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Microwave applications
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Applications

Reminder : Friis formula
RADAR
Telecommunication applications

Heating

Medical applications

diathermy, hyperthermia, Thermography,
Tomography
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Friis' formula

Consider an isotropic

< : - — :\ source. The power
7, ~ N\ Pe density radiated by this
AV N L\ source at a distance R is
Py s AR equal to:
l (Ll * ) | K
VNN PR
AN — 77/
N ~_ _~ ,
~ _ _ b
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Friis' formula

If we consider a real antenna (non isotropic), we obtain

P
12
d _

_Pg.(0.0)
P== A
4R

d. : gain of the antenna
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PrL Friis' formula

The received power at a point R is given by :
_ Fege (ea(ﬂ)

47R?
Which yield for an receiving antenna having an
effective aperture Ae

_hege(0.9)
47R?

P, ds

R, 4:(0.9)

Thus finally, we obtain Friis' formula

%= gr(t’%‘/’)ge(e’(”)(ijz

> 4R
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Reminder

The antenna gain and effective aperture are linked by :

2

4c(0.0)=2(0.9);-
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Radio Detection And Ranging

Tx

Rx <

o
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W

2,2
L _ gAo
\ = 3 4
A P
Detect
Deecto s (47)°R
Results
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Equivalent RADAR surface
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PEC targets

sphere —> Q

cone (axial
incidence) St i
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Equivalent RADAR surface : Optical

optical limit of effective radar
surface

na

22tan%0
4n
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disk 44__12;7ga ,
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surface A

large planar
surface

N
0\
circular cylinder /’
radius a AL/V
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Equivalent RADAR surface : Optical

na2c0t29J12(4na/?» sin 0)

al cosb sin2(2nL 1/). sinB)

2 5in20




=PrL Pulse RADAR

P4
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=PrL Chirp RADAR

frequency
swee circulator
@ \\ *
f1\>i fo i
- R >
mixer
— |
T — |
amplifier target
lowpass filter
loud speaker
co tar _ coAf
R= =
2 2m
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Chirp RADAR

f2

— —
A T

t1 t1+tar

Tr
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Doppler effect

a) b)
@ i E E |
c) d)
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A moving source




Doppler RADAR

Jr= fr=1 (1+Xcosaj
(1+Vcosaj ¢

C
O receiver

k

o
receiver O————9>
v

k
k

emitter

emitter Vv
static receiver moving receiver
moving emitter static emitter
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EPFL
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Doppler RADAR
JA—.
. r v
o
receiver 1+*COSC¥
C
k
o Thus, for a=0 and for the emitter and
emitter Vv receiver placed at the same location,

and for a car moving away from the RADAR

(ij cAf

_ ¢) . v) Thus y=—=1

fr_fO(l_vj f0(1+2cj 2 f
C
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=PrL Example : frequency shift in a cell
phone

For a cell GSM 900 phone system (Tx 890-915 MHz, RX 935-960
MHz) and a vehicle having a velocity of 140 km/h, there will be a

spread of the spectrum of 248 Hz

fv

c

£, =Aff,+ 0] 5 Af =

-MMm“muhnugfé A
~_
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Telecommunication
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| —s— Catlle coaxial
| === guide circulaire
—— fibre optigne

| —— propagation dans 1'sspace fitre |
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EPFL
=rnr o
Friis' formula
1 2 Pr is the received power
P.=Prgigr| — Pf is the transmitted
: Selez 4L power
g1,92 are the antenna
gains

A is the wavelength

L is the distance
between the antennas
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=Pl Attenuation in the atmosphere

Attenuation (dB/kim)
o
E=

0.04
0.02

0.01
- H- 9150 m
0.004 0 altitude
0.002 -
0.001 i | [ S S N B | 1 [

10 15 20 25 30 40 50 6070 8090100 150 200 250 300 400
Frequency (GHz)

MAG-EPFL 21

=PrL Inhomogeneity of the atmosphere

altitude

km

g
.
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1 Light
waves

radio waves

T T >
100 200 300 (n-1)*106
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Inhomogeneity of the atmosphere

r1sin64 "' =rysinf,
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r1 \ \

n,siné, =n;sinQ,'
nysin@"=n, sin 6,
nsing "=r,sing’

nyr, sinf, =mr, sin@'=mr sin@ "= nyr, sin6,

nrsin@ = n,r, sin6,

Fictive Earth radius
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=PrL Diffraction on obstacles

DIFFRACTION ON OBSTACLES

EARTH

Ry[+Ry)-[R| =2
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=PrL Diffraction on obstacles

W/

\ 4
/
\

—

4
v

i [aLyL
1st Fresnel ellipsoid : ho= % p=17\/kL
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Obstacle free link
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EPFL

Obstacle free link

Assumptions :
=p
L'=L
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Obstacle free link

distance

altitude

Lateral propagation




Vertical plane propagation

Full-3D propagation
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Models (1/3)

2D ray tracing
~ Reasonable approximation of lateral propagation when Tx i
below most bldg. heights

- User Interface to ease the investigations

>
it

- Developed at EPFL/Swiss

MicroChamp




Vertical plane propagation

PROPAGATION EN MILIEU URBAIN (MicroChamp)
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Application d’un logiciel pour la planification des liaisons avec les mobiles. Comparaison de

plusieurs modéles de diffraction avec les valeurs mesurées (tiré d’une thése de doctorat)

DEPARTEMENT D’ELECTRICITE

Novembre 1997
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EPFL

The 3rd Keppler law allows to determine the revolution
period T of a satellite as a function of its elliptical orbit
half axis a or its altitude h=a-R

\/? (h + R)‘

période de révolution T

Geostationary orbit :

T= 1 sideral day
T=23h56 m4 sec

o Thus h= 35786

N P
0 63 10 20 30 40 4210° km altitude »
TERRE —
0 10 2 0 %10k
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SIEMENS

Satellite

H Geostationary height
of satellite

R Earth’s radius
2L Distance A-Sat-B
¢ Speed of light
t  Transmission time

ay Basic free-space
transmission loss
on one path section

36000 km
6 378 km
78000 km

300000 km/s
260 ms

approx.200 dB
at6 GHz

. . @19 iemens g
Data for geostationary satellites fuphpdesil 3
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E P F L 180°W 180°E
105°W
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75°W
= Satellites
E East
W West
[
Intelsat s &
MAG-EPEL 40 telecommunication-satellite system -85
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