.12)
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Quarter wave line

circular polarization (Bl-BZ)I:n/Z

linear polarization

Rotation of -6 = phase shift of +6 for both components

Fig. 6. 12 : Quarter wave line

Thus finally, the signal 's phase is shifted by a factor of 26 (plus the phase shift due to the length of the
transmission lines, which is fixed).

6.2.4 Non reciprocal two ports

An isolator is a non reciprocal element, which lets the signal flow in one direction but blocks it in the
other direction. It is a very useful element to protect components from parasitic reflections (sources for
instance, which are very sensitive). The scattering matrix of an ideal isolator is given by :

[s]:ﬁ g} 6. 18)

A gyrator is a particular case of a non reciprocal phase shifter, where difference of phase shift in the
transfer function of the two directions in 180°. If the reference planes are chosen properly, the
scattering matrix of a gyrator is

[s]= ﬁ _01} (6. 19)

6.2.5 Frequency depending two-ports (filters, etc.)
The scattering matrix of a frequency depending two port is given by

[S] {Sﬂ(a}) 12 (a))} (6. 20)

si2(@) s (o)
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The specific case of the filter will be treated in chapter 7.

6.3 Three-ports
The general scattering matrix of a three-port is given by

S1t S12 513

[S]=|s21 s 23

S31 S32 S33

and its flow chart by
a 521 b,
> Q > O >
511 $22
b; 512 2
- ¢
$23
513 532
$33
A

Fig. 6. 13 : Flow chart of a three-port

6.3.1 Characteristics of a three-port

. For a reciprocal three-port, s21=S12, $23=532, $13=531

. For a lossless three-port

Microwaves
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3
ZS;}Sik 25”( j,k=1,2,3 (6.22)
i=1
. For a matched three-port
S]] =S =533 =0 (6.23
. A three port cannot be at the same time lossless, reciprocal and matched, as is easily
shown as follows: let us imagine that it would be possible. The losslessness relations

would then be written as:

|SIZ|2 +|Sl3|2 =1
|512|2 +|S23|2 =1

|523 |2 +|Sl3|2 =1

(6. 24)
513823 =0
S12523 =0
S12513 =0

Suppose that s;3 is non zero. We deduce immediately that so3=0 and s12=0, which is incompatible
with the second relation above. The same contradiction is obtained when we start with s23 or s12

different from zero.

As it is not possible to have a three port device which is matched, reciprocal and lossless, we want to
check if we can at least have a three port device which is lossless, reciprocal and matched at two of its
ports, that could for instance work as a power combiner. It can however easily be shown that the only
lossless reciprocal three-port matched at two of its ports is not very interesting, as the non matched
port is entirely decoupled from the two other ports. Its scattering parameters are given by:

‘Sij‘:‘sji‘:|3kk|:1 with i,j,k=1,2,3 (6 25)

and its flow chart in Fig. 6. 14.
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o—+b——0
$33
A
a3 b3y

Fig. 6. 14 : Lossless reciprocal three-port matched at two ports

We may however have a three port which is lossless, reciprocal and "nearly" matched at two of its
ports. Its scattering matrix is given by

€ S12 313
[S] = 312 £ 323 (6 26)
S13 Sp3 833

where € << 1, and reference planes 1 and 2 have been selected in way that ¢ is real. Energy
conservation rules gives us that

2 2
€2+|312| +|Sl3| =1 (6 27)

2 2
€2+|512| +|523| =1 (6 28)
8(312 +312*)+Sl3823* =0 (6 29)
&ESy3 + 512*323 + 513*533 =0 (6 30)

from the two first, we find easily that

|s12| =523 (6.31)

* %
8(312 b) )+513523 =0

Using this result and (6. 29), we write that
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|Sl3|:1[2€Re(312) ~\/E (6 32)

. 2 2 .
Using &2 +|Sl2| +|Sl3| =1 (6.27), we can then write

[s12] =126 Re(513) &> = 1-2Re(s5) ~ 1 (6. 33)
Moreover, &2 +|812|2 + |Sl3|2 =1 (6. 27) set the amplitude of s;3 :
[s33]= [si2] (6.34)

In conclusion, it is possible to have a three port which is lossless, reciprocal and nearly matched at two
of its port. The third port will however be heavily mismatched. An example of this type of device is
the slotted line, used in waveguide measurements.

6.3.2 The circulator

A non reciprocal three-port can be lossless and matched. In this case, the losslessness relations are
written as :

|521|2 +|S31|2 =1
|512|2 +|S32|2 =1

|523 |2 +|Sl3|2 =1

(6.35)
%k
S12813 =0
%
821823 =0
%
831832 =0
We suppose again that s; is different from zero. We get
S13 ¢02>312 :0:>|S32|212>531 :0:>|521|:12523 :03|513|:l (6 36)

We may choose the reference planes in a way that the non zero terms are real, and we get the
following scattering matrix :
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(6.37)

[5]-

S~ O
- O O
[ R

This element is a circulator, and its flow chart is depicted in Fig. 6. 15.

> 0 B O >
b )
¢ ¢
1 1
1 2
A
a3 o3y 3

Fig. 6. 15 : Flow chart of an ideal circulator

6.3.3 Power splitters and combiners

An useful application of a three port device is the ability of splitting the power from one input into two
outputs, or to combine the power from two inputs into one output. Unfortunately, as we have seen
above, we will not be able to design a device which is matched and lossless and able to act at the same

time as splitter and divider.

Let us consider first the problem of splitting the signal (or power) into two branches. In this situation,
as we do have only one input, we can realise a device which is reciprocal, lossless and matched at one
of its ports, the input. This can be done using three sections of transmission lines, as depicted in Fig. 6.

16.
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\Vi V)
2
A JAY
U U

Fig. 6. 16 : power splitter made by transmission lines

The condition that the input (port 1) is matched is given by:

_ %Ll
Z 2+ 23
provided that output 2 and 3 are terminated by matched loads.

1 (6. 38)

In cases where all three ports can serve alternatively as inputs and output, we have seen can
we cannot have losslessness, reciprocity and all ports matched. Thus, we have the choice of
either adding losses, or allow a mismatch at the ports.

An example of the latter is shown below. It consists of three identical sections of transmission
lines, connected in a way to have a perfect central symmetry of the structure (Y junction).

Microwaves 159



vV

Zo z

NN n N
\VAREEAVERV) \V

Zo

Fig. 6. 17: non matched symmetrical power splitter (Y junction)

In this case, the reflection coefficient at all the ports is identical, and we can place the
reference planes in a way that this coefficient is purely real. All the transmission coefficients
between the ports will also be identical, due to the symmetry of the structure and the reference
planes. Thus, we can write :

S;1 =S =S33=A

. (6.39)
S12 =813 =53 =B+ JC
As the device is lossless, the energy conservation relations can be written as :
2 2 2
A“+2B“+2C- =1
s (6. 40)

2AB+B%2+C%=0

These two equations define a closed curve in the A,B,C space (see Fig. 6. 18). The maximal
reflection coefficient is given for uncoupled ports (A=1, B=0, C=0) and the smallest possible
reflection is obtained for (C=0, B=-2/3, A=1/3). In this latter case, the VSWR is equal to

I+-

VSWR =—f=2 (6. 41)
1——
3
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0.1 ca \

o7 08 09 1

Fig. 6. 18: Solutions for the s parameters of a symmetrical three port junction (Y junction)

As mentioned above, another solution to the problem of a three port serving as power splitter and
power combiner is to allow for losses. A very simple crude solution is the resistive matched power
splitter, shown in Fig. 6. 19.

n
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Fig. 6. 19: resistive matched power splitter

It is easy to show if we want this circuit to be matched at its three port

z

R :70 (6. 42)

The scattering matrix of this device is given by

0 1
[S]:%l 0 (6. 43)
11

O = =

Thus half the power is lost in the resistors!!

A more clever device, which can work as power splitter and power combiner is the Wilkinson divider.
An example of Wilkinson divider realised in microstrip technology is illustrated in Fig. 6. 20.

Fig. 6. 20 : Microstrip Wilkinson divider

To understand the way this devices works, let's start from its layout shown in Fig. 6. 21.

Microwaves
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Fig. 6. 21 : Wilkinson divider layout

We see that it consists of three transmission lines at the three port, where port 1 and 2 and ports 1 and
3 are linked by a quarter wave line of impedance \/EZO . Moreover, a resistor of value 2Zo is located

between ports 2 and 3. A transmission line equivalence to this circuit is depicted in Fig. 6. 22.

Z0
3z,
223
Z0
A
P

Fig. 6. 22: Wilkinson divider

We notice that this equivalent circuit has an horizontal axis of symmetry. We normalise all the
impedance to Zo, we enhance the symmetry by splitting the resistor and the impedance at port 1, and
we add two voltage sources at ports two and three Fig. 6. 23)., where Z and r are unknowns to be
determined in order to achieve the match at all three ports.
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Vg2

C) Vg3

7
Fig. 6. 23 : Symmetric equivalent circuit of Wilkinson divider

M4

We will now excite ports 2 and 3 first using an even mode (Vg2=Vg3=2 V) then using an odd mode
(Vg2=-Vg3=2 V). The superposition of these two modes yields Vg2=4 V et Vg3=0.

Even mode :

In this case, Vg2=Vg3 =2 V. As a consequence, V2=V3 and no current flows through the two
resistors 1/2, or through the short circuit between the transmission lines at port 1. The circuit of fig
6.23 can thus be divided by introducing two open circuits, as depicted in Fig. 6. 24 (where the
grounded parts of the lines are not shown).

port2

-+

2 +V1
™ 4 (2 2V

0.C. 0.C.
Fig. 6. 24 : even excitation

Looking into the circuit from port 2, we see an impedance equal to :

e 27
ZinZT

as the transmission line acts as a quarter wave transformer. Thus, port 2 will be matched for Z = 1/5
and all the power will be delivered to port one, as no current flows through the resistor. In order to

(6.44)
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determine s,;, we need to compute V1, that we can find using transmission lines' equations. If x=0 at
port 2 and x=A/4 at port 1, the voltage on the line can be written as :

V(x):VJ”@_jﬂX +Te jﬁx)
V(0)=Vv*(1+T)=V, =V (6.45)
r-1

— =iVvta-1)= iy ——
Vi =V(i/4)= V*(1-T)= Ve

The reflection coefficient I' gives the reflection seen at port 1, looking towards the normalised resistor
of 2, thus :

22

r= 6. 46
2++2 ( )

and
V = jV% (6. 47)

Thus
Sy = Sq =x—;=i2i:—jo.7o7 (6. 48)

and by symmetry
Vi - .

Si3= 53, =V—;=7%= ~j0.707 (6. 49)

Odd mode

For the odd excitation mode, Vg2=-Vg3=2 V, and V2=-V3. Thus, the voltage is equal to zero along
the symmetry line of the circuit, et we obtain the following equivalent circuit :

port2

-+

2 +V1
™ 4 (2 2V
S.C. S.C.

Fig. 6. 25: odd excitation

Looking into port 2, we see an impedance equal to 1/2. Indeed, the short circuit at port 1 is viewed as
an open circuit through the quarter wave line. Thus, port 2 will be matched if r=2. In this excitation
mode, all the power is delivered to the resistor, and is thus lost.
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In summary, all the following S parameters can be obtained from the above results using symmetry
and reciprocity considerations:

S33 =Sy, =0 (ports 2and 3 are matched for even and odd excitations )
S| =Sp1 =—]0.707 (the component is recprocal)
S|3 =S31 =—J0.707 (the component is recprocal)

S53 = S35 = 0 (due to the presence of open and short circuits on the symmetry line)

We must still compute the reflection coefficient at port 1, s;;. In order to do this, we determine the
impedance seen at port 1, when ports 2 and 3 are terminated by matched loads. The equivalent circuit
is show in figure 6.26, the latter being identical to the even case, as V2=V3.

. Zinl_> V2

.-

.

Fig. 6. 26: Match at port 1

Thus, there will be no current flowing from port 2 to 3, and no current through the resistor. We have
the following equivalent circuit:

. Zinl_> V2 2

.-

.-

Fig. 6. 27 : computation of Zin

We have thus two quarter wave transformers in parallel, terminated by a matched load (normalized
impedance of 1). The normalized input impedance at port 1 of the Wilkinson divider is thus given by

1

@

Zin =

N | —
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Port 1 is thus also matched (s;; =0).

6.4 The four-port

The scattering matrix of a four-port is given by :

S S S S

and its flow chart by :

1
.: ~ N~

~ " >
$22
a
\Y <
5131:5 23 N
/ S14 532
S
a3 S b4
S
33 S44
<b o <] O <
534

3

521 b2

Fig. 6. 28 : Flow chart of a four-port

6.4.1 The directional coupler

We can show using the power conservation relations that the only lossless, reciprocal and matched
four-port has the following scattering matrix :
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$23

where we have moreover

|512|2 +|sl4|2 =1
|312|2 +|sz3|2 =1
523> +[s34f” =1
|sl4|2 +|s34|2 =1
512523 + 514834 = 0

* *
$12523 + 514834 =0

(6.51)

(6. 52)

This element, which links an input to two outputs, the last being isolated, is called a directional

coupler. If we choose the reference planes in a judicious way, we get the following scattering matrix:

0 a 0 pelv]
a 0 ,Beje 0
[s]- ;
0 pe! 0 a
gl 0 a 0
with
a’ +ﬂ2 =1
w+0=r+2n1
Proof:

The losslessness equations give

S22 0 Sp3 Spa | |S12 O Sy3 Sy
S13 S3 0 s34 | |S3 S;3 0 Sy
Sia S23 S34 0 | [Si4 S3 S3u O

Microwaves

oS O O =

S O = O

S = O O

- o O O

(6. 53)

(6. 54)

(6. 55)
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The third line * the first column and the first line * the second column yield :

ES *
S13514 + 523524 =0

! > (6. 56)
$13523 + 514524 =0

* *
We multiply the first expression by Sj4 and the second by S>3 and we subtract the second from the
first to obtain:

* 2 2
S13 (|Sl4| - |523| ) =0 (6.57)
This equation has two solutions:
a) S13 = 0

From this and the energy conservation relation, we get easily that

Si4 # 0, Syz3 # 0, Syq = 0 (6. 58)

and we obtain the following scattering matrix

[S]= (6. 59)

b) [s14| =23
We choose the reference plane such as :

Sj4 =53 =10 (6. 60)
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We use two other energy conservation relations: the first line 1 * the first column and the third line *
the third column to get :

|512|2 +|Sl3|2 +|Sl4|2 =1

5 5 5 (6.61)
|513| +|323| +|S34| =1
Thus
[812| = |s34] (6. 62)
We define the two last reference planes to obtain:
Si2=%34 =7 (6. 63)
We take two new energy conservation relations: line 1 * column 4 and line 3 * column 4
* % *
S12824 + 813534 =0 = 7(524 + 531)
. . (6. 64)
S13514 + 523524 =0= 5(531 - 324)
This system of equations admits two solutions:
3) §13=554=0
we get in this case the same scattering matrix as before :
0 S12 0 S14 0 Y 0 15
S 0 s 0 0 jo 0
[s]=| 12 23 =17 : 6. 65)

0 Sy3 0 S34 0 15 0
S14 0 S34 0 15 0 V4 0

b) y=0=0

This solution does not correspond to a four-port anymore, but to two decoupled two-ports :
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[S]= . (6. 66)

Thus, the only possible solution for a lossless, reciprocal and matched four-port has the following
scattering matrix:

[S]= (6. 67)

We apply now again the energy conservation equations to get the characteristics of this four-port :

|512|2 +|Sl4|2 =1
|512|2 +|523 |2 =1

523" +[s34]” =1

, , (6. 68)
|Sl4| +|S34| =1
51253 + 514534 =0
S12814 + 523534 =0
From which we obtain
|512| = |534| =a
14| =[s23|= B (6. 69)

a2+ﬂ2=1

We write these terms in polar form
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1o

Sjp =a¢
— el
Sy =ae
34 _ (6. 70)
si4 = fel’
$p3 = Bel’
The two last energy conservation relations yield
(p+n)=(w+0)+7z+2nz (6.71)
We choose the reference planes such as
p=1n=0 (6.72)
And we finally obtain for a lossless, reciprocal and matched four-port :
0 a 0 pe Iy
a 0 ell 0
[s]- 7 6.73)
0o pel? o a
| Be v a |
with
2 22
a”+p =1 (6. 74)

w+0=r+2n1

Its flow chart is illustrated in Fig. 6. 29.
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> v >
BelOw
Beifv
| /\ |

3 a4
Fig. 6. 29 : Flow chart of a directional coupler

6.4.2 Particular case: the symmetric coupler
We choose

w=0=2 (6. 75)
2
and we obtain

0 jp 0
p}:z jﬂ'f (6.76)
i 0 a O

Q

Its flow chart is depicted in Fig. 6. 30.
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a o b,
~ A >—
b; V )
o .
ip B
X Fp
. Q) >—
by

~

a3
o
> | G <l O <
b 3 a4

Fig. 6. 30 : Flow chart of a symmetric coupler

1
Example: the hybrid coupler a = f = —
2
01 0 j
1 0 0
s]=—+=| ! 6.77)
210 ] 0 1
j 010

An example of hybrid coupler realized in microstrip technology is illustrate in Fig. 6. 31.
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e

Fig. 6. 31 : Microstrip Hybrid coupler, or branch coupler

In order to understand and design these devices, we notice first that they have two axes of symmetry,
one horizontal and the other vertical. We will use this fact, by introducing a general analysis theory for
circuits with double symmetry:

Fig. 6. 32 Four-port with a horizontal and vertical symmetry

When a four port component has two symmetry planes, and when its reference planes are also
symmetrical with respect to those symmetry planes, its scattering matrix has only four
independent terms:
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S11 =522 =533 =544 =S|
S12 =521 =S34=543=5)
S13 =531 = S24 =542 = S3
S$14 =541 =$23 =532 =54 (6.78)

Its matrix takes thus the following form

bi| |s1 S2 83 S4f &
b, Sy S| S4 S3|lay
by| |83 84 81 2|
by S4 S3 Sy S ||lay

(6. 79)

Symmetric and antisymmetric excitations
The application of a symmetric excitation (signals with same amplitude and phase on the 4
ports) yields:

8 =8 =83 =84 =dgg
(Sl +S)+33 JrS4)ass = Pssss

Four a double antisymmetric excitation, we get:

g =—8) =—a3 =84 =8z,

b1=—b2:—b3=b4:baa: (6. 81)
(51 =S —S3 +34)aaa = Paa%aa

When we have a symmetric up-down excitation (excitation at ports 1 and 3, respectively 2
and 4 are symmetric) and an antisymmetric left-right excitation, we get :

8 =—a) =83 =—ay =85
(31 —S)+83 _54)3-515 = Pasqas

And finally, when the excitation is symmetric left-right, but antisymmetric up-down, we have:

8 =8 =-83 =—a; =8
(31 +S) =83 _54)aa5 = Psalsa
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In summary, the four reflection coefficients are linked to the four terms of the scattering

matrix through:

Pss
Pas
Psa
Paa

If we invert this relation, we obtain:

S1

Sy
S3

N
—_— e

S4

11 1[5
-1 1 -1,
1 -1 —1|[ s
-1 -1 1|8y

L1 pes
11 1| pas
-1 -1} psa
1 -1 1] pa

Meaning of symmetric and antisymmetric excitations

(6. 84)

(6. 85)

When two ports are excited symmetrically, the same currents flow into both ports. The directions of
these currents are thus opposite, and in the symmetry plane, they cancel each other. This plane
becomes thus an open circuit plane.

Inversally, when two ports are antisymmetrically excited, the voltage at both ports have the same
amplitude but the opposite sign. In the symmetry plane, these voltages thus cancel each other. We can
then consider that the symmetry plane is a short circuit plane.

We obtain thus the four situations of Fig. 6. 33 :

1 SS

open circult

1 sa

short circuit

Fig. 6. 33 symmetric and antisymmetric excitations

1 as \

open circult

1 aa 1

The complete analysis of a four-port with a double symmetry can thus be simplified into the analysis
of four one port circuits, made of one quarter of the initial structure terminated by open or short
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circuits in the symmetry planes. When the element is lossless, we know moreover that the amplitude

of the four reflection coefficients is equal to unity, thus only their phase need to be determined.

Matched and directive four port.
A four port is matched when s; =0, and we get:

Pss + Pas + Psa + Paa =0

(6. 86)

Moreover, one of the ports is isolated from the input port. Let us consider that access 3 is

isolated from port 1, we have s; =0, which yields :

Pss + Pas — Psa — Paa =0

These two conditions are simultaneously satisfied for:

Pss = ~Pas Psa =

—Paa

The two non zero terms of the scattering matrix are then given by:

1 1
) :E(Pss _Paa) Sy :—(Pss +Paa)

2

In the case of a symmetric coupler, a and 3 are given by:

1 . 1
a =5 =—(pss~ Paa) Jﬂ=S4=§(Pss+Paa)

2

The four reflection coefficients become:

Pss =—Pas =+ |f Paa=—Psa=—a+ ]

(6. 87)

(6. 88)

(6. 89)

(6. 90)

(6.91)

The four reflection coefficients are situated on the four corners of a rectangle inscribed in the

unit circle of the complex plane:

AIm
J
Paa jB Pss
-1 o >Re
1
Pas / Psa
-]

Fig. 6. 34: Position of the four reflection coefficients
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Branch coupler

A typical branch coupler is depicted in Fig. 6. 35.

This geometry has a double symmetry, and in the case the coupler is matched, it is a
symmetric coupler.

Fig. 6. 35: Microstrip branch coupler.

The length and characteristic impedance of the different line sections determine the power
division between the two coupled ports. The four reflection coefficients are obtained using
transmission line theory, using the relations for open circuited or short circuited transmission
lines. We neglect the reactive effects at the discontinuities, and we get:

Y —jY;tan(B;d; ) j¥, tan(B,d, ) N[
Bss = Y, +JY1tan(B1d1)+JY2tan(Bzdz)
_Ye+iYy cot(B,d; )—-jY, tan(Bzdz)eJ(p
Bas TV, 2 Y, cot(B,d; )+Y, tan(B,d;) (6.92)
Y. —jY tan(Byd, )+ Y, cot(B,d,) o
Y. +jY tan(Bd;)—jY, cot(Bzdz)
Y. +jY; cot(d )+ Y, cot(B,d,) o
Bua 7Y~ ¥, cot(B,d, )~ Y cot(Bod, )

B =

The phase shift ¢ has been introduced to take into account the fact that the reference plane
does not coincide with the junction of the lines.

The matching and directivity conditions require that

Yl Cot(2[31d1 )+Y2 COt(ZBzdz) =0 Y12 —Y22 = Yf

and (6.93)
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With help of equation (6.91), we find that ¢ = w/2.

The system of equations admits a "simple" solution, obtained by setting the two terms of the
sum on the left hand side of equation (6.93) equal to zero, yielding :

Bldl =B2d2=n/4 Yl =Yc/(x Y2=-Yc B/(X (6 94)

We find a negative value for . (Note: be careful not to mix B;, B, which are propagation
factors with 3, which is the coupling coefficient!!)

The half length of the two lines are respectively of A;/8, with i = 1,2. For microstrip lines, the

wavelength varies with the characteristic impedance of the lines, and the coupler is not
square. In the case of a hybrid coupler, the power is equally distributed between the two
outputs, and we must have o =— B =1/Y2 yielding

Y, =12Y, et Y,=Y, (6. 95)

The transmission of the signal through a microstrip hybrid coupler is shown in figure 6.36.
We see clearly that the signal is equally distributed between two ports, the last being isolated.

Fig. 6. 36 : Distribution of the signal on a hybrid coupler

This figure represents the component of the electric field which is normal to the plane of the
circuit, measured just above the circuit.
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Equations (6.92) have more solutions, which are not so simple, having line lengths different

by:

YC

\/l{“’t@ﬁl%«zm%ﬁz

Y
Y2: <

J[COt(mZd%ﬁ(ZBldl )T -

And the terms of the scattering matrix are given by

le

2YC [Yl tan(Bldl )+ Y2 tan(Bzdz )]

B Y2+ [Yl tan(B,d; )+ Y, tan(B,d, )]Z
_ Y2~ [Yy tan(B,dh )+ Y5 tan(B, )f
Y2+ [, tan(ydy )+ Y, tan(B, d,) |

from A;/8 (one is shorter the other is longer). The characteristic admittances are then given

(6. 96)

(6.97)

In these developments, we have again neglected the reactive contributions due to the spurious

modes at the discontinuities.

6.4.3 Particular case: the asymmetric coupler

We choose
w=0,0=rx
and we obtain
0 o 0 p
a 0 - 0
[S]= 4 (6. 98)
0 - 0 «
g 0 a 0

The flow chart is illustrated in Fig. 6. 37
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al o b2
- B —

by a)

-B « B
BN, B

|'> \ >_

33 b4

a
| O < O -«
b3 a4

Fig. 6. 37 : Flow chart of an asymmetric coupler

1
Example: The hybrid T, the hybrid circle (magic T, rat-race) @ = f = T
2

01 0 1

1{1 0 -10
S]=—
[]\/50—101

1 0 1 0

6.4.4 The real directional coupler
The ports are numbered in a way to obtain

We define the following terms:

« Attenuation level: LA =-20loga

*  Coupling level: LC =-20log

Microwaves
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In the case of a real (non ideal) coupler, we have moreover

Sii» S13»> Sp4 sSmallbut = 0

The coupler is then characterized by its reflection coefficients and by its isolation levels :

» Lljz =—20log|sy3]

o Llyy =—-20log|sy4]

The quality of a coupler is given by its directivity:

_ _ [s13
. LD13 = L|13 —LC = —2010g7

_ _ [s24
. LD24 = L|24 —LC = —2010g7

The higher the directivity, the better the coupler

6.4.5 Electric symbol of a directional coupler
the electric symbol of a directional is shown in figure 6.38
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direct output

input
1 —\' » —2
PCIVIE 4
isolated coupled
output output
. direct output
mput
1 2
4
isolated coupled
output output

Fig. 6. 38 : Symbol of the directional coupler
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7. Microwave filters
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7.1 Introduction

Filters are components (two-ports) used to control the frequency response of the signal, by allowing
transmission in the pass band of the filter and attenuating the signal in the stop band. At lower
frequencies, filters can be passive or active, the former being made of lumped capacitors and
inductors, the latter using transistors as well. In the microwave domain, filters are mainly passive. The
design principle is very similar to the design principle of passive low frequency filters. The used
technology however is fundamentally different, as the required impedances of the different stages of
the filters are obtained using transmission line sections rather than lumped elements. We talk about a
distributed technology, versus lumped technology. This has two main reasons: the wavelength is small
enough to allow us to have transmission lines of a length of few tens of wavelength without becoming
prohibitively large, and lumped capacitors and inductors with a good quality factor are difficult to
obtain in the microwave range.

We will concentrate in the first section on the so called low pass prototype filter, which is a lumped
element filter designed for a normalized frequency and for normalized terminators. This filter is
important, as we can easily derive from it lumped low pass, high pass, band pass and band stop filters
for any frequency band, which will be done in the following section. We will then see how we go from
the lumped element prototype to the distributed element microwave filter, using Richard's
transformations and Kuroda's identities.

7.2 The low pass prototype filter

An ideal low pass filter would have a transmission coefficient of 1 up to the cut-off frequency and a
zero transmission coefficient above. This is clearly not realistic, and in practice a low pass filter is
defined by (figure 7.1):

., the cut-off frequency

Ay, the maximal tolerated attenuation in the pass band

, an angular frequency in the stop band, where we want to specify
A, the minimal attenuation at this frequency
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A[dB]

Fig. 7. 1 : Real low pass filter response

7.2.1 The insertion loss method

The insertion loss method gives us control over the pass band and stop band amplitude and phase
characteristics, and is a systematic way to synthesise a desired response. Let us define the power loss
ratio as:

1 P
Plr = s == (7. 101)
1- ‘F(a))‘ Road
and the insertion loss in dB as
IL=10logP R (7. 102)

. . . . 2. .
The filter is passive network, and the causality requires that ‘F (a))‘ is an even function of ®. We can
. 2 L. 2
therefore write ‘F (a))‘ as a polynomial in @:
M (a)z)

M{o”)+ N (o?)

where M and N are real polynomials. Substituting in (7.1) yields:

Ir(o) = (7.103)
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(7. 104)

which must hold for the filter to be physically realisable. From this point, we can consider several
practical filter responses.

7.2.1.1 Normalization

The normalized low pass prototype is shown in figure 7.2, and a possible lumped element low pass
filter in figure 7.3

g(1) g(N)

9(0) 9(2) g(N-1) g(N+1)

L(1) L(N)

of

L
|
0
n
Q
<
=
|l
11
—

]RN+1

Fig. 7.3 : Lumped element low pass filter

The link between the two is given by the following relations:

c )=
Wy Ly

L(k):g(zi (7. 105)
0

where Z, is the characteristic impedance of the line, which is supposed equal to the source
impedance.
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In the previous example, the first stage is made of a series inductor. The dual solution, i.e. starting
with a parallel capacitor would also have been possible.

7.2.12 The Butterworth filter (maximally flat response)

This filter is optimum in the sense that is provides the flattest possible response in the pass band. This
response is defined as:

2N
Pg=1+k? [ﬁ] (7. 106)
Wo

where N is the order of the filter, ®, the cut-off frequency. The pass band extends from ®»=0 to ®w=wm,
and the power loss ratio is 1 +k” at the band edge. This point is usually chosen at -3dB, yielding k=1.

In practice a Butterworth lumped element filter is synthesized as follows:

e the degree of the filter (the number of stages of the filter) is computed as

A
10 _
2In(awy /o)
e the normalized elements of the filter (figure 7.2) are obtained as
9(0)=1
g(N+1):1 (7.108)

g(k)=2sin((2k—l)%) for 1<k<N

e the de-normalized lumped elements are obtained from (7.5)
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7.2.1.2 The Chebyshev (equal ripple) filter

The equal ripple design is optimal in the sense that it yields the steepest cut-off in the stop band, at the
cost of an undulation in the pass band. In this case, the power loss ratio is given by:

PLr = 1+Kk*TJ (@) (7. 109)

where Ty is the Chebyshev polynomial of order N. In this case the filter is synthesized using the
following approach:

e the number of stages is obtained using

Arcosh
N = (7. 110)
Arcosh (le
@
¢ and the normalized prototype elements by
g(0)=1
23.1
g(1)=—
-2

g(N+1):1 if Nis odd (7.111)
g(N+1) = tanh? (é) if Nis even

4ak_1ak
g(k)= k1K
( b_19 (k1)
with

ay =sin[(2k—1)7/2N ]
b =2 +sin® (kz/N)

p= ln(coth (iD (7.112)
17.37

y =sinh (%j

A typical Chebyshev low pass response is illustrated in figure 7.4.
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A[dB]

Fig. 7.4: Chebyshev low pass response

7.3 Impedance and frequency transformations to lumped element high pass, band pass
and band stop filters

7.3.1 Lumped element high pass filters

The frequency transform to transform a low pass prototype to a high pass is given by the substitution:

we -2 (7.113)
(]

where the negative sign is used to obtain physically realizable elements. The substitution maps
@=0 10 =+ andw = +o0 10 @ = 0. Cut-off occurs when @ = *@yy. Applying the transform to

the impedances of the prototype filter of figure 7.2, yields the high pass filter of figure 7.5 with the
following correspondences:
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Cy =
09 (k)Zg (7. 114)
L = %o
<~ 99 (K)
C(1) C(N)
e ::
Ro L(2) L(N-1) RN+1

Fig. 7.5 : Low pass filter prototype

The strategy in this case is thus to perform the frequency transformation, compute the stage of the
filter N and the g(k) coefficients for the equivalent low pass prototype, and do the transformation back
in frequency and obtain the Cy and Ly using (7.14).

7.3.2 Lumped element band pass filter

The frequency transformation used in this case is given by

e @0 [ﬁ_&jzl(ﬂ_&j (7.115)
- \w, @ Mo, o
with
A=22"2 (7. 116)
@o

The centre frequency ©, is defined as the geometric mean of ®; and @, @, = /@@, .

Applying the transform to the impedances of the prototype filter of figure 7.2 yields the band pass
filter of figure 7.6.

c@) L%l% C(N L(N)

L(2) C(N-1)==| [L(N-1) | |RN+1

Ro C(2)
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Fig. 7.6: Band pass filter

with the following correspondence :

A
Z)O for theseries branches
C(k)=
" %09 (k)Zo (7.117)
AZ, '

L(k)= g (k)

0 for the parallel branches
c(k)=-3t)

AwyZ,

7.3.3 Lumped element band stop filter

The transform used in this case in the inverse of the one used for the band pass filter, and is given by:

-1
w(—A(ﬁ—&j (7. 118)
Oy O

with @, and A defined in §7.3.2. Applying the transform to the impedances of the prototype filter of
figure 7.2 yields the band stop filter of figure 7.7.

C(1) C(N)
——= EI—
#J_ @) v L(N)
R R
0[] LQ2) L(N-1) N+1
Fig. 7.7

with the following correspondence:
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0)10 for theseries branches
C(k)=
(k) 200 (K) Zoh (7. 119)
L(k) = Zo |
~ w.0(k)A
Og( ) for theparallel branches
iy Mg (k)
( )_ a)ozo

7.4 Low-pass and high-pass filters using transmission line stubs

As mentioned in the introduction, passive lumped element filters as the ones designed above work
well at low frequencies. At microwaves frequencies however, the quality of lumped elements is not
good enough to make good filters. Moreover, lumped elements may be obtainable only for a limited
range of value. Thus at these frequencies, we use distributed elements such as open or short-circuited
transmission line stub as reactive elements. In addition, the distance between reactive elements is not
negligible at microwave frequencies, but has to be taken into account. We will use Richard's
transformation to convert lumped reactance to transmission line stubs, and Kuroda's identities to
separate filter elements by transmission line lengths. Because such additional transmission line
sections do not affect the filter response, this type of design is called redundant filter synthesis.

7.4.1 Richard's transformations.

The transformation defined by

@

|
Q= tan I = tan L2 (7. 120)
\'
p

7|
@y

Vv
p
was introduced by P. Richard to synthesize an LC network using open and short-circuited stubs.

Indeed, if we replace the frequency variable m by (2, the reactance of an inductor can be written as
(figure 7.8):

maps the ® plane to the Q plane, which repeats with a period of = 27 . This transformation
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jX| = jQL = jLtan Al (7. 121)

and the susceptance of a capacitor as :

jBc = JQC = jCtan gl (7. 122)
A8
[
L ] S.C:
G
Zo=L
v A8
G O
_—C
O.C.
G O
¢, Zo=1/C

Fig. 7.8 : Richard's transformations

These results indicate that an inductor can be replaced by a short-circuited stub of length 1 and
characteristic impedance L, while a capacitor can be replaced by an open-circuited stub of length 1
and characteristic impedance 1/C. A normalized filter impedance is assumed here (Z, =1). The cut-off

of the prototype filter occurs at a frequency @ = @, or % =1. To obtain the same cut-off for the
(o]

Richard's transformed filter, we must have :

Q=tanfl =1 (7.
123)

Which gives a stub length of A/8, where A is the wavelength at the cut-off frequency. At a
frequency which is the double of the cut-off, corresponding to a stub length of A/4, an
attenuation pole will occur.

We see that Richard's transformation can be used to build a distributed element low pass
filter, where the inductors and capacitors of the prototype filter are made of shorted and open-
circuited transmission line stubs. All stub lengths will be of A/8 at the cut-off frequency.

At frequencies away from cut-off, the impedance of the stubs will be different from the
impedances of the lumped element prototype, and the filter response will no longer be
identical to the response of the lumped element prototype. We should also note that there is a
periodicity of 4w, in the response of the stub filter.

Microwaves 195



7.4.2 Kuroda's identities

We have seen above that lumped element band pass and band stop filters are made by cascading
resonant ant antiresonant branches in series and in parallel. Unfortunately when we come to
distributed element filters, we cannot realize at the same time two different types of microwave
resonators. We can either couple them in series or in parallel, as is illustrated in figure 7.9 for a case of
microstrip lines.

Fig. 7.9 : Microstrip resonators coupled in series or in parallel

We will thus use redundant transmission line sections to achieve a more practical distributed element
filter implementation, by performing any of the following operations:

e Physically separate transmission line stubs
e Transform series stubs into shunt stubs, or vice versa
e Change impractical impedances into more realizable ones

This is done via the insertion of additional transmission lines which have a length of A/8 at ®,. These
lines are called unit elements.

The four Kuroda identities performing these transformations are illustrated in figure 7.10.
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o ——O

112, Z
Z1

O— —  E—)
Z2

o— —0

O——— —O
21 Z2

o—1 1 0O

O—H— EE—)
1/22 Z]_

o— —0

The proof of these identities is left to the reader.

7.4.3 Design of a low pass filter using stubs

22/n2

len2

Z]_*I’]2

Zz/l’]2

len2 1:n

Zl*n2

1/(Z5*n?)
2 n2:

Fig. 7.10 : The Kuroda identities, where n>=1+Z,/Z;

2

1

—H—(Dl—

—d)l_

T 1/(Z5*n?)
—/—0

T —

—L b =

We want to design a low pass filter using stubs. We first compute the low pass prototype filter, and we

then compute the corresponding lumped element low pass filter. Let us suppose that we obtain the

filters illustrated in figure 7.11
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g(1) g(3)

0
9O a(2) a(4)

L(1) L(3)

TC(z)

Fig. 7.11 : Low pass prototype and lumped element version

We then used Richards transformation to convert series inductors to series short-circuited stubs, and
shunt capacitors to shunt open-circuited stubs, and we obtain the circuit depicted in figure 7.12.

Zo=g(1)*Ro 3 Zo=g(3)*Ro %
11 11
Ro - -
—L |
Zo=Ro/g(2)
<> R4=Ro*g(4
\/)‘\‘b |:| 0*g(4)

N

Fig. 7.12 Low pass filter with series and parallel stubs

Now let us imagine we want to realize this filter in a microstrip technology. The series stubs would be
difficult to realize in this technology, so we will use Kuroda's identities to convert them to shunt stubs.
First, we add unit elements at each end of the filter circuit, as is shown in figure 7.13.
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g(1)*Ro
9(3)*Ro
I=7\/8

Z0
Zo

I=)/8 Zo=Ro/g(2) I=)/8

o0
=2
i
P
//

1

j|R4:Ro*g(4)

Fig. 7.13 : Low pass filter with unit elements at the end

We apply then the second Kuroda identity to both ends of the filter, computing for both cases

1 e
: o ° (7. 124)
n3 :1+—3<
93)*R,
and we obtain the following filter :
Ro =18 Z0=n12g(1)*Ro I=A/8 Z0=n»2g(3)*Ro
R e >
a<® A <®
N of
() ,\/o/’i% ,\/0/’0\% H R4=Ro*g(4)
% %

// ¥

Fig. 7.14 : Low pass filter after transformation

Which can be easily realized in microstrip technology, as is shown in figure 7.15
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Fig. 7.15 : Microstrip line layout of a 3 stage low pass filter

7.4.4 Impedance and admittance inverters

An impedance inverter is an ideal quarter-wave transformer. A load impedance connected at one end
is seen as an impedance that has been inverted with respect to the characteristic impedance squared at
the input. Impedance inverters can be used to convert a band pass filter network of the type shown in
figure 7.16 into a network containing only series tuned circuits. By using admittance inverters, the
band pass filter can be converted into a network containing only parallel tuned circuits. Furthermore,
by choosing the inverters correctly, all the inductors and capacitors can be chosen to have the same
values. Thus impedance and admittance inverters enable us to use identical resonators, either series or
parallel tuned, throughout the network.

] Yp() u Zs(0)
K=1 Ij K=1
a)

| Z8(0) | Yp(o)
J=1 J=1
b)

Fig. 7.16 : (a) impedance inverter used to convert a parallel admittance into an equivalent series impedance; (b)
admittance inverter used to convert a series impedance into an equivalent parallel admittance.

Consider the parallel admittance Yp(w) with an ideal impedance inverter with characteristic
impedance K connected on both sides as shown in figure 7.16. A short circuit at the output will be
transformed to an open circuit in parallel with Yp. The input impedance is given by :
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Zin =—— =K%Y, =Y, = Z, (7. 125)

Thus the shunt element with two impedance inverters converts the shunt admittance into an equivalent
series impedance Zs(®)=Yp(w). If Yp is a parallel tuned resonator with

Y, = jC - = jaC % (7. 126)
it is converted into a series tuned circuit with
a)E
Zy= joL 1-—2 (7. 127)
0)2

with the inductance L in Henries having the same numerical value as the capacitance C in Farads. If
we want to convert an admittance

. 0)2
Y, = joC; 1—60—3 (7.128)

into a particular series tuned circuit with arbitrary inductance L , then we must choose K so that

2 2
K2 jwC, [1—“’—3}: ja)L[ —“’—3} (7. 129)
w w
or
K= & (7. 130)
C

The same considerations can be done for the admittance transformer depicted in figure 7.16 b), and we
obtain finally:
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2
Y = ja,c(l_“’_gj:j E(ﬁ_&]
@ Llo, o

2
Z-= JWL[l—w—%}J’ L(ﬂ_&j
w Clo, o

We will illustrate the use of inverters to convert the circuit shown in figure 7.17 into one with two
identical parallel tuned resonators or one with two identical series tuned resonators.

(7.131)

L2 C2
——
| |
ci]| [l = K |T K
C1L1 CllL1

L2 c2 L2 C2
|
|

Fig. 7.17 : Use of inverters to convert resonators

For the first case, we choose K such as

2 2
. . L
K2joC,|1-22 | = joL,|1-22 |, = K= |2 (7. 132)
w? w* G
For the second case, we choose J such as :
2 2
P2jol,|1-2 | = jec, | 1-22 |, = 3= [©1 (7. 133)
* w* L

Microwaves 202



Impedance and admittance transformers are ideal quarter-wave transformers. There is no basic
difference in their inverting properties. The only distinction that we make is to use the symbol K to
denote the characteristic impedance of the impedance inverter and we use J to denote the characteristic
admittance of an admittance inverter.

Impedance and admittance level changing can be accomplished by using different input and output
inverters as shown in figure 7.18. For example, as in figure 7.18 a) the parallel admittance appears as a

series element Klz Y at the left side of the port, and as a series element K22Yp at the right side of the

port. In figure 7.18 c¢), the impedance level l% of the resonator is changed to L% by
1 0

changing the impedance of the inverters form K' to K, where K is chosen as:

12 2 |2
K KE_K ~ K=K | (7. 134)

\/7 \/7 @ Ll @ I—o Ly

From the terminals, the new circuit is equivalent to the old one. A similar transformation is shown in
figure 7.18d).
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Yp
Zin=K1%2Yp —» K1 |j K2 < Zin=K22Yp
a)
Zs
_ | |
Yin=J12zs —® | J1 J2 < Yin=J227s
b)
— =N -y
K K’ = K K
K=K /i
L
c)
) — J = J — J
1=31 S
G
d)
Fig. 7.18

7.4.5 Design of band pass filter using quarter —wave resonators

It can be shown that a short-circuited stub which has a length of a quarter wavelength looks like a
parallel resonant circuit (figure 7.19)
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Zon +— 7 Ln —_—Ch *—Z

Fig. 7.19: Quarter-wave resonator

Thus, quarter-wave short circuited transmission line stubs can be used as the shunt parallel LC
resonators for band pass filters. Quarter-wavelength connecting lines between the stubs will act as
admittance inverters, converting shunt stubs to series resonators. Such a filter is depicted in figure
7.21, where both the stub length and line length is 6=A/4 for the centre frequency of the pass band w,.
The characteristic impedance of the connecting lines is Zo, the impedance of the filter.

+—> >

0 —» Zo 7o 70 Zo

Zo -
0 0
ZoN ZoNNL 202 Zo1

Fig. 7.20 : Band pass filter using shunt short-circuited quarter-wave resonators

For a narrow band filter, the response of such a filter using N stubs is essentially the same than that of
a lumped element filter of order N.

Design example:

A certain band pass characteristic leads to the lumped element filter of figure 7.21, and we want to
find its equivalent in the distributed form of figure 7.20
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Z0

LN Cn L2 C2 L1 C1
J=1/Zo J=1/Zo :
— — — 0
_90° -90°
Y
b)
Fig. 7.21

The equivalent circuit of a short-circuited transmission line stub can be approximated as a parallel LC
resonator when its length is near 90°. The input admittance of a short-circuited transmission line of
characteristic impedance Z,, is:

Y =—cotd (7. 135)
Zon

T Aw .
where 0=n/2 for o=wm,. If we let o=w,+Aw, where Aw<<wm,, then & = E 1+ —— |, which allows the

25

admittance to be approximated as

= tan =
Zon 20)0 ZZona)o

_ [7[ ﬁAw] -] Ao JrA@ (7. 136)

for frequencies in the vicinity of the centre frequency. The admittance near resonance of the parallel
LC network of figure 7.19 can be approximated as:
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C 1
I—n I—n 4 Cn Ln
(7.137)
C
S e N R P S WY
Lhloy, o
where C, L, = l/ a)g . Equating (7.36) and (7.37) gives the characteristic impedance of the
transmission line stub in terms of the resonator parameters as:
7Ly, T
Zon = = (7.138)
4 40,C,

Next, we consider the quarter-wave sections of line between the stubs as ideal admittance inverters,
with J=1/Z,. Then, the band pass filter of figure 7.20 can be represented by the equivalent circuit of
figure 7.21 b), which in turn is equivalent to the circuit of 7.21a). Thus, with reference to the
terminated (by Z,) circuit of figure 7.21 b), the admittance Y seen towards the load is given by:

-1
Y = joCy 4. ;{,-wcﬁ | ;}
J(!)LZ ZO J(t)Ll ZO

. Cz @ (O 1 . Cl w (O 1
kN o Bl ey I Y il Bl R
Llo o) z§ Llo o) Z

where we have used the fact that L,C; = L,C, = / 5 - The admittance at the corresponding point of
1)

(7. 139)

the circuit given in 7.21 a) can be found as:

-1
Y = joC'y+- +L{ja)L'1+ 1 +L}

C()L'z Zg JC()C'I ZO
. CH o o 1. (LY o o 1
=J_'2___0+_2]_'1___0+_
Ly\lwy, o) z§ Ci\wy o) Z,

The two results are equivalent for all frequencies if:

(7. 140)
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S _ €2 g 22 Gl |ty (7. 141)
Ly L' L VCi

We use the fact that L4C', =L, C'y = y » and solve these equations for L; and L,, obtaining:
1)

7 2
L = 20' ; Lhy=L"% (7. 142)
woL'y
We then use (7.38) and (7.19) to obtain the impedance of the two stubs:

_ maply ﬂZg LA

Zo = = =
° 4 dmpl' 49(1) 0 143)
gLy ;rzg wZoA
Loy = = .
4 4oL, 49 (2)
By extension, we can show that
L 72 ZoA
Zon =220 - T2 _ oo (7. 144)

4 dapl',  4g(n)

These results apply only to filters having input and output impedances of Zo, and so cannot be used
for Chebyshev filters with an even number of stages.

7.4.6 Design of band pass filter using capacitive coupled quarter —wave resonators

The filters described in 7.4.5 have often very low line impedances, which render them hardly suitable
for use in microstrip technology. a related type of bandpass filter is proposed in figure 7.22. In this
topology, short circuited shunt resonators are capacitive coupled using series capacitors. An N order
filter will use N stubs, which are slightly shorter than A/4 at the filter centre frequency.
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Co1 C12 Co3 CN,N+1 CN,N-1

0 —» Z0

1
I IN
Z51 z ZoN-1 z
02 oN

Fig. 7.22: a bandpass filter using capacitive coupled quarter wave resonators

Usually, the short-circuited stub resonators are made using sections of ceramic loaded coaxial lines,
resulting in a compact design. To design this type of filter, we begin with the general bandpass circuit
of figure 7.23 a. In this design, shunt LC resonators alternate with admittance inverters, which convert
shunt resonators to series resonators. The extra inverters at the ends serve to scale the impedance level
of the filter to a realistic level. Using an analysis similar to the one of § 7.4.5, the admittance inverters
constants can be derived as (the complete derivation of the equations can be found in: G.L. Matthaei,
L. Young and E.M.T. Jones, "Microwave Filters, Matching Networks and Coupling Structures",
Artech House, 1980.) :

A
Zodo1 = . [— (7.145)
49,
A
Zodnnt =—F7——— (7.146)
4 9n9n+1
A
ZoINN+1 = | (7.147)
’ 49N IN+1
Similarly, the coupling capacitor values can be found as :
J
Cor = 01 - (7.148)
@o\1-(ZoJdo1)
Jnn+l
Chnsl =—2 (7.149)
(6]
IN,N+1
CNN+ = — (7.150)

wo\/l—(ZoJ N,N+1)2

Microwaves 209



The admittance inverters are in a second step replaced by their equivalent © network (figure 7.23b).
The capacitors of the equivalent network are negative, and they are combined in parallel with the
capacitor of the LC resonator to yield a positive capacitor. The resulting circuit is depicted in figure
7.23c. The effective resonator capacitor values are given by:

C'h=Ch+AC, =C=Cpn_1,n =Cpnsi (7.151)
Finally, the shunt LC resonators are replaced with short-circuited transmission stubs, as shown in
figure 7.22. The resonant frequency of the stubs are no longer w,, because the value of the capacitors
was corrected into to take into account the impedance inverters. This implies that the length of the
resonators is less than the quarter of a wavelength at w,, the filter centre frequency. The
transformation of the stub's length to take into account for the change of capacitance is shown on
figure 7.23d. A short circuited length of line with a shunt capacitor at its input has an admittance of:

Y =Y, + jo,C LY, zg—Jcot(,Bl) (7. 152)
0

We can replace the capacitor with a short length of line Al, and obtain the following input admittance:

1
Y, + j—=—tan SAl
ez p Al
Y=— ] =Y + | — (7. 153)
Zo —+ jY|_ tan SAI
Zo
the approximation being valid for BAl << 1. From (7.52) and (7.53), we can get the final length of the

stub:

|n:£+(MJZL{M]4 (7. 154)

where AC, is defined in (7.61).

Microwaves 210



C
Jo1 N
L1 €1 P LN | | INN+2
-90° -90° -90°
a)
_C|01 Ci2 Co3 E\J|-1,N CN,II\I_+1
Ly C Lo/ C Ln CN
TN g TR, T BT R
-C12 -CN-1,N
b)
_Clol Ci2 Co3 CN-1,N CN N+1
L1 1C Lo C'o LN (C'N
c)
| | Al
-4 > - >
Zg J—c; Zy Zy
il l
YL YL Q)

Fig. 7.23: Bandpass filters using capacitive coupled quarter wave resonators.

7.4.7 Parallel-coupled transmission line resonator filters

The band pass filter described above are unfortunately not well suited for a realization using
microwave printed circuit technologies (microstrip lines, striplines or co-planar waveguides), due
either to the low characteristic impedances of the involved transmission line sections, to the presence
of short circuited stub and lumped capacitors which are always cumbersome to realize or integrate in
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printed circuit technology. This is why for these technologies, yet another bandpass filter topology is
preferred: the Parallel coupled transmission line resonator filter. The topology of such a structure id

depicted in figure 7.24.

- >

Fig. 7.24: parallel coupled resonator filter
It consists N (N is the degree of the filter) sections of resonators of length approximately equal to A/2,

which are cascaded through parallel coupling. An approximate equivalent circuit of the half wave
resonators is given in figure 7.25.

Bl=0
- >

- ] ‘ )’ Pt

Lr TCr

Fig. 7.25: equivalent circuit of half wave resonator

Moreover, it can be shown (the details of the analysis are beyond the scope of this course, but can be
found in : S.B. Cohn, "Parallel Coupled Transmission Line Resonator Filters", IRE Transactions on
Microwave Theory and Techniques, MTT-6, nr 2, April 1958), that an appropriate equivalent circuit
for a pair of open circuited parallel coupled lines having a length of A/4 is given in figure 7.26, with

the following conditions, which are valid for a narrow bandwidth :

2
ZOe:1+Z_O+Z_0
Zo KoK (7.155)
7. 72 '
£oo _y_%0_ %0
Z, K K2

where Zoe is the characteristic impedance of the even mode of the coupled lines while Zoo is
the characteristic impedance of the odd mode of the coupled lines.
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Fig. 7.26 : Equivalent circuit of quarter wave coupled lines

Thus, an approximate equivalent circuit of the filter shown in figure 7.24 is depicted in figure 7.27.
The lumped element equivalent is shown in figure 7.27, which is valid for a narrow bandwidth close to
the resonance.

From this lumped element equivalent circuit, we finally get the rules linking the prototype filter to the

printed circuit :
Zy _ ”( fy— f, J 1
Ki—Li fo+ 1 )\ Qi1

2
Zoei =Zp1+1+ Zo % 5 (7. 156)
Ki—i Ki_pi
2
ZOOi :ZO 1— KZO + ZO B
i-Li Kj_yj

where f; is the upper edge of the passband and f; the lower edge of the passband.

The even and odd impedances of the coupled lines are linked to the width of the strips and the gab
between lines by transcendental approximate formulas, which have to be solved numerically (see M.
KIRSCHNING AND R. H. JANSEN, Accurate Wide-Range Design Equations for the Frequency-
Dependent Characteristic of Parallel Coupled Microstrip Lines IEEE TRANSACTIONS ON
MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO 1, JANUARY 1984).

The length of the lines is obtained by computing the effective permittivity of the coupled lines, and
knowing that each coupled line section has a length of a quarter wavelength.

N e |
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