
1/35

SECTION OF ELECTRICAL ENGINEERING

EPFL STI – SEL

ELG

Station nº 11

CH-1015 Lausanne

Téléphone :

Fax :

E-mail :

Site web :

+4121 693 13 46

alexandre.levisse@epfl.ch

https://sti.epfl.ch/fr/sel/

EE429 2024/2024: Full custom labs 1 : Testbenches, Simulation and Corners

SEL September 2025

PRACTICAL LABORATORY SESSION No. 2
Testbenches, Simulations and Corners

1 OBJECTIVES

In this lab session you will perform circuit simulations using a tool called ADE Assembler (for Analog
Design Environment). ADE is a part of the Cadence Virtuoso tool suite. You will first create a testbench,
run simulations, and then learn how to extract results from these simulations. Finally, you will learn how
to run simulations which take into account CMOS variability (also called Monte-Carlo simulations).

 In this project, you will use a spice simulator called Spectre and developed by Cadence. There are
many spice simulators in the IC design market (the two most known ones being Hspice from
Synopsys and Eldo from Mentor-Graphics/Siemens). They are all based on the spice syntax with
some variations.

First, you will design your own test-bench for an 8-bit 4-to-1 MUX which was designed in the previous
session. Then you will determine transistor sizes and, with the insight provided by simulation results, verify
and optimize the design.

Finally, you will practice your skills with a little exercise. As always there will be quiz questions on the
content of the lab.

There are QUESTIONS along the lab, these are NOT GRADED, but will be useful for the quiz.

PREREQUISITES

 Start the Virtuoso Design Environment under your existing project directory –
EE429_FULLCUSTOM (as described in laboratory session no.1, section 3.2).

 If the Library Manager does not appear automatically, activate it by selecting Tools→ Library
Manager, from the CIW window.

 If a window appears asking for the available licences, simply click Yes and proceed.

 Use Library Manager and make sure that when creating cell views, the view type is set to
Schematic. The default view name should be schematic. Also note that some windows may appear
below other windows.

mailto:alexandre.levisse@epfl.ch
https://sti.epfl.ch/fr/sel/

2/35

2 CREATING THE MUX TEST-BENCH SCHEMATIC

 Create a new schematic view in your library (EDATP) named: MUX_4_1_8bit_TB

 Instantiate the symbol of the MUX_4_1_8bit that you have already generated in the previous
session into the new schematic editor window. Then complete the schematic as shown in Figure
1.

Figure 1 - Schematic View of the Testbench for the 8-bit MUX.

 For the DC source use the independent source vdc component from analogLib library. Name the
instance as Supply. Enter the properties (q) or use the Property Editor. In the DC voltage field
type: VDD.

 For pulse generators (A_in<7:0>, B_in<7:0>, C_in<7:0> and D_in<7:0>, S0_in and S1_in, as
indicated in Figure 1) use vpulse component from analogLib. Check that names of the instances
correspond to Figure 1, and that the properties correspond to the Table I.

 For the load capacitors shown in the schematic, use the cap element from analogLib. Name the
instance CAP<7:0>, and set the capacitance value to 10fF (10f).

 For the Vdd and ground symbols, use the global sources vdd and gnd cell symbol views from
analogLib library. Ground symbol will provide the zero reference voltage level for your
simulation.

 Make sure you are using buses for 8-bit signals and wires for single-bit signals.

 Use Add→ Wire Name or press “l” to place labels accordingly to the input/output signals as
shown in Figure 1.

3/35

 Note from the Table I, that VDD, Vsweep and Period are defined as variables. Numeric
values can be set directly here, as we did for Voltage 1 of the pulse generators which is
always equal to zero. We will set the actual numeric values of these variables later, when we
launch the circuit simulations.

 Variable Vsweep will be used to gradually vary the voltage of the input S1, and observe the
corresponding output voltage of the inverter within the MUX. This type of simulation is
usually called voltage sweep.

 Check and Save your design.

Parameter Input A Input B Input C Input D Input S0 Input S1

DC voltage 0.0 V 0.0 V 0.0 V 0.0 V 0.0 V Vsweep V

Voltage 1 0.0 V 0.0 V 0.0 V 0.0 V 0.0 V 0.0 V

Voltage 2 VDD V VDD V VDD V VDD V VDD V VDD V

Period Period s 2*Period s 4*Period s 8*Period s 16*Period s 32*Period s

Rise Time 0.01*Period s 0.01*Period s 0.01*Period s 0.01*Period s 0.01*Period s 0.01*Period s

Fall Time 0.01*Period s 0.01*Period s 0.01*Period s 0.01*Period s 0.01*Period s 0.01*Period s

Table I - Parameters for the pulse generators.

3 CREATING DIFFERENT TESTS AND GLOBAL VARIABLES

 Open the simulation environment by clicking on Launch→
ADE Assembler on the very left upper corner of the schematic
editor window. A small window will pop-up. Choose Create
New View, and press OK. If Create new ADE Assembler view
window pops-up, press OK. Verify that the view being created is of
type “maestro”.

 The tool may inform you that it will get some license instead of
another. This is normal, as Cadence is regularly rebranding their
licenses. Just click “Always”.

 The Virtuoso Analog Design Environment Window will appear, as
shown in Figure 2.

 Note from Figure 2, that a tab is added for your schematic. This new
tab is called Maestro. This is the tab from which you will be able to
define and setup your outputs and simulation results.

 Run Summary sub-window will allow you to see the overview of the tests that you have run and
the status of the current and previous simulations.

 Explore the Data View sub-window. Check the available options and expand the available menus.

4/35

Figure 2 - The Analog Design Environment Maestro Window

 In case you used ADE in the past, ADE L and XL are soon discontinued and now replaced by ADE
Explorer and Assembler respectively. Generally, ADE Explorer can be used for simple simulations
and test. More complex exploration such as parametric simulations should be done through ADE
Assembler.

 We will first set our global variables. Expand the Global Variables
menu in the Data View window. Use Click to add variable button to
add the following variables: VDD=1.2 (since we used VDD as a supply
voltage variable, this defines your supply as 1.2V), Period=2n (this sets
the minimum period of the A input to 2ns).

 Your global variables should appear in the Data View window. The Period
and VDD from Table I are now defined.

 Now we will define our tests. Expand the Tests menu, and use Click to
add test button to define a test.

 A window will appear prompting you to choose a cell name for which you
wish to define a test. Choose MUX_4_1_8bit_TB and click OK.

 A Test Editor window now appears (experienced designers would
notice that this window is a ADE Explorer view). Note the little

 next to the name of the test, on the left hand side of the window.
With this arrow you can come back to the ADE Assembler view.
Click on it.

 You are now back in the ADE Assembler view. Click back on the
 in the newly created test to come back in the Explorer view.

5/35

 Once we are back in the ADE Explorer window, let’s now create a test. First, let’s recover all the
defined design variables. Right Click on Variables → Copy From Cellview. Observe that VDD
and Period variables will appear automatically in the Test Editor window, as well as the defined
Vsweep variable (Vsweep also appears in Global Variables). Do not set any values here, since we
will use the global definitions.

 When you copy the variables from the design
(cellview) both global and design (local) variables
will be created. However, the defined design variable
values are valid only for the specific test (simulation),
while global values are valid for all the defined tests.

 If for a specific test we want to define a value different
from the global one, we can simply define the local
variable. Global value will not be used for that test.

 Let’s now choose the Analysis. Go to Analysis → Choose
(or in the Analysis pane, ”click to add analysis”), and
select DC analysis. Set the remaining values as presented
in the figure.

 Make sure that in the Stop field the defined limit is:
VAR("VDD"). This will define the DC Voltage sweep
from zero to the variable VDD (rail-to-rail sweep),
varying the input Vsweep.

 For every field that expects a real (numeric) value, if
a variable is used, the syntax (VAR("")) is needed. The
function VAR returns the real value of the variable.

 Click OK and the test is defined.

 Note that by double clicking on the name of the test you
can rename it. Let’s call it “DC_TEST”

6/35

 Click on the to go back to ADE Assembler.

 Good Practice : Every now and then, have a

click on the to save your view.

 Define a new global variable Vsweep (make it zero).
 The default value (zero) will be used by the

simulator for calculating the DC operating
point.

 Next, let us define a Transient Analysis. We define
it as a new test, so we must repeat the whole
procedure by using Click to add test...

 Choose MUX_4_1_8bit_TB again, and subsequently choose transient analysis by selecting tran.

 Set up all the fields as in the figure. Set the simulator accuracy to moderate. For the Stop Time
field, use the variable Tsim. Click OK.

 This operation creates the Tsim design variable, and adds a
new test.

 Do not forget to copy the variables from the cellview as
before. Rename the test TRAN_TEST. And click on to go
back to the Assembler window.

 Finally, define the Tsim global variable that determines the
simulation time. Define it to be 32 periods or: Tsim=32*Period
(see figure).

 Note : if you click on the little “+” next to the design
variables of one of the tests, you will note that these
variables are crossed. This means that the test will
consider the global variables values. You could totally
specify some special values you’d like to use for some tests
without impacting the whole design.

 DC test represents the analysis of the operating point (DC -
level). We defined a DC sweep, which represents a special kind
of DC analysis. We simply vary the value of the input from 0
to VDD, and observe the corresponding output values.

 Transient test represents the time domain analysis. We apply voltage pulses to our inputs and
simulate the circuit for the specified simulation time (Tsim). Simulation time is defined as 32
periods of the fastest pulse (see Table I).

 Note that it is also possible to define different types of analysis within the same test, by using: Click to
add analysis. For the different analysis that observe the same or similar outputs (such as for example
DC and AC analysis in some cases), this option can also be used.

7/35

4 DEFINING OUTPUTS AND RUNNING SIMULATIONS

So far, we have defined design variables and the type of simulations that we want to perform. Before we
launch the simulations, we must define the outputs that we want to observe. Output could be defined after
the simulations are performed, if the good options are selected, though, it means that every single net of
the circuit will be saved – this will induce a large memory footprint and can be a problem for large circuits.
Therefore, it is generally a better idea to define outputs before we perform simulations.

 Note that you will generally not be the only user of a server, thereby having a mindful utilization
of resources is always a good practice.

 In your ADE Assembler window, select the maestro tab. In the Output Setup section, click on the
arrow next to the Add new output button . A falling menu will appear. From there, choose the
desired test for which you want to define the output, as well as the desired type of the output. Define
an expression output for DC_Test and a signal output for Tran_Test.

 If you followed everything correctly, you should have the following list of outputs (you can change

the name by clicking on the name field):

 Defining names can be very useful once the signals/expressions are plotted. It can allow

us to easily distinguish the expressions in the plot/graph.

 When double-clicking on the Details line of the DC_test expression, note that a little appears.
If you click on this, it pops a window in which you can write or paste expressions. This is extremely
useful when you know what expression to write, or you copied it from somewhere else.

 If you do not know the syntax of the expression you want to write (which is your case now), you

must use the calculator. Click on or Tools>Calculator
 Virtuoso Calculator is a very powerful tool. It can help you define waveforms and expressions,

plot circuit time or frequency response, perform useful transforms, signal post-processing
and/or analysis. It has many pre-defined mathematical and processing functions, but it also
allows you to define your own functions and transforms.

 Calculator can be opened faster by using Tools→ Calculator or by using a calculator icon
from the toolbar. Once you open the calculator, there is no need to close it and open it again,
until you are completely finished with using it.

8/35

Figure 3 – Virtuoso Calculator

 Now, we propose to plot the expression of the signal which is deep within our design’s hierarchy.
To be able to do so, we first need to enter the corresponding cellview. Do not close the Calculator
and go back to the ADE Assembler window.

 Switch from the maestro tab to the tab with the testbench
schematic. Descend inside your 8_bit MUX as explained
before (Shift+e). Once you enter the lower level, descend
inside the MUX_4_1. Since there are 8 instances of
MUX_4_1, you will be prompted to select which
iteration to use. Choose zero and proceed.

 Note: The “new tab” option allows you to open the next hierarchy level without closing the
current one in the same window. If you do not plan to edit anything, use the “read” option.
You can always make a read-only view editable later through “file>Make Editable”

 Once you enter the MUX_4_1 schematic, descent into MUX3 (check again the MUX_4_1
schematic from the previous exercise).

 Once you entered in the transistor-level schematic of MUX3, switch back to the Calculator.

 Click on vs (voltage sweep) circular box on the Calculator. You will be directly prompted back
to the schematic. Now click on the S_INV label (wire name) or the wire itself. An expression will

appear in the calculator buffer. Click on to send the expression to the ADE output panel.

9/35

Figure 4 – Transient Test Output Waveforms

 Note that a new line has been created in the output setup panel. You can now delete the firest
expression you created by selecting it and clicking on the button. Rename the new DC_test
expression INV_out.

 Now we need to define the output signal for the transient test. Go back to the schematic, and return

to the top level (MUX_4_1_8bit_TB) (use Ctrl+E). In the maestro tab, double-click on the
Details field, and click on (…) symbol.

 Click on Q_out<7:0> bus. You will be asked to select the exact bit. Choose Q_out<0>, and press
OK (since each bit of the MUX is the same, we can choose any of the 8 bits). In the same manner,
define signals for the transient test for A<0>, B<0>, C<0>, D<0>, S<0> and S<1>. Once you
finish, if everything is correct, you should have a list of outputs as follows:

10/35

Figure 5 – DC Test Voltage Sweep

 All the outputs are now defined. The plotting options can
be set by using the Set up plotting options button or
from the main menu Options → Plotting/Printing … . To
plot the selected outputs automatically, we need to set-up
as shown in the figure (right).

 You can also use the “new win” option there.

 Before any simulation can be run, we always need to
Check and Save all the schematics that we have changed
in the meantime (this sometimes means we have to
descend in hierarchy and save every hierarchical level -
not performing C&S is a very common mistake).

 Finally, the simulations can be run. This can be done by
pressing the Run Simulation button in the ADE
Assembler window .

 You will be able to follow the progress of the simulations
in the Run Summary sub-window.

Here give it some time. You are running two different simulations, each needing some time to be
configured and performed. Keep an eye on the summary window. On Options>Job Setup, enabling
“show output log on error” is a good practice.

 Once the simulations are finished, Virtuoso Visualization and Analysis XL (ViVA) window will
appear. By default it is embedded on the right hand side of the Assembler view. Extend it as
suggested by the popup. Click on .

 Two tabs are available: DC-test tab, and the transient test tab (Figures 4 and 5).

11/35

QUESTION 4-1 : Explain the waveform of the multiplexer output, what does it do ?
QUESTION 4-2 : How do you interpret the results of the DC simulation? Explain the resulting
waveform. What does it represent?
QUESTION 4-3 : What is the threshold voltage of the NMOS transistor? What about PMOS transistor?

12/35

5 USING LOCAL VARIABLES

Until now, we were using global variables. It is also possible (and sometimes useful) to define variables
localized to the specific test.

 Go to the Data View window and expand the design variables menu of
the DC_Test.

 Check the box next to VDD and type 1 in the field next to box.

 The local value of the VDD for the DC_Test will now be 1.0V.

 To avoid waiting for the transient simulation to finish, uncheck the box
next to the transient simulation. Transient simulation will not be
performed.

 Run the simulation again. Comment on the results. Does local variable
VDD depend on the global variable VDD? What has changed in the Run
Summary sub-window?

 Note that by selecting Graph→ Properties... in the Visualization window
(General tab), you can change the graph options such as the background.
This can be very useful for including graphs from Virtuoso in the
presentation slides or project reports.

 Note that as we did setup the plotting mode as append
(Options>Plotting/Formatting) if you did not close the Visualizer it will
superpose the new curve on top the previous one.

 Disable the local variable after this experiment to have your VDD back to 1.2V.

13/35

6 USING SPECIAL FUNCTIONS AND SPECIFICATIONS

As we mentioned, Calculator allows us to use many different features and functionalities. A very useful
group of these features are so called: Special Functions. Here, we will learn how to use special functions
on a very simple example: delay function.

 In the Data View window, disable the DC_Test (untick it) and enable the TRAN_test (tick it).

 Open the Calculator, and make sure that the Special Functions are selected in the Function Panel
as in Figure 3de.

 Press vt (voltage transient) button, and go back to the schematic. Click on Q_out<7:0> bus. You
will be prompted to enter the exact bus bit: choose Q_out<0> and click ok. The value then appears
in the calculator buffer. Do not press anything, go back to schematic and click on bus A<7:0>.
Once again you will be prompted to enter the bit: choose A<0>.

 In the calculator. Note that the voltage transient (VT) of Q_out<0> is now be in the calculator Stack.

Press to add VT(“/A<0>”) in the stack. This way you’ll be able to select it from the delay
function.

 Go back to the calculator and click on delay function in the Function Panel. The following dialog
should appear:

 Modify the values as specified in the figure. Threshold Values should be 0.6, Edge Numbers 1,

and Edge Types set to rising. This will measure the delay from the first rising edge of A<0>, until
the first rising edge of Qout<0> that appears after the specified rising edge of A<0>. Edge is defined
as crossing the threshold of VAR("VDD")/2. Make sure that Start 1 and Start 2 is at 0.0. After
you set your delay function dialog as shown, click Apply, and the full expression should be available
in the Calculator buffer.

 If the delay function dialog does not appear correctly as shown, you should delete all data
from the calculator buffer and stack, then try again all the previous 3 steps.

 Make sure that Tran_Test is selected in the Calculator window and once the full expression is

available, use the button (Send buffer expression to ADE Outputs - button). Click on the
button and go back to the Output Setup.

 The corresponding output expression is now defined and available. Name it as suggested:

14/35

Figure 6 – Measure Different Delays

 Note that now we have defined a single delay value. By using the same principle, define 3 more
expressions to represent the delay between: 11th rising edge of A<0> and the following falling edge
of Qout<0>; 17th rising edge of A<0> and the next rising edge of Qout<0>; 25th falling edge A<0>
and the next falling edge of Qout<0> (e.g. edge 11 rising of A<0> to edge 1 falling of Q<0> - look
below for an important tip).

 Important! The edge number for the first signal is absolute. The edge number of the second
signal represents the number of edges from the specified edge of the first signal.

 Also note that the expressions can be changed manually (directly), which can allow you to
perform the definitions faster. You can achieve that by observing the expression:

delay(?wf1 VT("/net1") ?value1 th1 ?edge1 "type1" ?nth1 N1 ?td1 ref1 ?tol1 t1 ?wf2 VT("/net2") ?value2 th2 ?edge2 "type2" ?nth2 N2 ?td2 ref2
?tol2 t2)

and by modifying the corresponding numeric values: net1,2 - corresponding nets in the
schematic, th1,2 - thresholds, type1,2 - type of the edge (rising or falling), N1,2 - edge
number, ref1,2 reference points, t1,2 tolerances.

 Add each expression to the Output Setup.

 Here we define 4 zones to characterize the MUX. Zone D corresponds to the case where both
S<0> and S<1> are equal to logic 1. Zone C corresponds to S<0> being 0 and S<1> being
1. Same for B with S<0> being 1 and S<1> being 0. Finally zone A corresponds to both S<0>
and S<1> being 0. For each of them we define the names accordingly.

 In the Output Setup list, for each delay expression, add a specification. Click on a Spec field and
choose “<”. By double-click on the empty field, enter the value of 190p, next to the “<” sign. This
defines our design specification. Our delay is required to be lower than 190ps.

 If you performed everything correctly, you should have the following outputs in your Output Setup
window (rename the expressions as shown below):

 Descend into the MUX_2_1 schematic. For every PMOS transistor width (Total Width), put

300nm and for every NMOS (Total Width) put 80nm.

 Run the simulation .

 Go to the Results tab in the maestro section. The following results should appear:

15/35

QUESTION 6-1 : What does the pass/near/fail feature allows you to do ?

QUESTION 6-2 : These delay functions are extremely useful, and allow you in certain conditions to save
memory (as you do not need to save the entire waveforms) and time. Though, as usual, they have their
limits. What kind of pitfall do you see there ?

 Change the Spec to more demanding 180ps and run the simulation again. Discuss the meaning of
these results with your colleagues.

 This tool allows you to evaluate the quality of an obtained results with regard to a metric that

you can define. It is a good way to identify fast paths are being the bottleneck in a design.

16/35

7 USING DESIGN/INSTANCE PARAMETERS

 Use the calculator to add four more delay expressions. You should have one rising edge and one
falling edge delay for every pulse type (A, B, C, D - see Figure 6). After you run the simulation,
depending on what edges you have chosen, you should have a result very similar (or same) as the
following:

 Now, descend into the MUX_2_1 schematic. For every PMOS transistor width (Total Width),

instead of 300nm value, type a parameter Wp. For every NMOS transistor do the same and set
Wn.

 Check and Save the MUX_2_1 schematic.

 In the TRAN_TEST, right click on design variables and
select Copy from Cellview. It will the design variables
Wp and Wn.

 On the Global Variable panel, define the global
variables Wn = 200n and Wp = 400n.

 Run the simulation .

 Go to the Results tab in the maestro section. The
following (or similar) results should appear:

QUESTION 7-1 : How do you explain the decrease in delay?

17/35

8 CURIOSITY ON DEVICE SIZING AND BEST WAYS TO HANDLE VARIOUS CELL
SIZING.

A lot of ways to parametrize transistors and cell exist in virtuoso. An extremely detailed documentation
exists on it in the Cadence support. Generally, learning about it once in a company is a really good practice.
Still, defining parameters as we just did can be suboptimal as it fixes the size of the MUX_2_1 transistors
for ALL the instantiations of this cell. Still, parametrizing cells can be good for simulation (this can be
done through the CDF file – I write this here so that you have the keyword), however, when it comes to
layout (next session), having hardcoded parameters is the way to go. A easy and optimal practice consists
in duplicating a Cell View (right click on the cell view > copy), rename it with another name (which
accounts for its size – or drive) and change the sizing accordingly in the schematic. This way, each identical
circuit with a different sizing exists as a different cell view. Take a look at the
UMC65LL_UMK65LSCLLMVBBR__B03PB standard cell library in your library manager. All the cell
names finish by XRA where X is a number ranging from 0 to 40+. These are the drive strength of the
standard cells. At this point you will not be able to understand the layout, but trust us, these are the same
cells (when they have the same name) and just the size of the output stage changes.

Alternatively, in virtuoso, one could create something called pcells (parametrizable). Though, these take a
lot of effort to design, specifically when it comes to layout.

Finally, making a design too specific to one tool is never a good idea. Better having 10 different cells with
10 different sizing and names which you can import anywhere, than a complex cell which way not behave
the same in another tool or with the next version of the same tool.

Take these suggestions as takeaways for the future. Though these are not the absolute truth, right ?

9 CORNER AND MONTE-CARLO SIMULATION

9.1 PROCESS CORNERS

In integrated circuit design, corner simulations represent a technique to model the extreme cases of
fabrication parameter variation and/or variation of other physical parameters such as temperature or supply
voltage. Once fabricated, depending on the fabrication process inaccuracy, devices may exhibit different
behavior and therefore be faster, slower, larger, smaller or in any sense vary from the ideal case. Moreover,
an integrated circuit may be exposed to different environmental conditions such as high temperature or
battery supply voltage drop. Corner simulations allow us to model these cases and guarantee that the circuit
will still be functional. This is one of the methods that enables IC designers to estimate the yield or the
percentage of fabricated circuits that will be functional.

 In the EDATP library, create a new schematic cell and name it
Inverter. Use N_12_LLRVT and P_12_LLRVT transistors
from UMC65LL library and draw a CMOS inverter as in the
figure. Set Wn = 120nm and Wp = 240nm (L should be 60nm for
both). Check and Save the schematic.

 You could also create global variables Wp and Wn, and use then
in the W field of the two transistors.

 Create a symbol for the Inverter.

18/35

 Create a new schematic cellview in the EDATP library and name it Inverter _TB. Draw the
testbench schematic as in the figure (down).

 For the DC voltage of the supply, use a variable VDD. For the input pulses, Voltage 1 should be
zero and Voltage 2 should be VDD. Period should be set to a variable: Period. Set the rise and fall
times to 0.01*Period.

 Load capacitor: C = 10fF.

 Create a ADE assembler
cellview for it.

 Create a moderate accuracy
transient test with the

simulation time Tsim
(Tsim=4*Period, Period =
3ns, VDD = 1.2V).

19/35

 Setup the input and the output of the inverter to be plotted and define the output delay of the
falling/rising edge with respect to the previous rising/falling edge of the input, respectively:

IMPORTANT COMMENT : here, carefully select VAR(“VDD”)/2 in the expression for the threshold
value ! otherwise, comparing delays between circuits with different VDD values will not be apple to
apple

e.g. for Delay_R: delay(?wf1 VT("/IN") ?value1 (VAR("VDD") / 2) ?edge1 "rising" ?nth1 1 ?td1 0.0
?tol1 nil ?wf2 VT("/OUT") ?value2 (VAR("VDD") / 2) ?edge2 "falling" ?nth2 1 ?tol2 nil ?td2 0.0 ?stop
nil ?multiple nil)

 Set the plotting/printing options as presented in the figure

on the right.

 Check and Save the schematics and run the simulation .

 Analyze the results.

 In order to perform corner simulations, we have to use
specific transistor models (often called statistical models),
that take into account the process variation.

 Right-Click on the transient test in the Data View window,
and select Model Libraries... The following dialog should
appear (see below).

 Untick all the models coming from l65ll_v151.lib.scs. This
action disables typical (deterministic) models.

 Note that there are two parts in this window. One being
the file name, and one being the section. If you open
the scs file, you’ll see several sections one for each
device and corner.

 Use the button Click here to add model file... Proceed with the browse button (...), and go to
./Models/Spectre/Monte_Carlo folder.

20/35

21/35

 Select the file: l65ll_v151_mc.lib.scs, and click Open. In the Section field type: tt_ll_rvt12, or select it
from the dropdown menu.

 You do not need it here (unlike in the screenshot), however some PDK will require the variable
sigma. This variable determines the degree of statistical variation and generally depends on
the target yield. It may needed for the statistical models to define the standard variation of the
parameters. It will be used in the background by the simulator and the most common mean
(and default) value is equal to 3.

 If you define it, Spectre will inform you through a warning that the sigma variable is not used.

 Now, we will define several corners:

 In the Data View window, use the button Click to add corner under Corners. Click on , to add

additional corners.

 The first corners we add are the BC (Best Case) and WC (Worst Case). These are generally used in
digital design, to characterize the physical worst cases of a digital chip, taking into account voltage
fluctuations (+/-10%), temperature range (max/min) and process variations. This will be more detailed
in the second phase of this labs (from week 6). These corners are used to identify the slowest possible
path and the fastest possible path in a digital circuit.

 The next corners are the process corners we generally define in full custom design, and could be adapted
to various operating voltage and temperature. There are 5 of them. TT (Typical Typical), SS (Slow
Slow), FF (Fast Fast), SF or SnFp (Slow N Fast P), and FS or FnSp (Fast N Slow P). These corners
represent the extremum cases that the foundry (the company fabricating the chip) ensure about the
variability of the MOS transistors This way one can explore the performance of their design considering
the Vt variation of the transistors. For e.g. SnFp means Slow NMOS and Fast PMOS, which literally
means “all the NMOS are the slowest possible and all the PMOS are the fastest possible” or “all the
NMOS have a high Vt and all the PMOS have a low Vt”. This being induced by the process variations.

 This is valid for MOS transistors. But if you had a look at all the files we showed before, you’ll
notice that this is also valid for all the device models the foundry provides (resistors, capacitors,
diodes etc.). The principle being the same, but limited to the available parameters for this device.

 Set the temperature of all the additional corners to the same value as in the figure and the supply voltage
to as described. Click to add a model file, and add the same as before: go to
./Models/Spectre/Monte_Carlo/ and select l65ll_v151_mc.lib.scs.

22/35

9.2 MONTE-CARLO SIMULATIONS

Corner simulations are useful for defining the extreme cases. Since there is in general a small amount of
simulations to be run, the verification can be done quickly, and the designers can confirm the functionality
of their circuit under the predicted extreme conditions. However, corner simulations have a couple of
limitations. They can sometimes be very pessimistic, since they cover only extreme cases instead of the
actual statistical distribution of the parameters. Another limitation is that corner analysis covers only
predefined (predicted) limited set of parameter variations that have to be set manually. Finally, and this is
the most critical aspect, corner simulation do only simulate cases where all the transistors are in the same
conditions. In real life, it can happen that functionality is lost in cases where only a few transistors in a path
become weaker/stronger. In other words, in some circuit types, failures do not always happen in the corners,
and particularly not always with predictable voltage and temperature conditions. This is particularly true

 Name the corners as BC, WC, TT, FF, SS, FS and SF. Set the corresponding section (from the
dropdown menu, or type them directly) accordingly: ff_ll_rvt12 for FF, ss_ll_rvt12 for SS,
fnsp_ll_rvt12 for FS and snfp_ll_rvt12 for SF. Click OK.

 When defining the different corners, the nominal corner could be deactivated. It takes
by default the files we did define before in the model libraries from the test
TRAN_TEST. The other corners

 Untick the Nominal corner and run the simulations . Go to the results tab. Play with the different tabs
available through the drop down menu on the top left of the results tab. The “detail” tab shows you the
details results of your simulation. The “Detail – Transpose” shows you how each of the corners behaves
with the delays you extracted.

QUESTION 9-1 : What do you see there ? How different is the BC corner compared to the FF ? and why
? same comment with WC vs SS.

QUESTION 9-2 : What’s the difference between SF and FS ?

QUESTION 9-3 : Here what would you do to make the circuit pass in all the corners? No need to run the
simulation (or if you do so, it should be just to confirm your feeling). What parameters could you play with?

Hint to go further : there are knobs inside the inverter, but there could also be parameters outside of it…
just saying.

QUESTION 9-4 : What’s your feeling about this kind of corner simulation ? can you identify already how
limiting it can be ?

23/35

the more technologies become advanced. For e.g., in SRAMs (static memories), a method called
importance sampling is generally used to identify which part of the corner plane can be failing, and
specifically running monte carlo simulations in this zone. Thereby saving a large amount of simulations.
Bottomline is : Corner simulations can be indicative for functionality verification, but are not a
reliable verification for sign-off.

Top figure1 : model of how failure can happen in a complex circuit in a vtn/vtp graph. Here it is visible
that failure do not always appear in the corners.

Bottom figure2: example of different statistical simulation algorithms that could be applied to some
circuit showing failure in some specific area. Indeed, catching the same amount of failure can be done
with less runs for a more specific algorithm that can be applied specifically to one area of the vtn/vtp
plane. Still, this is a really advanced verification technique, and is only needed in circuits where
extremely high failure coverage is required.

Statistical simulations are generally defined using a normal law or empirically with something we generally
call the 68-95-99.7 rule. This considers a mean (µ) and a standard deviation (σ). We generally define the
coverage of a given simulation by considering a certain amount of sigma around the mean. 1 sigma covers
for 68.2% of the distribution, 2sigma for 95.4% and 3sigma 99.73%. Typically, in SRAM design, a
coverage of 6+ sigma (1.973ppb – 1 failure over 506 797 346) is required to ensure reliability. This means
that many monte-carlo simulation runs are required to ensure coverage on this probability of error. As a
rule of the thumb, for a relatively small circuit (10-100 transistors) 5 to 10.000 runs can be considered
enough to cover for 3sigma. Though, again this is not the absolute truth, and some mathematical models
can be used to make sure that a complete coverage is achieved. Again, as an engineer all is question of
balance between the amount of work/resources spent, and the trust you have in your results.

1 Figure reprinted from :

https://ieeexplore.ieee.org/document/7564452 and https://ieeexplore.ieee.org/document/6740007
2 Figure reprinted from https://www.sciencedirect.com/science/article/pii/S0167926022001729

https://ieeexplore.ieee.org/document/7564452
https://ieeexplore.ieee.org/document/6740007
https://www.sciencedirect.com/science/article/pii/S0167926022001729

24/35

Sources :

https://en.wikipedia.org/wiki/Normal_distribution

https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule

https://en.wikipedia.org/wiki/Six_Sigma

https://en.wikipedia.org/wiki/Importance_sampling

In IC design, we use Monte-Carlo simulations to evaluate the process variations of MOS transistors.
Generally these variations are collapsed to variations in the Vt of the transistors. The more advanced
technologies are, the more variation sources are introduced. In 65nm and older (i.e., larger) nodes, only
one type of variability is generally available to simulate your transistors. As an example, in 28nm nodes,
as a designer you will generally have access to several models : local and global variations, which you will
have to chose from, based on the characteristics of your circuit. A small circuit (this is defined in the
documentation of the technology) could generally need to only use local, while larger circuits, or more
distant elements, would need to be simulated with global. See ? this introduces physical design
considerations in the schematic level design already. This is an important lesson to learn for the future.
We will not use that in this lab though.

 Monte-Carlo simulations can be very CPU intensive and memory demanding. You
should always be careful not to overload your system.

 Uncheck all the previously defined corners except the nominal one.

 Change the Run Mode to Monte Carlo Sampling, and click on the
Simulation Options button (see below).

 Setup the simulation options as in the following figure (on the right) with 200 runs:

Don’t forget to tick the two “save” boxes, otherwise it will not plot and save any results.

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/Six_Sigma
https://en.wikipedia.org/wiki/Importance_sampling

25/35

 As the result of Monte-Carlo simulation, joined transient waveforms and the resulting
histograms will appear. Histograms allow us to see what number of runs (out of 50 runs: y-axis)
were found to be within the specific range (bin) of the delay value (x-axis).

 The button allows to access many study parameters. Feel free to explore it.

 Click OK and run the simulation .

 Once the simulations are finished, go to the results tab, and
select the Yield for the result view.

 The Yield can be followed in parallel during the
simulations. If the yield is clearly low, the simulations
can be stopped. This can also be set in the simulation
options by Auto Stop Using Significance Test.

 You can track the evolution of the simulation from the
Run Summary sub window.

 Comment on the results of the Monte-Carlo simulations with your colleagues. Note how long are

these simulations. In practice, these runs can be heavily parallelized. Though for the class as you
are around 60, we limit the amount of simulations you can run in parallel.

26/35

Figure 8 - The Results of the Monte-Carlo Simulations

Note how the transient simulation is not anymore a single line, but a network of curves. The more MC runs
are being performed, the more the distribution spreads, and covers all the possible cases. i.e., ensuring that
your circuit can work in all conditions.

10 PARAMETRIC ANALYSIS OR HOW TO EXPLORE A DESIGN SPACE?

Now comes the most important question in life (okay… in this lab… but still, it is an important question).

How to size a circuit with regard to a sizing constraint ?

 Go to Inverter schematic and change Wn = 280nm and Wp = 280nm.

 Check and Save the schematic.

 Run the monte-carlo simulation , and observe the results.

QUESTION 9-1 : What happened? Which part the circuit is limiting the performances and why?
How would you solve it, and which size would you chose ? verify it with a simulation.

 Create a new testbench in which you add your Inverter you just designed. (you could also right click
on the IV_TB and select copy)

 Call it INV_Param_Analysis_TB

27/35

 Make sure that your inverter has its PMOS and NMOS parametrized with Wp and Wn respectively in

the schematic.

 Your testbench should be configured as before. Only use the Nominal corner. And select Single Run.

28/35

 Run a simulation. You should get the following values :

 As expected, the circuit is unbalanced. The rising

time is much shorter than the falling time.
 What Wp value is necessary to get a 50ps

Delay_F value ?
 In the Data View panel, double click on the value

of the Wp Global Variable, and click on the “…”
 A new window will appear, showing you how to

set a parametric analysis.
 First, click on “Delete Spec” to remove the

280nm point.
 Then click on the “add specification” drop down menu,

and select “From/To”
 Set the “Step Type” to auto. From 120n to 1.2u with a

Total steps of 10
 This will make the tool run 10 simulations with steps of

100nm from 120nm to 1200nm (1.2um) on the parameter
Wp.

 Click OK.
 Now, the Wp global variable has a specific syntax. Which

corresponds to what you just did.
 Run the Simulation
 Use the “Detail – Transpose” view to identify which value corresponds to your target (here 50ps).
 You can plot the simulation waves. When extracting expressions (here delay), the tool plots the

extracted expressions versus the input parameters (here Wp).

29/35

What about more complex situations ?

QUESTION 10-1 : how does the Delay_R and Delay_F trend ? and why ? Why do you think the two
trends are opposed ?

QUESTION 10-2 : what value to you obtain for Wp ? what does this value correspond to ?

 Put Wp= 2*Wn on the Global Variables
 Put a Cout value parameter on the output capacitance in the Testbench. Check and

save.
 Update the design variables in the test, and add a new global variable Cout. Put it

at 10f.
 Define a parametric analysis for it. And make it range from 0.1f to 50fF with 10 automatic steps.
 Analyze the table and waveform results

QUESTION 10-3 : What maximum output capacitive load is this gate able to handle for a transition time
of 100ps ? what parameter can you play with, if you have to meet a 100ps for a 50fF output capacitive load
?

 Modify the testbench and replace the capacitor by an inverter of the same type as the INV gate.

 Place it carefully to make sure that the OUT signal is still in between the INV I0 and INV I2 (these
names are based on the screenshot but you may use other names)

 Replicate the output inverter 20 times by putting I2<19:0>

30/35

 Check and save will issue a warning about the output pin of I2. This is normal and you can ignore it.
 Run a parametric analysis on Wn. From 120nm to 2.4um with 20 points. Keep Wp = 2*Wn.
 And check the delay between OUT and IN nets.
 Run the simulation and analyze the results.

QUESTION 10-4: Focus on Delay_F. Why such a trend ? Why does the output increase again after a
point ?

31/35

11 GOOD PRACTICES

11.1 BEING MINDFUL ABOUT YOUR RESOURCES UTILIZATION

As an engineer, you will NEVER work alone.

- The servers you use will almost ALWAYS be shared with other users
- The disk space you use will almost ALWAYS be shared with other users
- Filling the disks will impact your work, but also the work of your colleagues
- The software you use are being paid for, by your structure, and have a limited amount of license

tokens. Using all the tokens will block other users from getting them.

It is YOUR duty to monitor your resources utilization, and generally not over-use resources which you
have access to. Or if you need to use more resources, generally make sure your supervisors or IT department
are aware of your needs.

QUESTION 11-1: Summary the previous section in a few sentences with your own words.

11.2 ERASING SIMULATION FILES

As the result of every simulation, a large amount of files is typically created. These files store simulation
info and save simulation data, such as schematic netlists, variable definition file, simulation report files,
output log files which are used to save voltage and current waveforms, and many others. In the case of
transient simulation, output log files can become very large (several GB) if sufficiently long simulations
are performed on a relatively complex circuit. If special care is not taken, these files can easily fill the disk
space of your system, causing the simulations to crash and making the system unstable. Therefore,
simulation output files should be handled carefully, keeping in mind their size and location at all time.

 By default, starting from the EE429_FULLCUSTOM the path to the directory where the
simulation data is saved is: ./simulation

 Go back to your linux terminal. If you are not already in your Virtuoso project directory
(EE429_FULLCUSTOM), enter it:
> cd ~/EE429_FULLCUSTOM/ 

 Explore your project directory by typing:
EE429_FULLCUSTOM > ls 

 Notice several configuration, library and log files. You will also find a folder named simulation,
where all the simulation data is stored. Check the size of the simulation directory by typing:
EE429_FULLCUSTOM > du -sh simulation/ 

 Check the size (write it down):
EE429_FULLCUSTOM > du -sh simulation/ 

32/35

 It is also possible to remove the complete context of the simulation directory if no
information about the previous simulation runs is no longer needed. This can
simply be done by typing: rm -rf simulation/

 In order to reduce the size of the generated
files, it is possible to specify that only the
signals selected to be plotted will be the
ones to be saved. This way, we can avoid
storing unnecessary data on our disk space.
In the Data View window right-click on the
specific test (Tran_Test) and open the
Open Test Editor. Select Outputs → Save
all…

 Here, it is possible to specify the desired
properties as we did in the figure (right).

QUESTION 11-2: how much simulation space do you use ? In your EE429_FULLCUSTOM folder use
the “ncdu Simulation” command. You can navigate with the keyboard. Right arrow to enter and left arrow
to come back one level up. Which cellview take the most space ?

 As an alternative to the previous solutions.
Maestro views allow you to manage disk
space directly inside virtuoso.

 This solution is not global, as it can only be
handled per maestro views. So if you used 5
maestro views, you would need to clean the 5
of them.

 In the data view, click on the History panel on
the bottom. Each simulation you did run is
visible here, and can be cleaned off.

 Once you are done and extracted all the results
you need, delete all the result history from this
ade assembler view. Select them all (sift +
click), right click and select Delete.

 Compare the results of the ncdu command
after that.

33/35

11.3 REMOVE LOCK FILES ON VIRTUOSO

Cadence Virtuoso was originally designed as a collaborative tool. Several users could work in parallel on
the same library at the same time. Though, we generally advise not to work on the same cellviews.

In that sense, if a cellview is opened, virtuoso will create something called a lockfile. When a view is locked
by virtuoso, it cannot be accessed by any other user.

If you open a view, and, for some reason, do not properly close virtuoso, or change server, or if you are
unlucky (the tools sometimes crash). You sometimes cannot reopen your cellviews, with an error message
about lock files.

Two solutions are possible :

1- You could manually erase the lockfiles, which are generally located inside the design library with
the .cdslck extension. This solution is dangerous as it involves using a rm command, and you
may delete the wrong files.

2- Use the cadence tool clsAdminTool. Advised solution.

> cds clsAdminTool

> ale yourlib

This command will list the lockfiles in the lib called “yourlib” (update it accordingly)
> are yourlib

This command will remove the lockfiles in the lib called “yourlib” (update it accordingly)

11.4 CHANGING SIMULATION DIRECTORY (OPTIONAL)

It is also possible to change the location at which the output files are generated. This is especially useful if
you are running simulations on servers or if local machine has multiple hard drives and/or partitions.

 In Analog Design Environment (ADE Assembler) window, select Options→ Save...

 As you can see, the default directory is set to ./simulation. Depending on the design-kit (different
technology options), the default directory may be different.

 Create a new directory within your project directory. You can name it as you want, we propose
simulationOut:
EE429_FULLCUSTOM > mkdir simulationOut 

34/35

12 EXERCISE ON DC ANALYSIS

Now that you know how to create cell views, create testbenches and run monte-carlo analysis, we propose
you a practical guided exercise to make sure you understood correctly everything. The moodle quiz will
have questions associated with this exercise.

Task 1 : build an inverter testbench with a 10fF load on the output, a NMOS w of 120nm. Apply a ratio of
2 on the PMOS. Take a 1.2V VDD.

Hint : You could reuse one inverter you did before and just make a new testbench.

Task 2 : run a DC analysis and plot the Vout versus Vin graph as you did earlier.

Task 3 : From the VTC. Identify the VM (the threshold of the inverter) , where Vin = Vout.

QUESTION 12-1: Does the inverter seem balanced ?

Task 4 : plot the derivative of the Vout(Vin) curve

Using the calculator, click on , then select the waveform of the output
voltage from the waveform viewer. This will automatically print the name of the waveform. Then, apply
the function “deriv” to it.

Hint :Once the wave object has appeared in the textbox (should be something like
“leafValue(VS(“/OUT”))”) , click once on “deriv” in the functional panel. It will update the text (you

could also simply type the name of the function there). Then, click on to add the function output to
your ADE view.

Task 5 : From the derivative, identify the noise margin of the inverter.

Hint : you will find two different values for the noise margin, which one makes the most sense ?

 In your Analog Design Environment window, select Options→ Save... and edit the project
directory path towards your newly created directory
(type: ./simulationOut instead of the default:
./simulation).

 Run the transient simulation (corner or Monte-Carlo)
once again, and check where is the output simulation
data.

 Note that our manipulation only changed the directory
within the Virtuoso project directory
(EE429_FULLCUSTOM) where the data is going to be
saved. Of course, a completely different path can be
specified as well, such as a path to a directory on
another hard-drive or on a specific server.

35/35

Task 6 : add the FS, SF, FF and SS corners. And run the simulations again.

QUESTION 12-2: How does VM and the noise margin change with the different corners and why ?

Hint : if you have the derivative function already inside your ADE view, you do not need to do it again
through the calculator. It should plot it automatically.

Task 7 : setup a monte-carlo simulation, and make 200 runs (this may take some time, you can go take a
coffee break).

QUESTION 12-3 : how does the VM and the noise margin change after the monte carlo simulation?

At this end of this exercise once you are sure that you understood the results. Go through the 11.1
and 11.2 sections of this document, and clean the simulation files generated during the exercise.

	1 Objectives
	Prerequisites

	2 Creating the MUX Test-Bench Schematic
	3 Creating Different Tests and Global Variables
	4 Defining Outputs and Running Simulations
	5 Using Local Variables
	6 Using Special Functions and Specifications
	7 Using Design/Instance Parameters
	8 Curiosity on device sizing and best ways to handle various cell sizing.
	9 Corner and Monte-Carlo Simulation
	9.1 Process Corners
	9.2 Monte-Carlo Simulations

	10 Parametric analysis or How to explore a design space?
	11 Good practices
	11.1 Being mindful about your resources utilization
	11.2 Erasing Simulation Files
	11.3 remove lock files on virtuoso
	11.4 changing simulation directory (Optional)

	12 exercise on DC analysis

