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Reminder: Limits of Full Custom Design

• Increasing integration density no longer allows for design on transistor 

level, neither on schematic, nor on layout level

• Need for a more automated that leaves the details to EDA tools
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Intel 8088, 1979

Full-custom design

Intel Pentium, 1993

Few macros, but mostly built

using automatic tools
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Full-Custom vs. Semi-Custom Design

• Different design styles offer tradeoffs between control over details and the 

complexity that can be handled efficiently

Full Custom Design Semi-Custom Design
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▪ Design on Register Transfer Level (RTL)

▪ Heavy use of automatic tools and basic 

libraries to derive schematic and layout

▪ Design and verification on transistor level

▪ Schematic and layout done manually by the 

designer with few automatic tools



Anatomy of a Complex Chip

• Complex SoCs are often a mix of 

design styles

• Composed from 

▪ A pad ring and few special top-level components

such as PLLs and I/O cells (pads)

▪ Analogue macros created with a full-custom

design flow

▪ Complex digital sub-systems built from 

random logic and few large IP macros 

(e.g., SRAMs) using a semi-custom

RTL design flow
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Digital logic built

from standard-cells

Analog macros

(e.g., ADCs, RF)

Digital macros

(e.g., SRAM)
IO

Pads

2G Cellular SoC, IIS, ETHZ



Semi-Custom (Digital) ASIC Design Flow

• Semi-custom design flow: 

▪ Starts from a Register Transfer Level 

description in a hardware description 

language (HDL)

▪ Front-end flow: handles the transition 

from RTL to the gate level

▪ Back-end flow: handles the transition from 

a netlist to physical design data

• Each step is always accompanied by 

analysis & verification

▪ Check functionality, timing, and physical constraints
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RTL Design

HDL Description

RTL Synthesis

Gate Level Netlist

Physical Design

Layout

Physical Verification
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Reminder: Principles of Efficient Design

• Compiling a large design without caring about details requires

▪ Hierarchy: partition complex systems into smaller sub-systems and repeat this process until

either complexity of the sub-systems is manageable OR a pre-built block (IP) is available

• Comparable to using functions in programming, but related to components in hardware design

• Closely related to the need for regularity: breaking down blocks favours re-using common blocks

▪ Abstraction: simplify the description/characterization of components as a model (black box) 

to facilitate using them on the next level of hierarchy

• Abstraction happens in different design representations/views: beavioral, structural, or physical

▪ Design automation: use algorithms and tools to translate abstract design descriptions 

into detailed inplementations, often building on pre-built basic building blocks (basic IPs)
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Reminder: Design Abstraction Levels

• Rapid realization

• Technology/implementation independent

• Rapid simulation of functionality, often floating point

• No information on timing/delay/latency/throughput/complexity

System/Algorithm 
Level

• Requires full architecture design and fixed-point optimization

• Simulations are significantly slower

• Provides cycle accurate delay simulation

• No accurate timing (in ns)

Register Transfer Level

• Requires synthesis / potentially P&R for a given technology

• Simulations are slow

• Reasonably accurate area estimation

• Enable timing and limited power analysis

Gate Level
Pre- and Post-Layout

Transistor Level (Electrical)

Mask Level (Physical)

Fabrication Mask Level
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Basic Building Blocks: Standard Cells and IP Macros

• Semicustom designs combine three main ingredients to efficiently implement 

complex designs on the basis of hierarchy, abstraction, and automation
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Standard Cells

used by synthesis tools

to implement the RTL

code with logic gates
RTL Code in a HDL

IP Macros

ready made components

for complex or critical

functions

instantiated

by the designer

in the RTL code

Instantiated

automatically 

by synthesis tools



Standard Cells

• Standard-cells are the basic components for logic synthesis and P&R

▪ Always in the form of hard-IP

▪ Very basic functionality that can be understood by automatic synthesis tools

▪ Precise and detailed characterization across many design corners to enable timing and power 

analysis of large netlists

• As opposed to IP components, standard cells are rarely not explicitly 

instantiated, but inferred automatically during synthesis

• Standard cells are usually collected in libraries containing 

▪ Standard-cell libraries often contain hundreds of cells

• Logic gates for Boolean logic 

• Sequential elements

• Special purpose cells
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Guidelines for a Good Core Library

• A variety of drive strengths for all cells 

▪ Larger varieties of drive strengths for inverters and buffers 

▪ Cells with balanced rise and fall delays (for clock tree buffers/gated clocks) 

▪ (Same logical function and its inversion as separate outputs, within same cell)

• Complex cells (e.g. AOI, OAI) 

▪ High fan-in cells: Using high fan-in reduce the overall cell area, but may cause routing congestion 
inadvertently causing timing degradation. Therefore they should be used with caution

• Variety of flip-flops, both positive and negative edge triggered, preferably with 
multiple drive strengths

▪ Single or Multiple outputs available for each flip-flop (e.g. Q only, or Qbar only or both), preferably 
with multiple drive strengths

▪ Flops to contain different inputs for Set and Reset (e.g. Set only, Reset only, both)

▪ To enable scan testing of the designs, each flip-flop should have an equivalent scan flop

• Variety of latches, both positive and negative level sensitive

• Several delay cells. Useful for fixing hold time violations
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Special Standard Cell Libraries

• Basic cell libraries are often complemented by libraries with special cells

▪ Typically not instantiated automatically during synthesis: manual instantiation or instantiated by 

special tools for specific purposes

• Special gates and cells 

▪ Clock gating cells

▪ Balanced clock buffers

▪ Level shifters

▪ Isolation cells

▪ Retention registers

▪ Power switches

▪ ECO cells for mask fixes to 

repair errors with limited cost

Imec - Invomec
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Clock network design: 

used during backend

Design with multiple voltage 

domains, mostly for low power

Special cells for debug and post-fabrication 

repair used in industrial designs



Standard Cell Design Requirements

• Standard cells are the smallest building block of complex logic

▪ Each cell is instantiated thousands or millions of times

▪ Cells used in very different contexts (different drivers, different loads, different layout locations)

• Standard cells must be simple and robust by design

▪ Standard cells follow a very conservative design paradigm

▪ Stability across corners and electrical conditions is a plus

• Cells must be able to handle different electrical environments: 

▪ Different loads require different drive strength

▪ Cells are fixed and can not be re-sized individually

▪ Libraries contain the same standard cell function with 

many drive strengths (sizes)

• Drive strength variants are often called X1, X2, X4, … 

▪ Different libraries often can be used together offering different VT options
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Standard Cell Physical Design

• Semicustom layout is a collection of thousands of standard cells

▪ EDA tools need to be able to place cells quickly in a dense fashion

• Standard cells follow a very regular layout with defined guidelines

▪ All cells have the same hight

▪ Only width varies depending on the 

complexity of the cell

▪ Power and gorund connections run

horizontally with same hight

▪ Cells can abut without DRC violations

▪ PMOS on one side, NMOS on other side

▪ Ideally use only few layers to leave

other layers free for cell-to-cell routing
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Standard Cell Physical Design

• Layout with standard cells

▪ Cells are placed in rows

▪ Cells in a row abut horizontally

• Horizontal stacking (up to 350nm):

▪ Routing channels between cell rows

▪ 250nm and below: horizontal stacking of cells by flipping every

second row upside down

• Avoids the need for vertical spacing between rows

• Power and ground connections can be shared
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Standard Cell Layout – Pins / Grids

• Standard cell layouts are routed on routing grids

▪ Both vertical and horizontal routing grids need to be defined

▪ HVH or VHV routing is defined for alternating metals layers

▪ All standard cell pins should ideally be placed on intersection of 
horizontal and vertical routing grids

▪ Exceptions are abutment type pins (VDD and GND)

▪ Grids are defined w.r.t. the cell origin

▪ Grids can be offset from the origin, however by exactly half the grid 
spacing

▪ The cell height must be a multiple of the horizontal grid spacing

▪ All cells must have the same height, but some complex cells can 
be designed with double height

▪ The cell width must be a multiple of the vertical grid spacing

▪ However, limited routing tracks are the bottleneck even with wider cells

• Cell libraries are often named based on the number of routing grids per cell height 
(e.g., 8 track or 12 track)
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Standard Cell Layout - Example
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Standard Cell Layout - Example

• Some more standard cell layouts
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• Efficiently using Standard Cells and IPs requires abstraction

▪ Different properties and different information required for different steps in the design flow

• IP and standard-cells come with different (design) views (abstract models)

▪ Datasheet (*.pdf)

▪ Graphical icon for use in schematics (*.sdb)

▪ Behavioral model for simulation (*.v or *.vhd)

▪ Timing and functional view for synthesis and P&R (*.lib, *.db)

▪ Port definition/entity declaration (*.v)

▪ Model for timing simulation (*.v or *.vhd)

▪ An abstract layout view for semi-custom layout (*.lef)

▪ Transistor level (spice) netlist (or schematic (*.spi, *.cds, *.oa))

▪ A detailed layout for Virtuoso or other tools (*.gds, *.oa)

▪ and many others …

Design Views for Standard Cells (and IP Macros)
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Design

Synthesis

Gate Level Simulation

Layout

Physical Verifiction
(DRC/LVS)

RTL Simulation

*.pdf, *.sdb

*.v

*.lib, *.v

*.v

*.lef, *.lib

*.gds, *.spi



Complex IP Macros

• Complex sub-circuits are often packaged as IP macros

▪ They may already be available and tested 

▪ They may contain full-custom or carefully optimized circuits that should not be touched

• IP macros can be full-custom circuits or blocks designed on RTL

• Two types of IP components:
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▪ Hard IP (macros): ready-made layouts

• Often used to include full-custom designs

• Advantages: highly optimized and often silicon 

proven

• Drawback: can not be altered or co-optimized 

with the design

• Examples: SRAMs, ROMs, PLLs, Analog or 

RF components, … 

▪ Soft IP: provided as RTL code

• Used to include other RTL designs

• Advantages: flexible to be adapted to fit the 

design in which it is used

• Drawback: limited to RTL and often not fully 

optimized until the last step

• Examples: processors, interfaces, DSP 

circuits, arithmetic units, … 



Standard Cells vs. (Hard) IP Macros 

• Note: soft-IP macros are treated in almost same way as your own HDL code

▪ A soft macro is a hierarchical block that is itself eventually built from standard cells and possibly 

from Hard IP Macros

• There is almost no difference between a standard cell and Hard IP Macro

▪ Both have similar or even identical set of “views”

▪ With very few exceptions, both are treated in the same way in the design flow

• Difference between Hard-IP and Standard Cells lies in how they are used:

EE-429: Fundamentals of VLSI Design 20

Hard IP Macros

• Complex functionality: can not be understood 

by synthesis tools

• Always instantiated manually by the designer

Standard Cells

• Basic logic/sequential elements: sufficiently 

basic to be understood by synthesis tools

• Instantiated by logic synthesis to implement 

the RTL description with logic gates

• (can in rare cases be instantiated manually)



IP Macro Example: Memories

• Embedded memories are the most frequently used IP in digital designs

▪ Often many memories with different configurations (based on design requirements)

• Memories are typically generated by a “Memory Compiler”

▪ Software tool that takes specifications and generates corresponding macro

▪ Usually based on basic building blocks & algorithms to generate all required views
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Datasheet (*.pdf)

Graphical icon for 
use in schematics

(*.sdb)

Behavioral model
for simulation (*.v 

or *.vhd)

Timing and 
functional view 

for synthesis and 
P&R (*.lib, *.db)

Port 
definition/entity 
declaration (*.v)

Model for timing 
simulation (*.v or 

*.vhd)

An abstract 
layout view for 

semi-custom 
layout (*.lef)

Transistor level
(spice) netlist (or 
schematic (*.spi, 

*.cds, *.oa))

A detailed layout
for Virtuoso or 

other tools (*.gds, 
*.oa)

• Memory type (e.g., 

Single Port, Dual Port, 

Two Port, ...)

Memory flavour (e.g., 

High Density, Low 

Power, High Speed, ...)

• #words & bits/word

• Physical structure: MUX 

factor/folding, banks, ...

• Test options

• Control options

• ...



Integration of IP Macros on RTL

• IP Macros (hard or soft) are instantiated in the RTL code

▪ Exactly like instantiating your own hierarchical components

• Component definition can be 

▪ part of your RTL code, based on the datasheet and must match the ports (names, types, 

direction) of the IP

▪ in a package that is part of the IP deliverable that you can simply include in your RTL code
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Component declaration

(sometimes available in a HDL package)

Component instantiation

IP Macro

name



Semicustom Design Flow Tools

Place & Route

▪ CADENCE Innovus

▪ Synopsys IC Compiler

▪ Siemens EDA Olympus 

SoC
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RTL Design

HDL Description

RTL Synthesis

Gate Level Netlist

Physical Design

Layout

Physical Verification
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Design Entry

▪ VS Code

▪ EMACS

Synthesis

▪ Synopsys Design 

Compiler

▪ Cadence Genus

▪ Siemens EDA 

LeonardoSpectrum

Verification

▪ Siemens EDA 

Questa Sim

▪ Synopsys VCS

▪ CADENCE Incisive

▪ Synopsys Formality

▪ CADENCE Conformal

▪ Siemens EDA 

QuestaSLEC

Physical Verification

▪ Siemens EDA 

Calibre



Design Flow: Required Inputs

• Each step requires different inputs and produces outputs

▪ Design data base from the previous step

▪ Additional information and constraints
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Floorplan
Clock tree 

constraints
Power

planning

Synthesis
scripts

Backend
scripts

standard-cell libraries IPs Technology Files

▪ Commands that tell the tool what to do 

▪ Technology files with technology information



Design Definition 

• Chip design projects start from a specification

▪ Description of the functionality

▪ Algorithms

▪ Performance requirements 

▪ Golden models in a high-level language

• Chip specifications & requirements

▪ Description of the application and environment (system in which the design is used)

▪ IO and interface requirements

• Process technology and fab

• Chip architecture definition

▪ Defining the main functional components and tasks

▪ Partitioning of the functionality 

▪ Connectivity between main components 
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Architecture Design

• Top level architecture definition

▪ Top level block diagram with detailed partitioning

▪ Definition of the individual sub-blocks

▪ Definition of the block-level interfaces

• Top-level clocking strategy

▪ Definition of system clocks

• Block level specification and modelling

▪ Define clearly the functionality for each block

▪ Ideally provide a golden model for each critical block

• Identification of key IP components

▪ Identify standard-cell libraries and technology details

▪ Identify main required IP components (e.g., memories) for each sub-block
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RTL Design

• Detailed RTL Diagrams

▪ RTL block diagrams

▪ State machines

▪ Waveforms for interfaces

• Refinement of clocking strategies

▪ Special clocks on block level

• RTL design using synchronous design

▪ Implementation of RTL diagrams in a HDL

▪ Typically in Verilog or VHDL
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Functional RTL Verification

• Objective: verify that each block functionally adheres to its specification

• Functional verification is mostly performed based on simulations

▪ Definition of test cases

▪ Definition of test benches

▪ Simulation of RTL code 

• Debugging based on 

simulation waveforms

• Verification starts on RTL level, 

but is repeated later on the 

implemented design (gate level)
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Verification Acceleration

• Complex simulations can be supported by hardware

▪ FPGAs: map the entire design onto FPGAs, sometimes 

enabling even real-time in-system simulation

▪ Hardware emulators (CADENCE Palladium):

hardware platforms for simulation speedup

• Drawback of hardware support: 

▪ Visibility for debug can be quite limited

▪ Compiling code for accelerated simulation 

can take quite some time
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Logic Synthesis

• Objective: mapping of RTL 

code to a gate-level netlist

• Inputs:

▪ RTL design files

▪ Standard cell libraries

▪ Models (views) for hard IPs

▪ Constraint files

▪ Synthesis commands

• Outputs:

▪ Gate-level netlist

▪ Side information for 

physical design

▪ Reports on area, timing, power, ...
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• Analysis

▪ Read and check 

HDL description

• Elaboration

▪ Translate code into 

an abstract schematic

• Optimization

▪ Optimize design for an 

area/performance target

▪ Various algorithms

• Technology mapping

▪ Map abstract design to 

the target libraries

• Post synthesis 

analysis

▪ Formal verification

▪ Area analysis

▪ Static timing analysis

▪ Power analysis

Synthesis steps



Physical Design

• Objective: implement a physical layout of the chip while adapting the design 

to the layout and complementing it with missing parts

• Inputs:

▪ Verilog netlist

▪ Standard cell libraries

▪ Models (views) for hard IPs

▪ Technology files (PDK)

▪ Constraint files (e.g., timing, clock)

Floorplan instructions

▪ Power supply information

• Outputs:

▪ Physical design layout (.gds file)

▪ Optimized gate-level netlist

▪ Reports on area, timing, power, ...
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• Setup

▪ Read netlist and 

technology files

• Floorplan

▪ Abstract plan of the 

layout

▪ Placement guidance 

and placement of macros

▪ IO placement

• Automatic placement

▪ Place standard cells

• Design optimization

▪ Optimize design based 

on parasetics

• Clock tree design

▪ Define and synthesize

a clock tree

• Routing

▪ Route power 

▪ Route signals

• Post-route analysis

▪ Check physical rules



Chip-Level Integration

• Eventually, analog and digital blocks need to be combined

• Two strategies: 

▪ Analogue-on-top: package digital components to hide complexity and include in analog top

▪ Digital-on-top: package analog components to hide details and include in digital top level
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Abstract Detailed Design Flow
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Frontend design flow

Backend design flow

• Generic Abstract Design Flow defines all the steps of the design process

▪ Characterized by “loops” and design iterations between design, verification, and analysis



Specific Design Flow Example

• For every project, we define a specific more concrete design flow

▪ Defines specific tools and the exchange of information based on design files

▪ Each tool requires its own set of inputs and technology and IP information (views)

• Details of the design flow 

are defined by the EDA/CAD 

support groups and by the 

project and are the same for 

every designer
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Design flow example from 

the lab you see in 1-2 weeks

based on UMC 65nm



Setting Up a Design Environment

• Need for a clean and structured work environment

• The semicustom design flow is based on a collection of tools

▪ Each tool has its own environment, requires inputs, delivers outputs and generates 

numerous intermediate files and reports

• Every design starts with a file/directory structure

▪ Avoid chaos and allow the tools to run independently and in their preferred manner

• Defined by the project (same for all designers) and often common or similar 

for all projects in a company

▪ Typically given by the EDA / CAD support team
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Work environment 

example from 

EDA-Labs

UMC 65nm
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