Wireless Receivers: Algorithms and Architectures Assignment (02
Fall Semester

Telecommunications Circuits Laboratory

EPFL

2 Frame Synchronization

In the first lab, the received signal samples corresponded exactly to the transmitted symbols,
i.e. the beginning and the end of the data was inherently given. In reality, we receive a signal
continuously, and we have to detect the beginning of the data frames within the received signal.
This operation is called Frame Synchronization.

A common way to achieve frame synchronization is to prepend the data blocks with a spe-
cial signal that is known to the receiver, called a preamble. The receiver can then search for
the preamble using a correlation filter. If the preamble is long enough and has a random-like
structure, it is very unlikely that the data signal (or the received noise) has a similar shape as
the preamble, and therefore a peak in the correlator output indicates with high probability the

beginning of a data frame.

2.1 The Need for a Random-Like Structure

In the introduction above, we mentioned that the preamble should have a random-like structure.
Why is this the case? Could we not instead use, e.g. a series of ones as the known data?
After all, this would simplify the correlator, since all multiplications could be omitted and the
correlator could simply be implemented as a summation over [V, consecutive received symbols,
where N, is the length of the preamble.

First, it is likely that such a data sequence also occurs in the payload data. Consider for instance
a black and white bitmap file, where a white pixel is stored as the symbol 0, and a black pixel
as 1. Since there are many consecutive white or black pixels, the correlator would not be able to
differentiate between the preamble and the actual data. By using a random-like data sequence
as preamble, we can circumvent this problem.

A second problem is illustrated in Figure 2.1. It shows the autocorrelation functions for two
sequences, both of length N,, = 20. In the left figure, the sequence consists of all ones, and in
the right figure, each symbol is randomly either +1 or —1. We see that in the left figure, the
correlator output rises while the sequence is shifted into the correlator. The peak at the center,
where the sequence is completely inside the correlator, is not very distinct. In the right figure,
however, we have a very sharp peak at the center. This happens because, due to the random-like
structure of the sequence, the terms in the sum that gives us the correlation tend to cancel each
other out. Now imagine that the graphs in Figure 2.1 are superimposed by noise. It is easily

seen that in the first case, it will be difficult to determine the exact peak location, while in the

20 . . 20

151

-
w

10¢p

Autocorrelation
=

Autocorrelation
(93]

w

=20 =10 0 10 20 =20 =10 0 10 20

Oftset [symbols] Offset [symbols]
(a) (b)

Figure 2.1: Autocorrelation of the all-ones sequence (a) and a random sequence (b) of length
N, = 20.

(] D
U UV LV

Figure 2.2: LFSR used for creating the frame synchronization sequence

latter case, it will still be possible to identify the peak, as long as the SNR is not too low.

It should be clear now that a random-like data sequence should be used as preamble. Why
random-like? Obviously, the receiver needs to know the sequence in order to look for it, so
the transmitter cannot use really random data. Hence, we need a sequence which has statistical
properties similar to random noise, but which is still reproducible in the receiver. One possibility
would be to create a random sequence once, and then store it in the transmitter and receiver.
But this would be very memory consuming if the sequence is long.

Another possibility is to use pseudo-noise (PN) sequences. These are sequences with random-
like statistical properties, but which can still be reproduced deterministically. A common way to
generate PN sequences is by means of a linear feedback shift register (LFSR). The output of the
LFSR is periodic and it can be shown that the statistical properties of the LFSR output closely
resemble those of a really random sequence generated by flipping a fair coin N, times. In order
to reproduce the sequence, the receiver only needs to the position of the LFSR feedback taps,
the initial state of the LFSR, and the length of the sequence.

In the lab, we use the LFSR depicted in Figure 2.2, initialized with all ones. The length of the
preamble is /N, = 100. The bits of the preamble are modulated using binary phase shift keying
(BPSK), where the bit 0 is mapped to the symbol +1, and the bit 1 is mapped to the symbol —1.

The Figure 2.3 illustrate the functionning of an LFSR over 4 iterations.

n=1

n=20
[IRE1 Yy B Hyy Wy, B
0 1

NEARANY W\

n=2 n=3
DO N Sy By iy By B
1 NPARRNY, 1 NPARBNY,

Figure 2.3: Illustration of Functionning principle of an LFSR

2.2 The Detection Algorithm

Our goal is to detect the presence of the known preamble sequence pli],i = 0,1,...,N, — 1
in the received signal 7[n| = a[n] + w[n]. The main idea, as already mentioned, is to feed
the received signal through a correlator, which correlates the received signal with the known
preamble. As soon as the portion of the received signal that is inside the correlator closely
resembles the preamble, the magnitude' of the correlator output exhibits a distinct peak.

How do we detect this peak? We could directly take the magnitude of the correlator output and
compare it to a certain threshold value. However, the problem is that the absolute strength of the
correlator output depends on the unknown SNR value. In order to use a fixed threshold for peak
detection, the correlator output must be normalized with respect to the received signal power.

The correlator output at discrete time n can be written as

c[n] = pz p*li]r[n + 1. (2.1)

We decide on the presence of a peak if the following condition is fulfilled:

e[l
Sty Irn +d)?

The denominator in (2.2) is the energy of the received signal that is currently inside the corre-

(2.2)

lation filter, and ~y is the decision threshold.

2.3 Using the Profiler in MATLAB

In the previous assignment, you used the commands fic and foc to measure the overall execution
time of your code. For a more detailed analysis, you can use the MATLAB profiler, which gives
you a detailed report including the execution of each line that was executed and how often it

was called. The profiler can be accessed by using the following commands:

* profile on starts the profiler, clearing previously recorded profiling statistics.

'Remember that the received signal is complex-valued, and hence the correlator output is also complex.

No Transmission

Preamble ImageData
BPSK QPSK

Figure 2.4: Signal with unknown number of time steps where no transmission occurs, followed
by the preamble (BPSK) and the image data (QPSK).

* profile off stops the profiler.

* profile viewer stops the profiler and displays the results in the profiler window.

* profsave saves the results in HTML format. The HTML files are stored in a subfolder of

the current folder named profile_results.

2.4 Your Tasks

A2T1

A2T2

A2T3

A2T4

Implement the LFSR shown in Figure 2.2 as a MATLAB function and generate the pream-
ble sequence pl[i]. Initialize the LFSR states with all ones.

The matrix file fask2.mat contains a signal where the start of the transmission occurs at

an unknown time step and is structured as shown in Figure 2.4.

(a) Implement the correlator as a MATLAB function following the equations (2.1-2.2).

(b) Plot the normalized and unnormalized correlator output for several SNR values

ranging from —5 dB to 10 dB. You should notice a distinct peak within the signal.

(c) Determine a reasonable peak detection threshold ~y. If the threshold is too high, it
can happen that we miss the presence of the preamble (this kind of error is called a
detection miss). If, on the other hand, the threshold is too low, it may happen that
we wrongly decide on the presence of a peak (this kind of error is called a false
alarm). Explain the reasoning behind your choice of detection threshold ~ (note
that the threshold that your detector uses must be independent of the SNR).

In this task, you will convert your correlator into a preamble detector. Write the detector
function that returns the index of the first sample of the ImageData. (Hint: make use of

the code of the correlator.)

In this task, you will read the data contained in the received signal, and display the picture
transmitted. Your receiver should run the frame synchronization algorithm on the (noise-
less) signal contained in task2.mat until the preamble is detected. Then, the transmitted
image should be received and displayed.

Since the signal is noiseless, if your choice of peak detection threshold + is correct, the
image should always be displayed perfectly. In order to highlight the importance of frame
synchronization, pick a threshold that will result in false alarms (a very low threshold will
do this).

Optional: Use the MATLAB profiler on your code to find which part of your code takes
the longest time to run. Is it the one you expected?

	Frame Synchronization
	The Need for a Random-Like Structure
	The Detection Algorithm
	Using the Profiler in MATLAB
	Your Tasks

