SECTION OF ELECTRICAL ENGINEERING

EPFL STI-SEL Téléphone : +4121 693 13 46 I I

ELG Fax :
Station n° 11 E-mail : alexandre.levisse@epfl.ch
CH-1015 Lausanne Site web : https://sti.epfl.ch/fr/sel/

EE429 2024/2024: Full custom labs 1 : Testbenches, Simulation and Corners
SEL September 2025

PRACTICAL LABORATORY SESSION No. 2

Testbenches, Simulations and Corners

1 OBJECTIVES

In this lab session you will perform circuit simulations using a tool called ADE Assembler (for Analog
Design Environment). ADE is a part of the Cadence Virtuoso tool suite. You will first create a testbench,
run simulations, and then learn how to extract results from these simulations. Finally, you will learn how
to run simulations which take into account CMOS variability (also called Monte-Carlo simulations).

@ In this project, you will use a spice simulator called Spectre and developed by Cadence. There are
many spice simulators in the IC design market (the two most known ones being Hspice from
Synopsys and Eldo from Mentor-Graphics/Siemens). They are all based on the spice syntax with
some variations.

First, you will design your own test-bench for an 8-bit 4-to-1 MUX which was designed in the previous
session. Then you will determine transistor sizes and, with the insight provided by simulation results, verify
and optimize the design.

Finally, you will practice your skills with a little exercise. As always there will be quiz questions on the
content of the lab.

There are QUESTIONS along the lab, these are NOT GRADED, but will be useful for the quiz.

PREREQUISITES

v/ Start the Virtuoso Design Environment wunder your existing project directory —
EE429 FULLCUSTOM (as described in laboratory session no.1, section 3.2).

v'If the Library Manager does not appear automatically, activate it by selecting Tools— Library
Manager, from the CIW window.

v If a window appears asking for the available licences, simply click Yes and proceed.

v' Use Library Manager and make sure that when creating cell views, the view type is set to
Schematic. The default view name should be schematic. Also note that some windows may appear
below other windows.

1/35

mailto:alexandre.levisse@epfl.ch
https://sti.epfl.ch/fr/sel/

2 CREATING THE MUX TEST-BENCH SCHEMATIC

v
v

Create a new schematic view in your library (EDATP) named: MUX 4 1 8bit TB

Instantiate the symbol of the MUX_4 1_8bit that you have already generated in the previous
session into the new schematic editor window. Then complete the schematic as shown in Figure
1.

MUY _Bbit

(=1

4 GMND

Figure 1 - Schematic View of the Testbench for the 8-bit MUX.

For the DC source use the independent source vde component from analogLib library. Name the
instance as Supply. Enter the properties (q) or use the Property Editor. In the DC voltage field
type: VDD.

For pulse generators (A_in<7:0>, B_in<7:0>, C in<7:0> and D_in<7:0>, S0 _in and S1_in, as
indicated in Figure 1) use vpulse component from analogLib. Check that names of the instances
correspond to Figure 1, and that the properties correspond to the Table I.

For the load capacitors shown in the schematic, use the cap element from analogLib. Name the
instance CAP<7:0>, and set the capacitance value to 10fF (10f).

For the Vdd and ground symbols, use the global sources vdd and gnd cell symbol views from
analogLib library. Ground symbol will provide the zero reference voltage level for your
simulation.

Make sure you are using buses for 8-bit signals and wires for single-bit signals.

Use Add— Wire Name or press “I” to place labels accordingly to the input/output signals as
shown in Figure 1.

2/35

@ Note from the Table I, that VDD, Vsweep and Period are defined as variables. Numeric
values can be set directly here, as we did for Voltage 1 of the pulse generators which is
always equal to zero. We will set the actual numeric values of these variables later, when we
launch the circuit simulations.

@ Variable Vsweep will be used to gradually vary the voltage of the input S1, and observe the
corresponding output voltage of the inverter within the MUX. This type of simulation is
usually called voltage sweep.

v Check and Save your design.

Parameter Input A Input B Input C Input D Input SO Input S1
DC voltage 0.0V 0.0V 0.0V 0.0V 0.0V Vsweep V
Voltage 1 0.0V 0.0V 0.0V 0.0V 0.0V 0.0V
Voltage 2 VDD V VDD V VDD V VDD V VDD V VDD V
Period Period s 2*Period s 4*Period s 8*Period s 16*Period s 32*Period s
Rise Time 0.01*Periods | 0.01*Periods | 0.01*Periods | 0.01*Periods | 0.01*Periods | 0.01*Period s
Fall Time 0.01*Periods | 0.01*Periods | 0.01*Periods | 0.01*Periods | 0.01*Periods | 0.01*Period s

3 CREATING DIFFERENT TESTS AND GLOBAL VARIABLES

v" Open the simulation environment by clicking on Launch—»
ADE Assembler on the very left upper corner of the schematic
editor window. A small window will pop-up. Choose Create

Table I - Parameters for the pulse generators.

New View, and press OK. If Create new ADE Assembler view

window pops-up, press OK. Verify that the view being created is of

type “maestro”.

v" The tool may inform you that it will get some license instead of

another. This is normal, as Cadence is regularly rebranding their
licenses. Just click “Always”.

v" The Virtuoso Analog Design Environment Window will appear, as
shown in Figure 2.

v Note from Figure 2, that a tab is added for your schematic. This new
tab is called Maestro. This is the tab from which you will be able to
define and setup your outputs and simulation results.

Launch ADE Assembler

ADE Assembler
e Create New View: _ Open Existing View

LT

@3 cancel | Help

|| Create new ADE Assembler vie| & [g]

File
Library EDATP_levisse B
cell MUX_4_1_8bit_TB

View maestro|

Type maestro

Application
Open with
Always

Library path file

ADE Ass

se this app

-2024/PHASE1/test_env/CDS_VISO/cds.lib

Openire newtab _ currenttab _ new w

@3 cCancel | Help

v" Run Summary sub-window will allow you to see the overview of the tests that you have run and
the status of the current and previous simulations.

v Explore the Data View sub-window. Check the available options and expand the available menus.

3/35

IZI Virtuoso® ADE Assembler Editing: EDATP_levisse MUX_4_1_8bit_TB maestro (on selsrvl.epfl.ch) [E

Launch File Create Tools Options Run EAD Parasitics/LDE Window Calibre Help cadence
b = @ & le § 0 5 & A |G| B B |Essic R= G
”{No Parasitics/LDE _m No Sweeps ‘|||Sintlle Run, Sweeps and Corners BQ@, O @ |Reference: i @
Data View i R IRNEEET AN s maestro Note the two tabs here
Name Value .
o o Welcome to Virtuoso® ADE Assembler A

% Tests . Virtuoso® ADE Assembler is an interactive, multi-test simulation environment for mixed-signal designs. It provides various run
v & Global Variables modes to perform variability analysis using corners, device parameters, and statistical variables. It also provides capabilities to
& Parameters run regressions with a single click, and view and compare results. To know more about ADE Assembler and how to use it, click
“| corners here.

Documents

Setup States Here is what you can do in ADE Assembler:
| Reliability Analyses
_|Checks/Asserts Tests
DATA Vl EW Set up multiple tests in the Data View assistant. To define a new test, click here. =
Corners
Data | History Set up corners in the, Corners Setup Form.
Run St y BEES| .
0 Test » Nominal Corn Global Variables
~ 1 Point Sweep ¥ 0 Corner Edit global Variables to be shared across multiple tests in the Data View assistant. To add a new global variable, click here.
‘ Outputs
‘ Define outputs as signals or expressions that can be evaluated across corners, sweeps, or all on the Outputs Setup Pane.
Checks and Asserts
History Item Status
L | | Create circuit checks and asserts in the Data View assistant.
Regressions v
imouse L: M: R:
2(6) | m

Figure 2 - The Analog Design Environment Maestro Window

@ In case you used ADE in the past, ADE L and XL are soon discontinued and now replaced by ADE
Explorer and Assembler respectively. Generally, ADE Explorer can be used for simple simulations
and test. More complex exploration such as parametric simulations should be done through ADE
Assembler.

X Create Global Variable - m] x

v" We will first set our global variables. Expand the Global Variables
menu in the Data View window. Use Click to add variable button to
add the following variables: ¥DD=1.2 (since we used VDD as a supply = Verisblevalue[1d |
voltage variable, this defines your supply as 1.2V), Period=2n (this sets @3 Cancel _ pply . Help

the minimum period of the A input to 2ns). [Data view z 8]
_ % Tests
v Your global variables should appear in the Data View window. The Period |2 & Global variables

and VDD from Table I are now defined. M 3

Variable Name VDD

v" Now we will define our tests. Expand the Tests menu, and use Click to |» .‘;&. Parameters

add test button to define a test. o o Comers
. . . . Setup States
v" A window will appear prompting you to choose a cell name for which you |5 _ reliability Analyses

wish to define a test. Choose MUX_4_1_8bit_TB and click OK. F W Checks/Asserts

v' A Test Editor window now appears (experienced designers would T
notice that this window is a ADE Explorer view). Note the little waynane wor @

A next to the name of the test, on the left hand side of the window. o
With this arrow you can come back to the ADE Assembler view.
Click on it.
v" You are now back in the ADE Assembler view. Click back on the ‘"F“":“ %ﬂm

& . . .
“" in the newly created test to come back in the Explorer view.

Cancel ||_Help

4/35

m Virtuoso® ADE Explorer Editing: EDATP_levisse MUX 4 1 8bit TB maestro (on selsrv1.epfl.ch) e B2

Launch Session Setup Analyses Variables Outputs Simulation Results Tools EAD Parasitics/LDE Window Help cadence

H\L‘l (=) =1 I's T‘wﬁ j—r- Ij‘l - r m@ ||Replace n‘(None) ! @

[_setup 7@ X|| wMUX_4_1_8bit TB [maestro

=

. 4¢ EDATP_levisse_MUX_4_1_8bit ...
@ simulator spectre
5@ Analyses

2 & Design Variables

v & Parameters

Reliability Analyses
@ Monte Carlo Sampling
|_ Checks/Asserts

Name | Value [| [Name | Type | Details | Plot Save|

Spec

[l

Fmy Xy

mouse L: M:

—

2(6) ‘ Ready> EDATP_|levisse MUX_4_1_8bit_TB schematic \ Simulator: spectre aps Dl

v" Once we are back in the ADE Explorer window, let’s now create a test. First, let’s recover all the
defined design variables. Right Click on Variables —» Copy From Cellview. Observe that VDD
and Period variables will appear automatically in the Test Editor window, as well as the defined
Vsweep variable (Vsweep also appears in Global Variables). Do not set any values here, since we

will use the global definitions.

@ When you copy the variables from the design
(cellview) both global and design (local) variables
will be created. However, the defined design variable
values are valid only for the specific test (simulation),
while global values are valid for all the defined tests.

@ [Iffor a specific test we want to define a value different
from the global one, we can simply define the local
variable. Global value will not be used for that test.

v' Let’s now choose the Analysis. Go to Analysis — Choose
(or in the Analysis pane, “click to add analysis”), and
select DC analysis. Set the remaining values as presented
in the figure.

v' Make sure that in the Stop field the defined limit is:
VAR("VDD"). This will define the DC Voltage sweep
from zero to the variable VDD (rail-to-rail sweep),
varying the input Vsweep.

@ For every field that expects a real (numeric) value, if

a variable is used, the syntax (VAR("")) is needed. The
function VAR returns the real value of the variable.

v" Click OK and the test is defined.

v Note that by double clicking on the name of the test you
can rename it. Let’s call it “DC_TEST”

5/35

A ' Choosing Analyses -- Virtuoso® Analog Desi... 2/ ¥ .~ (%
Analysis — tran 2 dc — ac — hoise
— xf _ sens _ dcmatch o sth
- pz — Sp — envlp — pss
o pac ~ psth o pnoise _ paf
— psp — gpss _ gpac — gpnoise
— qpxi — gpsp hb . hbac
— hbnoise
DC Analysis

Save DC Operating Point &
Hysteresis Sweep L

Sweep Variahle

__ Temperature
 Design Variable Variahle Hame Vsweep
_ Component Parameter | Select Design Variahle

_ Model Parameter

Sweep Range

s Lt asiop Start 0 Stop [var("vDD™)

— Center-Span
Sweep Type -
) ize P —
Loy n ” Nur:her of Steps oo
Add Specific Points _
Enabled v _Options...

_Cancel || Defaulls | Apply || _Help

A - Choosing Analyses -- Virtuoso® Analog Desi...

? oAl X

Name |
n Analysis & ftran - fdc — ac — hoise
o~ xf — sens _ dcmatch _ sth
} hd D_C—TEST — pz -~ sp — envip - pss
% Simulator spec Opxc Opsth Opnoke O pxf
EI% Analyses ~ psp — 4pss _ gpac _ gpnhoise
0 - fjp=f ~ fpsp _ hb — hhac
v Click on the # to go back to ADE Assembler. ::mise wsp
@ Good Practice : Every now and then, have a Transient Analysis
. = . Stop Time vaR("Tsinl')
click on the to save your view.
Accuracy Defaults (errpreset)
v Define a new global variable Vsweep (make it zero). O conservative [moderate [lieral
(i] The default value (zerq) will be used by fhe 3 Transiant Noise
simulator for calculating the DC operating
point. — Dynamic Parameter
v' Next, let us define a Transient Analysis. We define enabled » _Options...

it as a new test, so we must repeat the whole

@3 concel | Defaults | Apply)| Help

procedure by using Click to add test...
v" Choose MUX 4 1 8bit_TB again, and subsequently choose transient analysis by selecting tran.

v Set up all the fields as in the figure. Set the simulator accuracy to moderate. For the Stop Time
field, use the variable Tsim. Click OK.

v This operation creates the Tsim design variable, and adds a — e :
new test. . a2 J
= v % Tests

& ¥ 4 DC_TEST

@ simulator spectre

=@ Analyses

P v dc t 0 VAR({"VDD") 0.01 Linear St.

v" Do not forget to copy the variables from the cellview as
before. Rename the test TRAN_TEST. And click on * g0

back to the Assembler window.
¢ Design Variables

v Finally, define the Tsim global variable that determines the | ® 1%; 'sa“ngfiectre
simulation time. Define it to be 32 periods or: Tsim=32%Period | =@ analyses
(see figure).

i+ @tran

@ Note : if you click on the little “+” next to the design
variables of one of the tests, you will note that these
variables are eressed. This means that the test will
consider the global variables values. You could totally |
specify some special values you’d like to use for some tests [s & parameters

= ¥ =} Corners

without impacting the whole design. B oo
. . . -[@ setup States
v DC test represents the analysis of the operating point (DC - [z LReliablity Analyses

level). We defined a DC sweep, which represents a special kind |~ Checksjnssens
of DC analysis. We simply vary the value of the input from 0
to VDD, and observe the corresponding output values.

0 VAR("Tsim") moderate
= Design Variables

0 v & Global Variables
- » [E VDD 1.2
« [E period 2n
- o [E vsweep 0
[Tsim 32*period

i}

Data | History

v Transient test represents the time domain analysis. We apply voltage pulses to our inputs and
simulate the circuit for the specified simulation time (7sim). Simulation time is defined as 32
periods of the fastest pulse (see Table I).

@ Note that it is also possible to define different types of analysis within the same test, by using: Click to
add analysis. For the different analysis that observe the same or similar outputs (such as for example
DC and AC analysis in some cases), this option can also be used.

6/35

4 DEFINING OUTPUTS AND RUNNING SIMULATIONS

So far, we have defined design variables and the type of simulations that we want to perform. Before we
launch the simulations, we must define the outputs that we want to observe. Output could be defined after
the simulations are performed, if the good options are selected, though, it means that every single net of
the circuit will be saved — this will induce a large memory footprint and can be a problem for large circuits.
Therefore, it is generally a better idea to define outputs before we perform simulations.

@ Note that you will generally not be the only user of a server, thereby having a mindful utilization
of resources is always a good practice.

v In your ADE Assembler window, select the maestro tab. In the Quiput Setup section, click on the
arrow ~ next to the Add new output button % . A falling menu will appear. From there, choose the
desired test for which you want to define the output, as well as the desired type of the output. Define
an expression output for DC_Test and a signal output for Tran_Test.

W Results Diagnostics
&~ % |% 0 B
m f() Expression | Expression/SignalfFile| EvalType | Flot | Save| Spec | Weight | Units | Digits | Hotation | Suffix|
&F Tran_Test » ||~ signal

= OCEAN script

[E MATLAB script
1] Area Specification
¥ Device Check

L= Op Region Spec

v' Ifyou followed everything correctly, you should have the following list of outputs (you can change
the name by clicking on the name field):

2 rows
Test | Name = Type | Details | EvalType
-] -] -] -] E
DC_TEST expr | 7] point
TRAN_TEST MUX_out signal point

@ Defining names can be very useful once the signals/expressions are plotted. It can allow
us to easily distinguish the expressions in the plot/graph.

v" When double-clicking on the Details line of the DC_test expression, note that a little (# appears.
If you click on this, it pops a window in which you can write or paste expressions. This is extremely
useful when you know what expression to write, or you copied it from somewhere else.

v If you do not know the syntax of the expression you want to write (which is your case now), you

must use the calculator. Click on or Tools>Calculator

@ Virtuoso Calculator is a very powerful tool. It can help you define waveforms and expressions,
plot circuit time or frequency response, perform useful transforms, signal post-processing
and/or analysis. It has many pre-defined mathematical and processing functions, but it also
allows you to define your own functions and transforms.

@ Calculator can be opened faster by using Tools— Calculator or by using a calculator icon
from the toolbar. Once you open the calculator, there is no need to close it and open it again,
until you are completely finished with using it.

7/35

%/ Virtuoso (R) Visualization & Analysis XL calculator

Fle Tools View Options Constants Help

cadence
In Contexti Results DB: none specifed
I
rﬁ-DCTt vt | vl | O owvde VS — Op _wvar | _wvn —Sp _vwswr _hp _zm
es

“ 4=7 H| it i o idc s ~ opt _ mp — ¥nZ p L Yp —gd _ data

||& off _ Family _ wave |z Clip | ,\!{\ & [Append nﬂectangular n‘ @" B

Key ... =X

i 8 9 !

4 5 B *

1 Z 3

. 5 Pop SR, = N | =% BT n_

0 2 e el e Bl | B g | Bl | we SR
[stack & x
(%]

Q

(%)
‘ Function Panel & X
Special Functions n Q

PH compression denv eyeDiagram gainBwProd iinteg overshool pow riseTime slewRate unily GainFreq

azd compressionVRI dft fallTime gainMargin integ pavg prms rms spectralPower value

abs_jitter convolve dftbh flip getAsciiWave intersect peak psd rmsHoise spectrum xmax

averaye Cross dnl fourEval groupDelay ipn peakToPeak psdbb root spectrumMeas =min

bandwidth d2a dutyCycle freq harmonic ipnVR1 period jitter pstddev rshift stddev xval

clip dBm evimQAM freq_jitter ic Freq loadpull gin pzbode sample tangent ymax

compare delay evmQ@psk frequency histo Ishift phaseMoise pzfilter settlingTime thd yimin

Function Panel | Expression Editor I Memories J

status area B

K

Figure 3 — Virtuoso Calculator

Now, we propose to plot the expression of the signal which is deep within our design’s hierarchy.
To be able to do so, we first need to enter the corresponding cellview. Do not close the Calculator
and go back to the ADE Assembler window.

800 |x| Descend
Switch from the maestro tab to the tab with the testbench tersion tumser
schematic. Descend inside your 8 bit MUX as explained vew schematic [
before (Shift+e). Once you enter the lower level, descend %™ ® et el ot
Open in — hew tab & current tab _ new window

inside the MUX 4 1. Since there are 8 instances of
MUX 4 1, you will be prompted to select which

m Cancel || Help

iteration to use. Choose zero and proceed.

= Note: The “new tab” option allows you to open the next hierarchy level without closing the
current one in the same window. If you do not plan to edit anything, use the “read” option.
You can always make a read-only view editable later through ‘file>Make Editable”

Once you enter the MUX 4 1 schematic, descent into MUX3 (check again the MUX 4 1
schematic from the previous exercise).

Once you entered in the transistor-level schematic of MUX3, switch back to the Calculator.

Click on vs (voltage sweep) circular box on the Calculator. You will be directly prompted back
to the schematic. Now click on the S_INV label (wire name) or the wire itself. An expression will

appear in the calculator buffer. Click on to send the expression to the ADE output panel.

8/35

v Note that a new line has been created in the output setup panel. You can now delete the firest

expression you created by selecting it and clicking on the ® button. Rename the new DC _test
expression INV_out.

Test | Name | Type | Details |

DC_TEST expr

I T L L

TRAN_TEST MUX_out signal

v" Now we need to define the output signal for the transient test. Go back to the schematic, and return
to the top level (MUX 4 1 8bit TB) (use Ctrl+E). In the maestro tab, double-click on the
Details field, and click on (...) symbol.

v Click on Q@ out<7:0>bus. You will be asked to select the exact bit. Choose Q out<0>, and press
OK (since each bit of the MUX is the same, we can choose any of the 8 bits). In the same manner,
define signals for the transient test for A<0>, B<0>, C<0>, D<0>, S<0> and S<I>. Once you
finish, if everything is correct, you should have a list of outputs as follows:

Test -~ | HMName | Type | Expression/Signal/File | EvalType | Flot | Save|
DC_Test INV_out expr VS{'TMUX_Bhit/MUX1 <0=1... point ¥
Tran_Test MUX_out signal fQ_out<0= point M (L
Tran_Test B in signal fA<0= point ¥ | _
Tran_Test B in signal [B<0= point M (L
Tran_Test Cin signal fC<0= point ¥ | _
Tran_Test D_in signal fD=<0= point M (L
Tran_Test S0_in signal f5<0= point ¥ | _
Tran_Test 31 _in signal [S<1= point M (L

Figure 4 — Transient Test Out Waveforms

9/35

4

v

All the outputs are now defined. The plotting options can
be set by using the Set up plotting options button @ or
from the main menu Options — Plotting/Printing To
plot the selected outputs automatically, we need to set-up
as shown in the figure (right).

= You can also use the “new win” option there.

Before any simulation can be run, we always need to
Check and Save all the schematics that we have changed
in the meantime (this sometimes means we have to
descend in hierarchy and save every hierarchical level -
not performing C&S is a very common mistake).

Finally, the simulations can be run. This can be done by
pressing the Run Simulation button in the ADE
Assembler window @

You will be able to follow the progress of the simulations
in the Run Summary sub-window.

| ADE XL Plotting/Printing Options

Plot

Plotiing Option

» Plot Signals
» Plot Waveform Expressions
» Plot Scalar Expressions

Plotting M

Graph Annotations
» Design Mame v Simulation Date _ Temperature
» Design Variables _ Scalar Oulputs __ Spec Markers

Direct Plot
Plotting Mode Append n

Plot After
— Each Selection

& All Selections Are Made
Print

Print After
& Each Selection

— All Selections Are Made

@I cancel | _apply | Help

Here give it some time. You are running two different simulations, each needing some time to be
configured and performed. Keep an eye on the summary window. On Options>Job Setup, enabling
“show output log on error” is a good practice.

v Once the simulations are finished, Virtuoso Visualization and Analysis XL (ViVA) window will
appear. By default it is embedded on the right hand side of the Assembler view. Extend it as
suggested by the popup. Click on E.

v" Two tabs are available: DC-test tab, and the transient test tab (Figures 4 and 5).

Figure 5 — DC Test Voltage Sweep

10/35

QUESTION 4-1 : Explain the waveform of the multiplexer output, what does it do ?

QUESTION 4-2 : How do you interpret the results of the DC simulation? Explain the resulting
waveform. What does it represent?

QUESTION 4-3 : What is the threshold voltage of the NMOS transistor? What about PMOS transistor?

11/35

5 USING LOCAL VARIABLES

Until now, we were using global variables. It is also possible (and sometimes useful) to define variables
localized to the specific test.

v" Go to the Data View window and expand the design variables menu of Name | value J
B
the DC_Test. 2% Tests

B ¥ DC_TEST
+ @ simulator spectre

v Check the box next to ¥DD and type 1 in the field next to box. 8@ Analyses

(4 dc t 0 VAR("VDD") 0.01 Linear St.

The local value of the VDD for the DC_Test will now be 1.0V. 5 Desin variales

[peried

‘Evop T

v" To avoid waiting for the transient simulation to finish, uncheck the box VI voneep
next to the transient simulation. Transient simulation will not be |=C® Trantest
performed. & Global Variables

¥ [E vDD 1.2
~ [E period 2n

v" Run the simulation again. Comment on the results. Does local variable | 2Eyaess
VDD depend on the global variable VDD? What has changed in the Run |, |, ..., s
=] Corners

Summary sub-window? Documnts

Setup States

@ Note that by selecting Graph— Properties... in the Visualization window e anmlyses
(General tab), you can change the graph options such as the background.
This can be very useful for including graphs from Virtuoso in the

presentation slides or project reports.

<\

@ Note that as we did setup the plotting mode as append
(Options> Plotting/Formatting) if you did not close the Visualizer it will
superpose the new curve on top the previous one.

i -]

Vaweep = 0
period = 20
VID = 1

v' Disable the local variable after this experiment to have your VDD back to 1.2V.

12/35

6 USING SPECIAL FUNCTIONS AND SPECIFICATIONS

As we mentioned, Calculator allows us to use many different features and functionalities. A very useful
group of these features are so called: Special Functions. Here, we will learn how to use special functions
on a very simple example: delay function.

v
v

In the Data View window, disable the DC Test (untick it) and enable the TRAN test (tick it).

Open the Calculator, and make sure that the Special Functions are selected in the Function Panel
as in Figure 3de.

Press vt (voltage transient) button, and go back to the schematic. Click on Q_out<7:0> bus. You
will be prompted to enter the exact bus bit: choose @ out<0> and click ok. The value then appears
in the calculator buffer. Do not press anything, go back to schematic and click on bus A<7:0>.
Once again you will be prompted to enter the bit: choose A<0>.

@ [n the calculator. Note that the voltage transient (VT) of Q_out<0> is now be in the calculator Stack.

Press a to add VT(“/A<0>") in the stack. This way you’ll be able to select it from the delay
function.

Go back to the calculator and click on delay function in the Function Panel. The following dialog
should appear:

Function Panel 00

Special Functions ' fi Q delay
delay
signall VT("/A<0>") n
s o 0
Threshold Value 1 VAR("VDD")2 Threshold Value 2| VAR("VDD")/2
Edge Number 1 1 Edge Number 2| 1
Edge Type 1 fising EI |Edge Type 2 fising !
T Periodicity I 1 Periodicity 2 1
Tolerance 1 nil Tolerance 2 nil
Number of occurrences single n Plot/print vs. (rigger
Start1 0.0
Start2 0.0 I Start 2 relative to frigger '
Stop nil
OK Apply Defaults Help Close

Modify the values as specified in the figure. Threshold Values should be 0.6, Edge Numbers 1,
and Edge Types set to rising. This will measure the delay from the first rising edge of 4<0>, until
the first rising edge of Qour<0> that appears after the specified rising edge of 4<0>. Edge is defined
as crossing the threshold of VAR("VDD")/2. Make sure that Start I and Start 2 is at 0.0. After
you set your delay function dialog as shown, click Apply, and the full expression should be available
in the Calculator buffer.

@ [fthe delay function dialog does not appear correctly as shown, you should delete all data
from the calculator buffer and stack, then try again all the previous 3 steps.

Make sure that Tran_Test is selected in the Calculator window and once the full expression is

available, use the @ button (Send buffer expression to ADE Outputs - button). Click on the
button and go back to the Qutput Setup.

The corresponding output expression is now defined and available. Name it as suggested:

|Tran_Test D_Delay_R expr |delay{?wfl VT("/A<0>"}) ?valuel 0.9 Zedy... point o

13/35

Figure 6 — Measure Different Delays

v Note that now we have defined a single delay value. By using the same principle, define 3 more
expressions to represent the delay between: 111 rising edge of A<0> and the following falling edge
of Qout<0>; 17" rising edge of A<0> and the next rising edge of Qour<0>; 25" falling edge A<0>
and the next falling edge of Qout<0> (e.g. edge 11 rising of A<0> to edge 1 falling of Q<0> - look
below for an important tip).

@ Important! The edge number for the first signal is absolute. The edge number of the second
signal represents the number of edges from the specified edge of the first signal.

@ Also note that the expressions can be changed manually (directly), which can allow you to
perform the definitions faster. You can achieve that by observing the expression.

delay(?wf1 VT("/net1") ?value1 th1 ?edge1 "type1" ?nth1 N1 ?td1 ref1 ?tol1 t1 ?wf2 VT("/net2") ?value2 th2 ?edge?2 "type2" ?nth2 N2 ?td2 ref2
2tol2 t2)
and by modifying the corresponding numeric values: netl,2 - corresponding nets in the
schematic, thl,2 - thresholds, typel,2 - type of the edge (rising or falling), N1,2 - edge
number, refl,2 reference points, t1,2 tolerances.

v Add each expression to the Qutput Setup.

@ Here we define 4 zones to characterize the MUX. Zone D corresponds to the case where both
S<0> and S<I> are equal to logic 1. Zone C corresponds to S<0> being 0 and S<I> being
1. Same for B with S<0> being 1 and S<I1> being 0. Finally zone A corresponds to both S<0>
and S<I> being 0. For each of them we define the names accordingly.

v' In the Qutput Setup list, for each delay expression, add a specification. Click on a Spec field and
choose “<”. By double-click on the empty field, enter the value of 190p, next to the “<” sign. This
defines our design specification. Our delay is required to be lower than 190ps.

v If you performed everything correctly, you should have the following outputs in your Qutput Setup
window (rename the expressions as shown below):

TRAN_TEST D_Delay_R expr delay(?wfl VT("/A<0>") ?valuel (VAR("VDD") / 2) ?edgel "risi... point
TRAN_TEST C_Delay_F expr delay(?wfl VT("/A<0>") ?valuel (VAR("VDD") / 2) ?edgel "risi point
TRAN_TEST B_Delay_R expr delay(?wfl VT("/A<0>") ?valuel (VAR("VDD") / 2) 7edgel "risi.. point
TRAN_TEST A Delay F expr delay(?wfl VT("/A<0>") ?valuel (VAR("VDD") / 2) 7edgel "fall... point

< 190p
< 190p
< 190p
< 190p

v Descend into the MUX 2 1 schematic. For every PMOS transistor width (Total Width), put
300nm and for every NMOS (Total Width) put 80nm.

KK KK

v" Run the simulation @ .

v Go to the Results tab in the maestro section. The following results should appear:

14/35

TRAN_TEST D _Delay R
TRAN_TEST C_Delay F
TRAN_TEST B _Delay R
TRAN_TEST A Delay F

178.7p
199.7p
178.5p
197.7p

= 190p
< 190p
= 190p
= 190p

pass

pass

v" Change the Spec to more demanding 180ps and run the simulation again. Discuss the meaning of

these results with your colleagues.

TRAN_TEST D _Delay R
TRAN_TEST C_Delay F
TRAN_TEST B_Delay R
TRAN TEST A Delay F

178.7p
199.7p
178.5p
197.7p

= 130p
= 180p
< 180p
=< 180p

pass
fail
pass

@ This tool allows you to evaluate the quality of an obtained results with regard to a metric that
you can define. It is a good way to identify fast paths are being the bottleneck in a design.

QUESTION 6-1 : What does the pass/near/fail feature allows you to do ?

QUESTION 6-2 : These delay functions are extremely useful, and allow you in certain conditions to save
memory (as you do not need to save the entire waveforms) and time. Though, as usual, they have their

limits. What kind of pitfall do you see there ?

15/35

7 USING DESIGN/INSTANCE PARAMETERS

v" Use the calculator to add four more delay expressions. You should have one rising edge and one
falling edge delay for every pulse type (4, B, C, D - see Figure 6). After you run the simulation,
depending on what edges you have chosen, you should have a result very similar (or same) as the

following:
TRAN_TEST D_DELAY R 178.7p = 180p pass
TRAN_TEST C_DELAY F 199.5p < 180p fail
TRAN TEST B_DELAY R 178.6p < 180p pass
TRAN_TEST A_DELAY_F 197.8p = 180p
TRAN TEST D _DELAY F 201.2p < 180p fail
TRAN_TEST C_DELAY R 188.3p < 180p
TRAN_TEST B_DELAY_F 199.5p =< 180p fail
TRAN_TEST A_DELAY R 188.7p = 180p

v Now, descend into the MUX 2 1 schematic. For every PMOS transistor width (Total Width),
instead of 300nm value, type a parameter Wp. For every NMOS transistor do the same and set
Whn.

F =i

Bl v %; Tests

4 DC_TEST

v' Check and Save the MUX_2_1 schematic. 2 % TRAN_TEST

Q,; Simulator spectre

v Inthe TRAN TEST, right click on design variables and
select Copy from Cellview. It will the design variables

Wp and Wn.

v On the Global Variable panel, define the global
variables Wn = 200n and Wp = 400n.

AR(" "

Add Variable

Copy from Cellview

Copy to Cellview

Hide Overridden Variables
Disable All Parametric Sets

v Run the simulation @ .

v" Go to the Results tab in the maestro section. The ,
B v & Global variables

16/35

QUESTION 7-1 : How do you explain the decrease in delay?

following (or similar) results should appear: |« period 2n

) vDD 1.2

 w @ Vsweep 0

= o [# Tsim 32*period

s o [E wp 400n

- w @ wn 200n
TRAM_TEST D_DELAY R 147.7p =< 180p pass
TRAN_TEST C_DELAY_F 160.3p = 180p pass
TRAN_TEST B _DELAY R 147.3p < 180p pass
TRAM_TEST A _DELAY_F 158.9p =< 180p pass
TRAN_TEST D_DELAY_F 161.4p = 180p pass
TRAN_TEST C DELAY R 154.8p < 180p pass
TRAN_TEST B_DELAY_F 160p < 180p pass
TRAN_TEST A_DELAY R 155.2p < 180p pass

8 CURIOSITY ON DEVICE SIZING AND BEST WAYS TO HANDLE VARIOUS CELL
SIZING.

A lot of ways to parametrize transistors and cell exist in virtuoso. An extremely detailed documentation
exists on it in the Cadence support. Generally, learning about it once in a company is a really good practice.
Still, defining parameters as we just did can be suboptimal as it fixes the size of the MUX 2 1 transistors
for ALL the instantiations of this cell. Still, parametrizing cells can be good for simulation (this can be
done through the CDF file — I write this here so that you have the keyword), however, when it comes to
layout (next session), having hardcoded parameters is the way to go. A easy and optimal practice consists
in duplicating a Cell View (right click on the cell view > copy), rename it with another name (which
accounts for its size — or drive) and change the sizing accordingly in the schematic. This way, each identical
circuit with a different sizing exists as a different cell view. Take a look at the
UMC65LL UMK65LSCLLMVBBR BO03PB standard cell library in your library manager. All the cell
names finish by XRA where X is a number ranging from 0 to 40+. These are the drive strength of the
standard cells. At this point you will not be able to understand the layout, but trust us, these are the same
cells (when they have the same name) and just the size of the output stage changes.

Alternatively, in virtuoso, one could create something called pcells (parametrizable). Though, these take a
lot of effort to design, specifically when it comes to layout.

Finally, making a design too specific to one tool is never a good idea. Better having 10 different cells with
10 different sizing and names which you can import anywhere, than a complex cell which way not behave
the same in another tool or with the next version of the same tool.

Take these suggestions as takeaways for the future. Though these are not the absolute truth, right ?

9 CORNER AND MONTE-CARLO SIMULATION

9.1 PROCESS CORNERS

In integrated circuit design, corner simulations represent a technique to model the extreme cases of
fabrication parameter variation and/or variation of other physical parameters such as temperature or supply
voltage. Once fabricated, depending on the fabrication process inaccuracy, devices may exhibit different
behavior and therefore be faster, slower, larger, smaller or in any sense vary from the ideal case. Moreover,
an integrated circuit may be exposed to different environmental conditions such as high temperature or
battery supply voltage drop. Corner simulations allow us to model these cases and guarantee that the circuit
will still be functional. This is one of the methods that enables IC designers to estimate the yield or the
percentage of fabricated circuits that will be functional.

v In the EDATP library, create a new schematic cell and name it
Inverter. Use N_12 LLRVT and P_12 LLRVT transistors
from UMCG65LL library and draw a CMOS inverter as in the
figure. Set Wn = 120nm and Wp = 240nm (L should be 60nm for

both). Check and Save the schematic. B o

v You could also create global variables Wp and Wn, and use then
in the W field of the two transistors.

v" Create a symbol for the Inverter.

17/35

Create a new schematic cellview in the EDATP library and name it Inverter _TB. Draw the
testbench schematic as in the figure (down).

For the DC voltage of the supply, use a variable VDD. For the input pulses, Voltage 1 should be
zero and Voltage 2 should be VDD. Period should be set to a variable: Period. Set the rise and fall
times to 0.01*Period.

Load capacitor: C = 10fF.

Create a ADE assembler
cellview for it.

INY

Create a moderate accuracy
transient test with the

B ¥ % Tests

O ¥ &% Tran_Test

i @ Simulator specire

0@ Analyses

- o tran 0 VAR("Tsim") moderate

VDD

N Inverter ouT

ouT>

CAP .
c=1gf

Bl & Design Variables
- [Pariod =
[vep =
- [Teim =

= GND

v & Global Variables

- o [Tsim 4*Period
- o [Period 3n

- o [vDD 1.8

simulation time Tsim
(Tsim=4*Period, Period =
3ns, VDD = 1.2V).

18/35

v’ Setup the input and the output of the inverter to be plotted and define the output delay of the
falling/rising edge with respect to the previous rising/falling edge of the input, respectively:

IMPORTANT COMMENT : here, carefully select VAR(“VDD”)/2 in the expression for the threshold
value ! otherwise, comparing delays between circuits with different VDD values will not be apple to
apple
e.g. for Delay R: delay(?wfl VI("/IN") ?valuel (VAR("VDD") /2) ?edgel "rising" ?nthl 1 ?td1 0.0
?toll nil 2wf2 VI("/OUT") ?value2 (VAR("VDD") / 2) ?edge?2 "falling" ?nth2 1 ?tol2 nil ?td2 0.0 ?stop
nil ?multiple nil)

<

Test ~| Hame | Type | Expression/Signal/File
Tran_Test Input signal | fIN
Tran_Test Output signal fOUT
Tran_Test Delay_R expr delay(?wfl VT("/IN") ?valuel 0....
Tran_Test Delay_F expr delay{?wfl ¥T("/IN") ?valuel 0....

Set the plotting/printing options as presented in the figure
on the right.

Check and Save the schematics and run the simulation @ .
Analyze the results.

In order to perform corner simulations, we have to use
specific transistor models (often called statistical models),
that take into account the process variation.

Right-Click on the transient test in the Data View window,
and select Model Libraries... The following dialog should
appear (see below).

Untick all the models coming from 16511 _v151.lib.scs. This
action disables typical (deterministic) models.

@ Note that there are two parts in this window. One being
the file name, and one being the section. If you open
the scs file, you’ll see several sections one for each
device and corner.

| EvalType | Plot | Save| Spec |
point I w
point W L
point o < 100p
point " < 100p

ADE XL Plotting/Printing Options <@lsmsn2.epflch= 2~ (X

Plot

it ontion

» Plot Signals

_ Plot Waveform Expressions
» Plot Scalar Expressions
Flotting Mode Append n

Graph Annotations
» Design Hame « Simulation Date _ Temperature
» Design Variables _ Scalar Outputs __ Spec Markers

Direct Plot
Flotting Mode Append n

Plot After
— Each Selection

& All Selections Are Made
Print

Print After
& Each Selection

— All Selections Are Matle

m _Cancel /| _Apply | _Help

Use the button Click here to add model file... Proceed with the browse button (...), and go to

/Models/Spectre/Monte_Carlo folder.

19/35

X spectrel: Model Library Setup

|Model File
- G| 1

_d k\tsﬂumcjasnmflms65||/pdk_hn9phfum(m/../Models/Spectrem_v151.I\h.5(s
_ /dkitsfumc/65nmAms651l/pdk_b09pb/umce5ll/../Models/Spectre/l651]_v151.lib.scs
_ Jdkitsfumc/65nm/Ams65lljpdk_b09pb/umcesll/../Models/Spectre/l651l_v151.lib.scs
_ Jdkitsfumc/65nm/Amsé5lljpdk_b09pb/umcesll/../Models/Spectre/l65/l_v151.lib.scs
__ Jdkitsfumc/65nm/Amsé5il/jpdk_b09pb/umcesll/../Models/Spectre/l651l_v151.lib.scs
__ Jdkitsfumc/65nm/Ams65Ilpdk_b09pb/umceSll/../Models/Spectre/l65Il_v151.lib.scs
_ Jdkitsfumc/65nmAms65Iljpdk_b09pb/umcesll/../Models/Spectrefl65I_v151.Ii
_ Jdkitsfumc/65nmAms65Iljpdk_b09pb/umceSll/../Models/Spectrefl65I_v151.1
_ Jdkits/umc/65nm/ms65Il/jpdk_b09pb/umceSll/../Models/Spectre/l65I_v151.1
_ Jdkitsfumc/65nm/ms65Il/jpdk_b09pb/umceSll/../Models/Spectre/l65I_v151.1
_ Jdkitsfumc/65nm/Ams65Il/jpdk_bo9dpb/umcesll/../Models/Spectre/l65Il_v151.1

__ /dkits/fumc/65nmAms65Il/pdk_bo9pb/umcesll/../Models/Spectre/l651l_v151.lib.scs
_ Jdkitsfumc/65nmAms65Il/pdk_boopb/umcesll/../Models/Spectre/l6sll_v151.lib.scs
_ Jdkitsfumc/65nmAms65Il/pdk_boopb/umcesll/../Models/Spectre/l6sll_v151.lib.scs
_ Jdkitsfumc/65nmAms65Il/pdk_booph/umcesll/../Models/Spectre/l6sll_v151.lib.scs

__ Jdkitsfumc/65nmAms651l/pdk_b09pb/umcesll/../Models/Spectre/l65l_v151.lib.scs
__ Jdkitsfumc/65nmAms651l/pdk_b09pb/umcesll/../Models/Spectre/l65l_v151.lib.scs
_ Jdkitsfumc/65nm/Ams65lljpdk_b09pb/umcesll/../Models/Spectre/l651l_v151.lib.scs
_ Jdkitsfumc/65nm/Amsé5ll/jpdk_b09pb/umcesll/../Models/Spectre/l65/l_v151.lib.scs
_ Jdkitsfumc/65nm/Amsé5lljpdk_b09pb/umcesll/../Models/Spectre/l65/l_v151.lib.scs
__ Jdkitsfumc/65nm/Ams65Ilpdk_b09pb/umceSll/../Models/Spectre/l65Il_v151.lib.scs
_ Jdkitsfumc/65nmAms65Iljpdk_b09pb/umceSll/../Models/Spectrefl65I_v151.1
_ Jdkitsfumc/65nmAms65Iljpdk_b09pb/umceSll/../Models/Spectrefl65I_v151.1
_ Jdkits/umc/65nm/ms65Il/jpdk_b09pb/umceSll/../Models/Spectre/l65I_v151.1
_ Jdkitsfumc/65nm/ms65Il/jpdk_b09pb/umceSll/../Models/Spectre/l65I_v151.1
_ Jdkitsfumc/65nm/ms65Il/jpdk_b09pb/umceSll/../Models/Spectre/l65I_v151.1

¢ Jdkits/umc/65nmAms65llpdk_bogpb/umcesll/../Models Spectre/L65LL_ HVT12 V101_RFlib.
v Jdkitsfumc/65nmAms65Il/pdk_boopb/umcesll/../Models/Spectre/L65LL_LVT12_V101_RFlib.scs
- o /dkits/umc/65nmAms65llpdk_b0o9pb/umcesll/../Models/Spectre/L65LL_1018_V101_RF.lib.scs

[Abite iz IREnm dmeRElUnAl hOQnk i BRI Marale A511 _IN25 /101 BElK cre

|Section B
tell_rvtl2
teI_hvt12
tt Il io250d33
tt Il i033

tt_ll_nvt12_bpw
tt_ll_nvtls

nvt18 bpw
nvt250d33
nvt250d33_bpw
nvt33
nvt33_bpw

tt_65_momcaps

tt_|l_ncapl2
tt_ll_ncapl8
tt Il_ncap25
tt_ll_ncap33
tt_Il_pcapl2
tt_Il_pcapls
tt_Il_pcap25
tt_Il_pcap33
tt_ll_res

@& cancel Apply

Help

20/35

v’ Select the file: 16511_v151_mc.lib.scs, and click Open. In the Section field type: # Il _rvt12, or select it
from the dropdown menu.

@ You do not need it here (unlike in the screenshot), however some PDK will require the variable
sigma. This variable determines the degree of statistical variation and generally depends on
the target yield. It may needed for the statistical models to define the standard variation of the
parameters. It will be used in the background by the simulator and the most common mean
(and default) value is equal to 3.

@ [fyou define it, Spectre will inform you through a warning that the sigma variable is not used.

v" Now, we will define several corners:

1& Parameters Corners Setup
| Corners

[osv) c L AR SN - - NP | B
©_ 4 Nominal = _F'E" I § | @ | @l | Y Filter name n\élﬂ;'
¥ | BC ;
: Resource Corner Nominal
! L we ‘. d
vl
Qv ss
e] | | | | | | |
i Corners _ Nominal BC ¥ WC v T v S5 v FF ¥ SF v FS
gy Sk
Byl fs Temperature 40 125 20 20 20 20 20
N Design Variables
Documents VDD 132 1.08 12 12 12 12 12
+[@ Setup States
[_ Reliability Analyses [/l [Parameters
[ChecksjAsserts
Data | History Model Files
1651_v151_mc.lib.scs v fElrvt12 v oss Il rvtl2 v ttllrvtl2) v ss Il rvt12 v ffllLrvt12 v snfp llrvtl2 v fnsp_ll_rvtl2
|_Run summary 78 %
1 Test _Nominal Corner| |Model Group(s)
«1 Point Sweep 7 Corners
Tests
g DC_TEST v v v v v v v v
] TRAN_TEST v v v v v v v v
Number of Corners 1 1 1 1 1 1 1 1

v In the Data View window, use the button Click to add corner under Corners. Click on !, to add
additional corners.

v’ The first corners we add are the BC (Best Case) and WC (Worst Case). These are generally used in
digital design, to characterize the physical worst cases of a digital chip, taking into account voltage
fluctuations (+/-10%), temperature range (max/min) and process variations. This will be more detailed
in the second phase of this labs (from week 6). These corners are used to identify the slowest possible
path and the fastest possible path in a digital circuit.

v' The next corners are the process corners we generally define in full custom design, and could be adapted
to various operating voltage and temperature. There are 5 of them. TT (Typical Typical), SS (Slow
Slow), FF (Fast Fast), SF or SnFp (Slow N Fast P), and FS or FnSp (Fast N Slow P). These corners
represent the extremum cases that the foundry (the company fabricating the chip) ensure about the
variability of the MOS transistors This way one can explore the performance of their design considering
the Vt variation of the transistors. For e.g. SnFp means Slow NMOS and Fast PMOS, which literally
means “all the NMOS are the slowest possible and all the PMOS are the fastest possible” or “all the
NMOS have a high Vt and all the PMOS have a low Vt”. This being induced by the process variations.

@ This is valid for MOS transistors. But if you had a look at all the files we showed before, you’ll
notice that this is also valid for all the device models the foundry provides (resistors, capacitors,
diodes etc.). The principle being the same, but limited to the available parameters for this device.

v" Set the temperature of all the additional corners to the same value as in the figure and the supply voltage
to as described. Click to add a model file, and add the same as before: go to
/Models/Spectre/Monte_Carlo/ and select 16511 _v151 mec.lib.scs.

21/35

v' Name the corners as BC, WC, TT, FF, SS, FS and SF. Set the corresponding section (from the
dropdown menu, or type them directly) accordingly: ff Il rvtl12 for FF, ss Il rvtl2 for SS,
fnsp Il rvt12 for FS and snfp Il rvt12 for SF. Click OK.

@ When defining the different corners, the nominal corner could be deactivated. It takes
by default the files we did define before in the model libraries from the test
TRAN TEST. The other corners

v" Untick the Nominal corner and run the simulations @ . Go to the results tab. Play with the different tabs
available through the drop down menu on the top left of the results tab. The “detail” tab shows you the
details results of your simulation. The “Detail — Transpose” shows you how each of the corners behaves
with the delays you extracted.

\Detail - Transpose B (] | @{g.}v ' (Filter ... L2 +| |~ ~/Append l‘.’Nr_me‘: =N
7 rows 7 rows
Corner | VDD |emperaturvl51_mc.li | Pass/Fail | /OUT | /IN | Delay R | Delay F |
| | | | | | | | |

BC 1.32 -40 ff_Il_rvtl2 pass L= = 67.23p 66.13p
FF 1.2 20 ff_Il_rvtl2 pass L= = 73.9p 80.12p
FS 1.2 20 fnsp_ll_r... fail L= = 84.15p 116p
SF 1.2 20 snfp_Il_r... fail = |~ 110.9p 89.6p
sSS 1.2 20 ss_ |l rvt... fail L= = 132.6p 132.7p
T 1.2 20t ll_rvtl2 L L 96.78p 101.7p
WC 1.08 125 ss_|l_rvt... fail |k L 163.5p 183.3p

QUESTION 9-1 : What do you see there ? How different is the BC corner compared to the FF ? and why
? same comment with WC vs SS.

QUESTION 9-2 : What’s the difference between SF and FS ?

QUESTION 9-3 : Here what would you do to make the circuit pass in all the corners? No need to run the
simulation (or if you do so, it should be just to confirm your feeling). What parameters could you play with?

Hint to go further : there are knobs inside the inverter, but there could also be parameters outside of it...
just saying.

QUESTION 9-4 : What’s your feeling about this kind of corner simulation ? can you identify already how
limiting it can be ?

9.2 MONTE-CARLO SIMULATIONS

Corner simulations are useful for defining the extreme cases. Since there is in general a small amount of
simulations to be run, the verification can be done quickly, and the designers can confirm the functionality
of their circuit under the predicted extreme conditions. However, corner simulations have a couple of
limitations. They can sometimes be very pessimistic, since they cover only extreme cases instead of the
actual statistical distribution of the parameters. Another limitation is that corner analysis covers only
predefined (predicted) limited set of parameter variations that have to be set manually. Finally, and this is
the most critical aspect, corner simulation do only simulate cases where all the transistors are in the same
conditions. In real life, it can happen that functionality is lost in cases where only a few transistors in a path
become weaker/stronger. In other words, in some circuit types, failures do not always happen in the corners,
and particularly not always with predictable voltage and temperature conditions. This is particularly true

22/35

the more technologies become advanced. For e.g., in SRAMSs (static memories), a method called
importance sampling is generally used to identify which part of the corner plane can be failing, and
specifically running monte carlo simulations in this zone. Thereby saving a large amount of simulations.
Bottomline is : Corner simulations can be indicative for functionality verification, but are not a
reliable verification for sign-off.

Failure
Regions

x1

Failure cases

(a) Monte Caro (b} HDIS (c) AIS (d) SSAIS

o

o
=)
on
=3
en
=3

=
-
=
=~
=
-

=
w
o
w
=

vthO of MMN3

o o
w =
3 K
5 F
2 -

wthO of MIN3
el

vthO of MIN3

wthO of MN3

o
ro
=3
o
=3
[y
=
o

01 01 01 01
01 02 03 04 05 01 02 03 04 05 01 02 03 04 05 01 02 03 04 05
vth0 of MN2 vth0 of MN2 vth0 of MN2 vthO of MN2

Top figure' : model of how failure can happen in a complex circuit in a vtn/vtp graph. Here it is visible
that failure do not always appear in the corners.

Bottom figure?: example of different statistical simulation algorithms that could be applied to some
circuit showing failure in some specific area. Indeed, catching the same amount of failure can be done
with less runs for a more specific algorithm that can be applied specifically to one area of the vtn/vtp
plane. Still, this is a really advanced verification technique, and is only needed in circuits where
extremely high failure coverage is required.

Statistical simulations are generally defined using a normal law or empirically with something we generally
call the 68-95-99.7 rule. This considers a mean () and a standard deviation (c). We generally define the
coverage of a given simulation by considering a certain amount of sigma around the mean. 1 sigma covers
for 68.2% of the distribution, 2sigma for 95.4% and 3sigma 99.73%. Typically, in SRAM design, a
coverage of 6+ sigma (1.973ppb — 1 failure over 506 797 346) is required to ensure reliability. This means
that many monte-carlo simulation runs are required to ensure coverage on this probability of error. As a
rule of the thumb, for a relatively small circuit (10-100 transistors) 5 to 10.000 runs can be considered
enough to cover for 3sigma. Though, again this is not the absolute truth, and some mathematical models
can be used to make sure that a complete coverage is achieved. Again, as an engineer all is question of
balance between the amount of work/resources spent, and the trust you have in your results.

! Figure reprinted from :

https://ieeexplore.ieee.org/document/7564452 and https://ieeexplore.ieee.org/document/6740007

2 Figure reprinted from https://www.sciencedirect.com/science/article/pii/S0167926022001729

23/35

https://ieeexplore.ieee.org/document/7564452
https://ieeexplore.ieee.org/document/6740007
https://www.sciencedirect.com/science/article/pii/S0167926022001729

0.3 0.4

0.2

] 34.199 34.1%

0.0 0.1

M—30 Hp—20 pP—0O M M+0 u+20 p+30

Sources :

https://en.wikipedia.org/wiki/Normal distribution
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7 rule
https://en.wikipedia.org/wiki/Six_Sigma

https://en.wikipedia.org/wiki/Importance _sampling

In IC design, we use Monte-Carlo simulations to evaluate the process variations of MOS transistors.
Generally these variations are collapsed to variations in the Vt of the transistors. The more advanced
technologies are, the more variation sources are introduced. In 65nm and older (i.e., larger) nodes, only
one type of variability is generally available to simulate your transistors. As an example, in 28nm nodes,
as a designer you will generally have access to several models : local and global variations, which you will
have to chose from, based on the characteristics of your circuit. A small circuit (this is defined in the
documentation of the technology) could generally need to only use local, while larger circuits, or more
distant elements, would need to be simulated with global. See ? this introduces physical design
considerations in the schematic level design already. This is an important lesson to learn for the future.

We will not use that in this lab though.

@ Monte-Carlo simulations can be very CPU intensive and memory demanding. You
should always be careful not to overload your system.

v Uncheck all the previously defined corners except the nominal one.

oM
v' Change the Run Mode to Monte Carlo Sampling, and click on the & i

Simulation Options button (see below). = i
(| Monte Carlo Sampling ﬁ W @ @' i

v' Setup the simulation options as in the following figure (on the right) with 200 runs:

E| v =] Comers

Hominal
FF

33

FS

SF

Don’t forget to tick the two “save” boxes, otherwise it will not plot and save any results.

24/35

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule
https://en.wikipedia.org/wiki/Six_Sigma
https://en.wikipedia.org/wiki/Importance_sampling

Mente Carlo R ERS

~ Guided Mode

v Click OK and run the simulation @ . AR e 2@ E

® Run a fixed number of points 200

. . . Verify the yield (sign-off)

v Once the simulations are finished, go to the results tab, and G e

select the Yield for the result view. « Advanced - Show All Options.
Variation [l -]

@ The Yield can be followed in parallel during the — \umperetroms 20
simulations. If the yield is clearly low, the simulations — Pim=rerieb e Group automatically
can be stopped. This can also be set in the simulation ;Max . Dsome D
options by Auto Stop Using Significance Test. ethod Standard Monte Carlo B

» Save Waveforms (Simulation Data)

@ You can track the evolution of the simulation from the .« sweswtisical parometer pato

Run Summa Sub Wil’ldOW Sampling Method Low-Discrepancy Sequence '
’/y ’ seed 12345
First Point 1

History Item | Status |

Netlist Options

MDI"ItECﬂHO.G l running _ 7;200 cum plEtE Specify Instances/Devices (Not Specified)

Specify Mismatch ID (Not Specified)

Specify Design Variables (Not Specified)

@&E® cancel Defaults Help

Yield - IS | mlkhewwin BB A @R REBEDE G YW E
Test | Name | Yield | Min | Target | Max | Mean | stdpev | cpk | Errors |
Yield Estimate: 37.5 %(75 passed/200 pts) Confidence Level: <not set> Filter: <not set>
- §F TRAN_TEST
- £ Delay_R(summary) 66 77.58p 124.8p 97.12p 9.101p 0.105]
Delay R 66 77.58p < 100p 124.8p 97.12p 9.101p 0.105 o
- £¥ Delay_F(summary) 55 85.43p 115.2p 99.53p 6.066p 0.0256 o
Delay_F 55 85.43p <100p 115.2p 99.53p 6.066p 0.0256 0

v Comment on the results of the Monte-Carlo simulations with your colleagues. Note how long are
these simulations. In practice, these runs can be heavily parallelized. Though for the class as you
are around 60, we limit the amount of simulations you can run in parallel.

@ As the result of Monte-Carlo simulation, joined transient waveforms and the resulting
histograms will appear. Histograms allow us to see what number of runs (out of 50 runs: y-axis)
were found to be within the specific range (bin) of the delay value (x-axis).

® The button . allows to access many study parameters. Feel free to explore it.

Il TRAN_TEST
Delsy F 1 [odnr 2

o . ooy

2] L -

s |
a0]
]) 7
%
8240 o
] S| ePl8
4 of |8
2 20]
] 300 ol o oM [,
= 0| %o
160] 100]
E E o| % o
of @181 Pe o
120] 120]
3 3 B 8% s S
g0 J W a0] Lie ° 13 o 2
5 3 o 5 Slo
] : :] A Y e Z 4 7 ; ;
LIS I8 O B o o S
] °] o o |¥o oY 1|6 o
0o 1 LAk oo 1 b B .) o |¢ | o o 74
T

o Sy

T T [TTTT TP T T T T T T T T T T T TP T

780 520 860 900 940 980 1020 1050 100 1140 1180 120 650 700 750 800 850 900 950 1000 1050 100 1150 1200 1250 1200 1350
Values (p) Values (p)

————— - o

25/35

ame |Vigmeparamset
13
b /N @
1

3]

n\n\ T \n\;\ T \‘\n\ T \]\;\ T ‘3‘n| T |2|5| T |1|n\ T |1\;\ T \4\n\ T \J;\ T \;\n\ T \;\;\ T \D\n\ T |D\;| T \7|n| T \7|;\ T \B\n
Figure 8 - The Results of the Monte-Carlo Simulations

Note how the transient simulation is not anymore a single line, but a network of curves. The more MC runs
are being performed, the more the distribution spreads, and covers all the possible cases. i.e., ensuring that
your circuit can work in all conditions.

v Go to Inverter schematic and change Wn = 280nm and Wp = 280nm.
v Check and Save the schematic.
v Run the monte-carlo simulation @, and observe the results.

QUESTION 9-1 : What happened? Which part the circuit is limiting the performances and why?
How would you solve it, and which size would you chose ? verify it with a simulation.

10 PARAMETRIC ANALYSIS OR HOW TO EXPLORE A DESIGN SPACE?

Now comes the most important question in life (okay... in this lab... but still, it is an important question).

How to size a circuit with regard to a sizing constraint ?

v Create a new testbench in which you add your Inverter you just designed. (you could also right click
on the IV_TB and select copy)

v Call it INV_Param_Analysis TB

26/35

L

] Copy Cell
From To
Library EDATP levisse n Library EDATP_levisse
Cell INV_TB Cell |INV_Param_Analysis_TB
Options

_ Copy Hierarchical

NMUMC analogLib avTech

Views To Copy
~ All Views

adex] maestro schema

No

e

_ Update Instances |Of Entire Library

Database Integrity
_ Check existence in technology database

_ Re-reference customViaDefs

_ Add To Category

€D cancel Apply | Help

v Make sure that your inverter has its PMOS and NMOS parametrized with Wp and Wn respectively in

the schematic.

|:6¢8n
m: 1
finge

v Your testbench should be configured as before. Only use the Nominal corner. And select Single Run.

Data View EIEE] | outputs setup Results
Name Value fom)
n‘ g &b - % | % M B2 o eyl -
5 @ % Tests 4 rows
v % Tes m -
- Test Name Type EvalType | Plot|Save Spec Weight Units
E v & Global Variables | | YP | | ype | I 1 P | 9 |
. »[EvDD 1.2 £) B |
= Wp 280n EDATP_levisse_INV_TB_1 signal /OUT point ¥ | v
- «[E wn 280n EDATP_levisse_INV_TB_1 signal /IN point ¥ v
- » [E Tsim 4*Period | | |EDATP_levisse_INV_TB_1 Delay R expr delay(?wfl VT{"/IN") ?... point w < 100p
- »[E Per... 3n EDATP_levisse_INV_TB_1 Delay_F expr delay(?wfl VT("/IN") ?... point v < 100p
£ v & Parameters
51 o Sl Carnare L

27/35

v" Run a simulation. You should get the following values :

Outputs setup ResuIts
Detail by @“@v v) Filter ... [£ +| lZ ~|Replace B (None;
4 rows
Test | Output | Nominal | Spec | Weight | Pass/Fail |
EDATP_levi... /OUT L=
EDATP levi... /IN =
EDATP levi... Delay R 51.04p =< 100p pass
EDATP levi... Delay F 91.11p = 100p pass
v' As expected, the circuit is unbalanced. The rising
time is much shorter than the falling time. Name ﬂ| _ n|
v What Wp value is necessary to get a 50ps % Tests
Delay_F value ? £ v & Global Variables
v In the Data View panel, double click on the value | _<E VDD 1.2
of the Wp Global Variable, and click on the “...” ! %
v A new window will appear, showing you how to » [E] Tsim 4*Period
. . ~ [& Per... 3n
set a parametric analysis.
v’ First, click on “Delete Spec” to remove the [ov& Parameters
280nm point. LR
v" Then click on the “add specification” drop down menu, |— parameterize e D X

and select “From/To”

v’ Set the “Step Type” to auto. From 120n to 1.2u with a
Total steps of 10

v This will make the tool run 10 simulations with steps of
100nm from 120nm to 1200nm (1.2um) on the parameter

Add Specification n

‘Center/Span%
Center/Span

Exclusion List

values: 280n |e r Inclusion List
Add Specification

Wp.
v Click OK.
v Now, the Wp global variable has a specific syntax. Which
corresponds to what you just did. oOky \wGNEly \lilly
v Run the Simulation
v" Use the “Detail — Transpose” view to identify which value corresponds to your target (here 50ps).
v

You can plot the simulation waves. When extracting expressions (here delay), the tool plots the
extracted expressions versus the input parameters (here Wp).

28/35

\Detail - Transpose n Q | % Filter ... n| 3 +| [~ ~Replace n(l\lone) Delay_R:Delay_F
b b [Name Vis

10 rows 10 rows I
Point | Corner | Wp | | Pass/Fail | /OUT | /IN | Delay R | Delay F | et |
B B B B B B B O
1 nom 120n fail L L 50.45p 169.5p i
2 nom 240n I I 50.88p 104.3p oo
3 nom 360n pass L L 51.72p 75.3p 1200
4 nom 480n pass L L 52.24p 59.42p
5 nom 600N pass L L 52.81p 50.06p
6 nom 720n pass L L 53.37p 43.13p
7 nom 840n pass L L 53.92p 38.69p
8 nom 960n pass L L 54.47p 35.1p
9 nom 1.08u pass L L 55.01p 32.37p
10 nom 1.2u pass L L 55.55p 29.99p

QUESTION 10-1 : how does the Delay R and Delay F trend ? and why ? Why do you think the two
trends are opposed ?

QUESTION 10-2 : what value to you obtain for Wp ? what does this value correspond to ?

v' Put Wp=2*Wn on the Global Variables

v Put a Cout value parameter on the output capacitance in the Testbench. Check and
save.

v’ Update the design variables in the test, and add a new global variable Cout. Put it
at 10f.

v" Define a parametric analysis for it. And make it range from 0.1f to 50fF with 10 automatic steps.

v’ Analyze the table and waveform results

QUESTION 10-3 : What maximum output capacitive load is this gate able to handle for a transition time
of 100ps ? what parameter can you play with, if you have to meet a 100ps for a SOfF output capacitive load
?

What about more complex situations ?

v Modify the testbench and replace the capacitor by an inverter of the same type as the INV gate.

v' Place it carefully to make sure that the OUT signal is still in between the INV 10 and INV 12 (these
names are based on the screenshot but you may use other names)

v Replicate the output inverter 20 times by putting 12<19:0>

29/35

v" Check and save will issue a warning about the output pin of 12. This is normal and you can ignore it.
v Run a parametric analysis on Wn. From 120nm to 2.4um with 20 points. Keep Wp = 2*Wn.
v And check the delay between OUT and IN nets.
v Run the simulation and analyze the results.
QUESTION 10-4: Focus on Delay F. Why such a trend ? Why does the output increase again after a
point ?
Delay_R:Delay_F Fri Aug 25
Name Vis
=

W Delay F &

1.0 1.5
Wn (u)

30/35

11 GOOD PRACTICES

11.1 BEING MINDFUL ABOUT YOUR RESOURCES UTILIZATION

As an engineer, you will NEVER work alone.

- The servers you use will almost ALWAYS be shared with other users

- The disk space you use will almost ALWAYS be shared with other users

- Filling the disks will impact your work, but also the work of your colleagues

- The software you use are being paid for, by your structure, and have a limited amount of license
tokens. Using all the tokens will block other users from getting them.

It is YOUR duty to monitor your resources utilization, and generally not over-use resources which you
have access to. Or if you need to use more resources, generally make sure your supervisors or I'T department
are aware of your needs.

QUESTION 11-1: Summary the previous section in a few sentences with your own words.

11.2 ERASING SIMULATION FILES

As the result of every simulation, a large amount of files is typically created. These files store simulation
info and save simulation data, such as schematic netlists, variable definition file, simulation report files,
output log files which are used to save voltage and current waveforms, and many others. In the case of
transient simulation, output log files can become very large (several GB) if sufficiently long simulations
are performed on a relatively complex circuit. If special care is not taken, these files can easily fill the disk
space of your system, causing the simulations to crash and making the system unstable. Therefore,
simulation output files should be handled carefully, keeping in mind their size and location at all time.

v' By default, starting from the EE429 FULLCUSTOM the path to the directory where the
simulation data is saved is: ./simulation

v' Go back to your linux terminal. If you are not already in your Virtuoso project directory
(EE429 FULLCUSTOM), enter it:

> cd ~/EE429 FULLCUSTOM/ +
v’ Explore your project directory by typing:
EE429 FULLCUSTOM > 1s ¢+

v" Notice several configuration, library and log files. You will also find a folder named simulation,
where all the simulation data is stored. Check the size of the simulation directory by typing:

EE429 FULLCUSTOM > du -sh simulation/ ¢

v Check the size (write it down):

EE429 FULLCUSTOM > du -sh simulation/ ¢

31/35

@ [tis also possible to remove the complete context of the simulation directory if no
information about the previous simulation runs is no longer needed. This can
simply be done by typing: rm -rf simulation/

v" In order to reduce the size of the generated
files, it is possible to specify that only the
signals selected to be plotted will be the
ones to be saved. This way, we can avoid
storing unnecessary data on our disk space.
In the Data View window right-click on the
specific test (Tran_Test) and open the
Open Test Editor. Select Qutputs —» Save
all...

Here, it is possible to specify the desired
properties as we did in the figure (right).

A Save Options <@Ismsmv2.epFl.ch>

Select signals to output (save)
Select power signals to output (pwr)

Set level of subcircuit to output (nestivl)

2) o) 5
— hone o selected _ Ivipub _ vl _ allpub _ all

none _ total _ devices _ subckts _ all

Select device currents (currenis)

Set subcircuit probe level (subckiprobelvl)

Select AC terminal currents (useprobes)

» selected _ nonlinear _ all

_yes « no

Select AHDL variables (:

hdtvars)

~ all

Save model parameters info

Save elements info

Save output parameters info

Save primitives parameters info
Save subckt parameters info
Save design parameters value info
Save asserts info

Save extreme info

K

[«

[«

K

k

[«

Output Format

Use Fast Viewing Extensions

_sst2 _ psf _ psfwith floals _ psfzl

@I cencel | Defaults | Apply | Help

QUESTION 11-2: how much simulation space do you use ? In your EE429 FULLCUSTOM folder use
the “ncdu Simulation” command. You can navigate with the keyboard. Right arrow to enter and left arrow
to come back one level up. Which cellview take the most space ?

v'As an alternative to the previous solutions.
Maestro views allow you to manage disk
space directly inside virtuoso.

This solution is not global, as it can only be
handled per maestro views. So if you used 5
maestro views, you would need to clean the 5
of them.

In the data view, click on the History panel on
the bottom. Each simulation you did run is
visible here, and can be cleaned off.

Once you are done and extracted all the results
you need, delete all the result history from this
ade assembler view. Select them all (sift +
click), right click and select Delete.

Compare the results of the ncdu command
after that.

v

Data View

B

= () MonteCarlo.9

- @ Size : 696K

@ Monte Carlo Sampling
¥ % Tests

¥ & Global Variables

- ¥ & Parameters

v =] Corners

- _| Reliability Analyses
_|Checks/Asserts

#() Interactive.6
() Interactive.7
@) Interactive.8
#() Interactive.9
() Interactive.10
#() Interactive.11
() Interactive.12
() Interactive.13

® Interactive.14

Data History

32/35

11.3 REMOVE LOCK FILES ON VIRTUOSO

Cadence Virtuoso was originally designed as a collaborative tool. Several users could work in parallel on
the same library at the same time. Though, we generally advise not to work on the same cellviews.

In that sense, if a cellview is opened, virtuoso will create something called a lockfile. When a view is locked
by virtuoso, it cannot be accessed by any other user.

If you open a view, and, for some reason, do not properly close virtuoso, or change server, or if you are
unlucky (the tools sometimes crash). You sometimes cannot reopen your cellviews, with an error message
about lock files.

Two solutions are possible :

1- You could manually erase the lockfiles, which are generally located inside the design library with
the .cdslck extension. This solution is dangerous as it involves using a rm command, and you
may delete the wrong files.

2- Use the cadence tool clsAdminTool. Advised solution.

> cds clsAdminTool
> ale yourlib

This command will list the lockfiles in the 1ib called “yourlib” (update it accordingly)

> are yourlib

This command will remove the lockfiles in the lib called “yourlib” (update it accordingly)

11.4 CHANGING SIMULATION DIRECTORY (OPTIONAL)

It is also possible to change the location at which the output files are generated. This is especially useful if
you are running simulations on servers or if local machine has multiple hard drives and/or partitions.

v In Analog Design Environment (ADE Assembler) window, select Options— Save...

v' As you can see, the default directory is set to /simulation. Depending on the design-kit (different
technology options), the default directory may be different.

v" Create a new directory within your project directory. You can name it as you want, we propose
simulationOut:

EE429 FULLCUSTOM > mkdir simulationOut ¢

33/35

v In your Analog Design Environment window, select Options— Save... and edit the project

directory path towards your newly created directory e e N
(type: .simulationOut instead of the default: sty enties to save
/simulation). save entries
X . . _ Overwrite History Next History Run [
v Run the transient simulation (corner or Monte-Carlo) getan neust iectory
once again, and check where is the output simulation smation Resuts
data » Save Simulation Data ¥ Save MNetlists
— Use Local Simulation Results Directory
@ Note that our manipulation only changed the directory fonp
within the Virtuoso project directory besian Ponts per ptizeion
(EE429 FULLCUSTOM) where the data is going to be B R —
saved. Of course, a completely different path can be & Save hest 10 design point(s)
specified as well, such as a path to a directory on
another hard-drive or on a specific server. Resulls Location)
Simulation Results Directory Location:
I Feds/simulation I
Bmwse.;
\-ADE XL Results Database Location:
Qmwse.;

@3 cancel | Defaults | Apply . Help

12 EXERCISE ON DC ANALYSIS

Now that you know how to create cell views, create testbenches and run monte-carlo analysis, we propose
you a practical guided exercise to make sure you understood correctly everything. The moodle quiz will
have questions associated with this exercise.

Task 1 : build an inverter testbench with a 10fF load on the output, a NMOS w of 120nm. Apply a ratio of
2 on the PMOS. Take a 1.2V VDD.

Hint : You could reuse one inverter you did before and just make a new testbench.

Task 2 : run a DC analysis and plot the Vout versus Vin graph as you did earlier.

Task 3 : From the VTC. Identify the VM (the threshold of the inverter) , where Vin = Vout.
QUESTION 12-1: Does the inverter seem balanced ?

Task 4 : plot the derivative of the Vout(Vin) curve

i .
Using the calculator, click on (ORI AORES |, then select the waveform of the output

voltage from the waveform viewer. This will automatically print the name of the waveform. Then, apply
the function “deriv” to it.

Hint :Once the wave object has appeared in the textbox (should be something like
“leafValue(VS(“/OUT”))”) , click once on “deriv” in the functional panel. It will update the text (you

could also simply type the name of the function there). Then, click on to add the function output to
your ADE view.

Task 5 : From the derivative, identify the noise margin of the inverter.

Hint : you will find two different values for the noise margin, which one makes the most sense ?

34/35

Task 6 : add the FS, SF, FF and SS corners. And run the simulations again.
QUESTION 12-2: How does VM and the noise margin change with the different corners and why ?

Hint : if you have the derivative function already inside your ADE view, you do not need to do it again
through the calculator. It should plot it automatically.

Task 7 : setup a monte-carlo simulation, and make 200 runs (this may take some time, you can go take a
coffee break).

QUESTION 12-3 : how does the VM and the noise margin change after the monte carlo simulation?

At this end of this exercise once you are sure that you understood the results. Go through the 11.1
and 11.2 sections of this document, and clean the simulation files generated during the exercise.

35/35

	1 Objectives
	Prerequisites

	2 Creating the MUX Test-Bench Schematic
	3 Creating Different Tests and Global Variables
	4 Defining Outputs and Running Simulations
	5 Using Local Variables
	6 Using Special Functions and Specifications
	7 Using Design/Instance Parameters
	8 Curiosity on device sizing and best ways to handle various cell sizing.
	9 Corner and Monte-Carlo Simulation
	9.1 Process Corners
	9.2 Monte-Carlo Simulations

	10 Parametric analysis or How to explore a design space?
	11 Good practices
	11.1 Being mindful about your resources utilization
	11.2 Erasing Simulation Files
	11.3 remove lock files on virtuoso
	11.4 changing simulation directory (Optional)

	12 exercise on DC analysis

