SECTION OF ELECTRICAL ENGINEERING

EPFL STI-SEL Téléphone : +4121 693 13 46 : P I- I
ELG 030 Fax :

Station n® 11 E-mail : alexandre.levisse@epfl.ch

CH-1015 Lausanne Site web : esl.epfl.ch

Fundamentals of VLSI
September 2024

FVLSI - Digital Design Flow

Back End — From Synthesis to GDS

1. SETUP THE LAB ENVIRONMENT

For this part of the lab, we will use three new tools, namely Innovus, Embedit and Virtuoso
configured for the 65nm globalfoundries design kit.

You will find them in your working environment.

2. TUNING THE SIZE OF AN SRAM MEMORY

As you did identify previously, the 64x64bit memory appeared as a bottleneck in the design, from
an area standpoint. In this section, we propose to explore how to generate a SRAM memory using
a tool called a “memory compiler”. And generate smaller memories which could improve the
density of the design we are exploring.

2.1.GENERALITIES ABOUT SRAM MEMORIES

SRAM memories are complex and cannot be automatically generated by a synthesis tool. For e.g.
instantiating in a RTL language, an array of memorization points will infer an array of flipflops.
This is inefficient from an (i) area, (ii) power and (iii) speed standpoint from a certain size.
Thereby, it exists some kind of trade-off between the memory size, and it’s implementation as an
array of register files and the need for the utilization of an SRAM memory'.

An SRAM bitcell is built as shown in the following picture. It is practically composed of two
inverters and two NMOS transistors called access transistors. The SRAM bitcells are then
organized in columns and rows. The following screenshot shows an example of memory
organization from a publication in the ISSCC conference?. In that case, several small
32x256bicells arrays are built, each with their associated peripheral circuit. These blocks are then
replicated and connected together to build larger memory arrays.

!'Some works actually explored the trade-off https:/ieeexplore.ieee.org/abstract/document/5976987
2 https://ieeexplore.ieee.org/document/5746310

1112

https://ieeexplore.ieee.org/abstract/document/5976987
https://ieeexplore.ieee.org/document/5746310
mailto:alexandre.levisse@epfl.ch

32 x 256 MC
ARRAY

pechgB (E:E a:E
4
Wi [0:31] I?CI

32x 256 MC

localBL [0]
;F =
localBLB [0]

globalBL [0]
globalBLB [0]

Each block composing a SRAM array has to be designed with the full custom flow as you did
learn during phase 1 of these labs. As today memory compose more than 50% of the area of
advanced chips, being able to automate the design of such blocks is mandatory.

Let’s start with an example of an actual memory, to understand the complexity of real memory
systems. Note that here we only focus on the physical organization of a memory from a 2013
processor built in 32nm CMOS technology. We do not detail process associated with cache

management etc.

The associated screenshots is a detailed Last Level Cache memory hierarchy example of a 2013
Xeon chip from Intel published?.

1-way slice

T T O T T LLLLCCUTEIESR L T

T et

Cache-Control Box (CBOX)
|
.| | |

i Tag, State,
8 cv.LRU Arrays

32KB data-bank: é

1-way tag, state, CV, LRU: |mm

3 https://ieeexplore.ieee.org/abstract/document/6515193

21112

https://ieeexplore.ieee.org/abstract/document/6515193

16KB data sub-array:
i Bit34 H > i Each bit slice lﬂ
i i | |
]]
i i Y .
E E E chunk0 -*]? E output
H bit19 : ! chunkl -"Lr' !
H bit18 1 |
% M) chunk & way selection
bit17 1 Mﬁ
; bit16 i
E i ESRAM (258 X 4 sets) 10 SRAM (258 X 4 sets) i IA[?:E]
] I
]]
1 < > <€ >
i i 256 rows A[15:8] + 2 red 256 rows A[15:8]+ 2 red
E — E Array_H: A[16]=1 Array_L: A[16]=0
2 redu:c.lant rows 2 reduni;nt rows

On the top left, one can see the 8 processors (CORE), and the 8x2.5MB (Mega Byte) LLC (Last
Level Cache) in the middle, which overall makes 20MB (note that each LLC block is not tied to
a core but that it is overall controlled by the memory agent on the bottom, each block being
controlled by its Cache Control Box — cf top right picture). The right picture is a zoom in on a
2.5MB block. It is composed of 20 “way slices” (vertical) of 128KB each composed of 4 32KB
data banks (green boxes). Each 32KB data-bank is composed of 2 16KB data sub-array shown on
the bottom picture.

The 16KByte array is then cut into 34 “bit” slices. Each “bit” slice is composed of two “chunks”
(chunk 0 and chunk 1). Each chunk is composed of two 258 x 4 bitcell SRAM arrays.

Let’s make the calculation :

1 chunk is 2* (258*4 bits) = 2.064bits

1 bit slice is 2 chunks = 4.128bits

1 data sub array = 34 bit slices = 34 * 4.128bit = 140.352bits = 17.544Bytes
And so on...

@ Note how the number of bits does not match the actual memory size, and how things do
not match between the physical quantity of bits being integrated.

@ The 16KB actual memory size is only obtained when removing physical redundancy
bitcells (in prevision of failure for e.g.), reserved ECC (Error Correction Codes) bits etc.

Bottomline being that the physical organization of a memory is not homogeneous, extremely
hierarchical. Ultimately, unitary memory blocks are relatively small, here around 16KB. Picture
that each of these 16KB blocks is replicated 1280 times to make the complete 20MB LLC cache.

When diving down the CORE block, besides the LLC, in these Xeon cores, there is also a L2 and
a L1 cache, private for each processor. In this architecture, the L2 has a 256KB hierarchical

3/112

organization while the L1 is 32KB* with the same kind of oversizing as we discussed before. Note
that the L1, L2 and LLC are built with different constraints in terms of speed. Closer cache levels
are expected to go faster, while LLC is expected to be denser and slower.

Various parameters can be tuned to change the performances of a memory in terms of speed or
power. One of them is by tuning the size of the memory. Indeed, smaller arrays mean less metal,
in line meaning faster access (remember the layout of your 8bit adder ?).

Another approach consists in tuning the parameter of the access transistors. The following left
figure is an example of two different bitcells in 10nm FinFet technology from Samsung’. Both
being what we call 6T (6 transistor) SRAM , the top one High Density (HD), the bottom one High
Speed (HS). Here, increasing the width of the access transistors (called PG) and of the pulldowns
(called PD) makes the bitcell go faster for read operations.

@ In finfet technologies, the width of a transistor is controlled by the number of fins.

6T High-Density (HD) bitcell
0.040 pm? (1:1:1)

E}héﬂ] II}*E
[E,!!JP n e |

BLb vDDC BL

6T High-Performance (HP) bitcell
0.049 pm? (1:2:2)

= ﬁ&Eﬁﬂ Ll
WL%D[| '

s we w 0.12pm’ 6T Bit-Cell

One particularity of SRAM (and memories in general), that they have an extremely regular layout
pattern as opposed to logic circuits (as you did in your 8bit ALU). Thereby, SRAM designers can
discuss with the foundry and negotiate on breaking DRC rules. The main reason being that DRC
rules are built for logic circuits and can be twisted in some case, if agreed with the foundry. The
right part of the graph above shows a SEM picture of a 6T SRAM cell (Poly, Active and Contacts).
Note the rectangular contacts, this is generally forbidden in logic DRC.

Then, what does a memory compiler do ?

There is no general rules. Each provider does things in their ways. Though, the general approach
is as follows. The process of designing a SRAM memory starts by designing and evaluating by
hand a memory. Then evaluating the trends and characterizing the different blocks. Build them in
a way that they can be automatically and efficiently abutted. Build a performance/power/area

4 https://www.intel.com/content/www/us/en/support/articles/000027820/processors/intel-xeon-processors.html
3 https://ieeexplore.ieee.org/abstract/document/7725555

4/112

https://www.intel.com/content/www/us/en/support/articles/000027820/processors/intel-xeon-processors.html
https://ieeexplore.ieee.org/abstract/document/7725555

model. Finally, build a tool that builds a memory that meets the specifications required by the user
based on these models. Bottomline being that a memory compiler is mainly playing lego with
already existing/configurable blocks.

One these basics are understood, let’s now play with a memory compiler and build different
memories.

2.2.USING THE MEMORY COMPILER EMBEDIT FROM SYNOPSYS

The Synopsys company does develop EDA tools (such as DesignCompiler or PrimeTime) though
they are also a renown high quality silicon IPs which companies and universities can license and
use their designs®.

In this lab, we will use the Synopsys memory compilers and their tool called Embedit. Note that
there exist hundreds of memory compilers, each having their own specificities. We use embedit
here as it provides a comfortable-to-use Graphical User Interface (GUI), though, most of the
memory compilers do not provide GUI (surprised ? you should not be).

1. Go in the EMBEDIT folder
edalabs phase2 2024>cd EMBEDIT

2. Run the integrator tool (don’t forget the space between snps and integrator)
EMBEDIT> snps integrator &

= Embed-it! (R) Integrator, Deluxe (full) EaE
Project Tools Help .
EEB R e p[e @B SYNopsys

Fing: Sio=|

Messages Clear

3. Click on projet>New
4. Call the project EDALABS

¢ https://www.synopsys.com/designware-ip.html

5/112

https://www.synopsys.com/designware-ip.html

5. Keep the location in the EMBEDIT folder
6. Click OK =2 in the screenshot, the path may not be the same as yours

-

ﬁ Create Project A

Project Name:EDALABS)| |

Location: |M/PHASE2/testdirs/edalabs_phase2 2024/EMBEDIT| ... |
-Compiler Libraries
(dkits/synopsys/compilers
Add...
Remove
Ok Cancel

7. Check the message panel of the GUI. It should print a list of INFO about glb files in the

/dkits/synopsys/compilers/ folder being read.
INFO [Integrator, CFG-0187]: Reading file
'/dkits/synopsys/compilers/cp65npkslplOaspv20lmsal05pl/cp65npkslplOa
spv201lmsalObpl.glb'
INFO [Integrator, CFG-018]: Reading file
'/dkits/synopsys/compilers/cp65npkylpllasdrl32ksal4p3/cp65npkylplla
sdrl32ksal4p3.glb'’
INFO [Integrator, CFG-0187]": Reading file
'/dkits/synopsys/compilers/cp65npkylpllsadsl512sa06p4/cp65npkylplls
adsl512sa06p4.glb'
INFO [Integrator, CFG-0187]": Reading file
'/dkits/synopsys/compilers/cp65bnpkylpllsassl512sa05p2/cp65npkylplls
asslb512sa05p2.glb'
INFO [Integrator, CFG-018]: Reading file
'/dkits/synopsys/compilers/cp65npky2pllasdrl32ksal05p2/cp65npky2plla
sdrl32ksalbp2.glb'’
INFO [Integrator, CFG-0187]": Reading file
'/dkits/synopsys/compilers/cp65npky2p22sadsl512sa04pd/cp65npky2p22s
adsl512sa04p4.glb'’
INFO [Integrator, CFG-018]: Reading file
'/dkits/synopsys/compilers/cp65bnpky2p22sassl512sal4pl/cp65npky2p22s
asslbl2sal04pl.glb’

8. Click on Dé‘} and expend the part related to Common Platform’ and 65nm LPe LowK
Periphery Mixed Vt/Cell High Vt.

9. Select the Single Port High Density Leakage Control SRAM 512K Sync (make sure you
select the compiler name cp65npky1pl1sadsl512sa06p4)

10. Click Configure

6/112

Select Compiler Or Type

@ & memory
© = Commen Platform
© 3 65nm LPe LowkK Periphery Mixed Vt/Cell High vt
DesignWare Dual Port High Density Leakage Control SRAM 512K Sync
DesignWare Dual Port High Speed Leakage Control SRAM 512K Sync
DesignWare Single Port High Density Leakage Control Register File 32

@ @ TSMC
@ 3 rom
3 component-group

K Sync

DesignWare Single Port High Density Leakage Control SRAM 512K Sync
DesignWare Single Port High Speed Leakage Control SRAM 512K Sync
DesignWare Two Port High Density Leakage Control Register File 32K Sync

Compiler Information

Component Type: memory

Foundry: Common Platform

Process: 65nm LPe LowK Periphery Mixed Vi/Cell High Vt

Compiler: DesignWare Single Port High Density Leakage Control SRAM 512
Revision: AGGP4

Compiler Name: cpB5npkylpllsadsl512sa06pd

Library Path: /dkits/synopsys/compilers

View Documentation ... ‘ ‘ View Range Table |

["] Choose by Compiler Name

11. Fill the Configure Component window as follows. Make sure you properly untick
“automatic memory naming” and call it sramHD 64x64. Make it 64 words of 64 bits

with a squarest aspect ratio.

Note all the corners. You could potentially create new corners if you wanted to use the memory
in different conditions. Note that generally, memory compilers do not provide arbitrary

parameters, but only parameters in a given range.

vl Keep Open | Configure... | | Close

m Configure Component [I
(General | Views | Advanced | Compiler Information |
Number of Words: |54| | [Vl Enable | Process |WVoltage (V)| Temp (C) Name
o d v T 1.2 25 ttlp2v25sc
Bits in Word: |64 | v B 1.32 -40 fflp32vn...
Column Mux Option: |4 (squarest/tallest: ... v | v W 1.08 125 ss1p08v...
¥ W 1.08 -40 551p08v...
Number of Banks: |1 | ¥ FFF 1.32 125 fflp32vl...
Bitwrite Enable: [o | v B 1.32 55 ffipazvn...
v i 1.08 -55 551p08v...
Integrated Test: |fatge v|
Column Redundancy: |fah;e - |
Row Redundancy: | -/ -] | Mew H Edit ” Delete || Defaults |
Leakage Control:
=9 | rue =l [Run Instance Characterization
Memory Name: |sramHD_64x64 |
Power Ring Horiz Metal Vert Metal Name
[] Automatic Memory Naming Internal: | 1 o | 5 o |
External: 2 ~| [1 ~ |
Flip Vertical Metals
_— Estimated Core Ratio: |0 .(¢ Width ,—
[allowed values: [16 2K]%8 (limited by NB, CM, BK) |
| Ok | | Apply | ‘ Cancel |

7112

12. Press Apply. And see the sramHD 64x64 appear in the main window of embedit.

Project Component Run Tools Help

B ZB R o

Find: |
% [@ sramHD_64x64

B 4 views w

@ 3 memory
@ 3 Common Platform
@ 3 65nm LPe LowK Periphe
DesignWare Dual Port Hi
DesignWare Dual Port Hi

DesignWare Single Port General
DesignWare Single Port
DesignWare Single Port Num
DesignWare Two Port Hig
@ [TSMC
@ [3 rom Columi
3 component-group
Num

13. Change the numbers of word to 32, change the name to sramHD_32x64
14. Press Apply

w Configure Component an =l B
| General | Views | Advanced | Compiler Information |
Number of Words: [32 | [V Enable | Process |Voltage (V)| Temp (C) Name
o] T 1.2 25 ttlp2v25c
Bits in Word: |64 | ¥ B 1.32 40 fflp32vn...
Column Mux Optien: |4 (squarest/tallest: ... « | L4 A Lotk Uzs O
d W 1.08 -40 551p08v...
Number of Banks: |1 | W |FFF 1.32 125 ff1p32vl...
Bitwrite Enable: [0 | vV B 1.32 i fflp32vn...
Vi w 1.08 -55 ss1p08v...
Integrated Test: |falge - |
Column Redundancy: |falge - |
Row Redundancy: |- -] | New || Edit || Delete ” Defaults |
Leakage Control:
kag |true ad| [Z] Run Instance Characterization
Memory Name: |sramHD_32k64 |
Power Ring Horiz Metal Vert Metal Name
[C] Automatic Memory Naming Ay E =1 [z =] [vss ~]
External: |~ ~| [1 ~| [vbo ~]
Flip Vertical Metals
o

[Name must begin with a letter (A-Za-z) |

| 0Ok || Apply || Cancel |

@ Note that you can change more advanced parameters in the panel “views” and
“advanced”. Have a look there, but keep everything as set by default.

15. Do the same for 16words and call it sramHD 16x64

16. Press OK to close the window.

17. Close the select type of compiler window by clicking “close”

18. You should now see the following :

8/112

Project Component Bun T

| |28 B | @) @

Find: |

@ [@ sramHD_16x64
@ 4 views

@[3 sramHD_32x64
e 4 views

@ [@ sramHD_64x64
& 4 views

D

19. Press or Run>Generate All

INFO [Integrator, IAPI-011]: Checking sramHD_16x64
INFO [Integrator, I1API-011]: Checking sramHD _32x64
INFO [Integrator, I1API-011]: Checking sramHD _64x64
INFO [Integrator, IAPI-001]: Running "GENERATE" on component "sramHD_16x64".

INFO [Integrator, IAPI-O01]: Running "GEMERATE" on component "sramHD_32x64".

INFO [Integrator, IAPI-O01]: Running "GEMERATE" on component "sramHD_64x64".

INFO [Integrator, IAPI-010]: Finished "GENERATE" on "sramHD_16x64". S5tatus: Successful
INFO [Integrator, IAPI-010]: Finished "GENERATE" on "sramHD 32x64". Status: Successful
INFO [Integrator, IAPI-010]: Finished "GENERATE" on "sramHD 64x64". Status: Successful

The tool will run for a little while and generate the three memories as asked. While it runs, start
reading the rest of the document and section 1.3. And come back here once finished.

9/112

@ [[@ sramHD_16x64
@ @ views
@ [fflp32v125¢c
@[3 fflp32vnd0c
@ [ff1p32vn55c
@ [ss1p08v125c
@ [s51p08vn40c
© [ss1p08vn55¢
@ [ttlp2v25c

[} Bit Browser

[y BITMAP file

[y combined Datasheet for all PVT corners

[} Configuration

[} console.err

[} console.out

[coordinates

[} Datasheet for HTML

D extract_straps.cnt

[} Fast functional Verilog medel

[} Fastscan cell library for ATPG

[} Fastscan Initialization File

[} Fastscan Model

[y Gbs

[Liberty Model for Standard cells

[Log

[} Memory and SMS Information Standard

D mpt.straps

[y Parameters value list for SMS

[y Physical LEF

[spice Netlist

[} Template mask numbers

[} Tetramax Model

[} Tetramax Initialization File

[y verilog cell library for behavioral model

[y verilog cell library for Tetramax

[y verilog Netlist

[y verilog Netlist for ATPG

[} verilog Wrapper that ties off test pins
@ [S sramHD_32x64

20. Expend the views in one of the generated memories. Note all the files and folders that
have been created by the compiler.

QUESTION 2-1 : what’s the difference between a single port and a dual port memory ?

QUESTION 2-2: What’s the difference between the SRAM and a register file ? From a physical standpoint.
Check the available parameters in the compiler for a “High Density Leakage Control” SRAM and Register
file. Then rephrase it with your own words the comment below.

@ It is important at this point, if you come from a computer science background, or have had
experience with architectural design, to “align your vocabulary”. The vocabulary
difference between circuit-level memory designers and architects is deep. The motivation
behind these naming resides in the fact that SRAM are generally larger then Register Files.
So, register files are generally adapted for small and fast memories and will become
suboptimal for larger ones. And conversely for SRAM. The documentation of the
cp65npkylpllasdrl32ksa04p3 is available on moodle. Check it out (specifically section

10/112

2.3.6) compare it to the same section in the cp65npky2p22sadsl5S12s documentation —
alternatively you could click on “View Range Table” in the compiler GUL

2.3.EXPLORING THE OUTPUT FILES

A memory compiler generate the files which are needed in the design process. As a designer, in
order to include a memory, you need :

- A Verilog (.v) or Vital (.vhd) file to simulate the behavioural of the memory in your design.

@ Note that vital is getting more and more deprecated.

- Aliberty (.lib) file which contains the timing information from the memory, for the timing
and power analysis.

- A library exchange format (.lef) which contains the physical specifications of the memory
and its pins positions.

- You could also get other files such as test models (remember EE5307?).

These are call the Front end views. Most of the agreements you may get with an IP provider do

only involve front end views as these do not contain the details of the design and allow a company
to share IPs without taking too many risks on their design knowhow.

The following views are generally more sensitive and not gracefully shared by IP providers
without strong NDAs and associated liabilities.

- GDS views. The detailed layout of the IP that could be imported in a layout editor (such
as virtuoso).
- Spice netlists. Containing the detailed spice netlist of the design with all the transistor sizes.

Let’s first explore the spice netlist :

1. Double click on the Spice Netlist and scroll through it. It should remind you something
from phase 1.

QUESTION 2-3: scroll through the netlist and find devices starting with MP and MN. What do these
correspond to ?

@ Mos transistors in a netlist are generally syntaxed as follows : InstanceName Drain Gate
Source Bulk PDKdeviceName Parameters(W,L etc.)

Let’s then explore a the GDS :

1. Double click on the GDS in the list
2. A new window opens, resize to make it easy to read. This is a GDS viewer.

11/112

= GDS/LEF Viewer GDS: sramHD_16x64.gds [sramHD_16x64] oo B3

File View Options Tools Help

G EE HE AQado od g+ e Xl m
Address| 0 i2juofo [z rowlo [£{cotumn| 0 [x[ozrs [=fr[33105 [5 Highlight Manual RO X

Tl

] X. 328.398 Y. 27.342

Use the bl to fit the view to the screen.

3. Click on Options>Drawing Mode and make sure that the drawing mode is “By Layer”
4. Press OK

sies| GDS/LEF Viewer GDS: sramHD_16x64.gds [:
File Wiew Tocls Help
5 = Grid Options... @ = ol o cu _;%;_ » & X

Drawing Mode...

AddressE Text Options.. Row[olumn x[1.325 |$]Y[34.105|—:

Hot Keys...

Colors ...

Show Side Rulers
Show Grid

Show Grid Cursor
Mark Text Position

~ Address hexadecimal

Drawing Modes

@ By Layers +| Hide small cells content

() Border Only

(1 Border Only if maore than :@ units perinch
| JApply || !)gancel | 0@(|

5. You can zoom in by left-clicking and maintaining to draw the zone to zoom in.

12/112

6. Explore the design, and zoom down to the transistor-level layout. To zoom out, use the
fit button.

7. Note that we did build a quite small SRAM memory. Compare the layout of the 16x64

, 32x64 and 64x64 SRAM memories.

IKi D €18
X wsiew maw [}

In the screenshots, the highlighted area in red is the actual subarray.
8. Keep the 64x64 GDS opened, and click in the button to open the hierarchy of the
GDS.
9. Put side-to-side the gds viewer and the gds browser. And dive in the hierarchy.
10. Click on + on sramHD 64x64 then on sramHD 64x64 TOP
11. Alternatively select the three blocks inside sramHD 64x64 TOP and click on Highlight.
@ Ifyou click on Erase by mistake, you select back the top cell and click on Draw to print

,,,,,,,,,,,,,, o

= =

e view gpsons ool tes

&3 T8 YE QAQmdo o (A e X - A”““

naaen(e oo 5] mowlo [leowmn(s 3 x(ozs (105) | [e | Clmema o | X | o
—
Com)
o)
[ustron
[usan
(oo]

12. Find the actual memory array.
13. Find a bitcell and zoom in it.

QUESTION 2-4: measure approximatively the size of the bitcell using the ruler. Units for the ruler are in
um.

QUESTION 2-5 : The view of the bitcell is layout, as we did in phase 1. From the layout of one bitcell, by
only representing the layers as described in the next comment, infer the schematic of the bitcell and draw
it in your report. Are there things you see in this layout which seem to break the DRC rules you had to
respect in the layout of phase 1 ?

@ You can use the GDS layer button to enable/disable layers in order to ease the view. You
could for e.g. order the layer by DT and only keep CONI, POLY, M1 NWELL and
ALLDIFF visible. Note the layer called CAREC which is the special layer used for
rectangular contacts in this technology. Add the layer CAREC as well.

13/112

@ You can add and remove layers by ticking them in the “GDS Layers” panel accessible

then

through the button. To remove all the layers press
. Then tick the layers you want to add, and press Apply again.

@ The NWELL layer sometimes stays over the rest, so try adding it and removing it to identify
where the PMOS are.

@ Orders of magnitude for the size of an SRAM cell in this technology node can be found in
https://en.wikichip.org/wiki/65_nm_lithography process

Here is a screenshot of the bitcell, with one way to access one bitcell in the hierarchy, and one
example of GDS layers panel with M1 Conl Poly and CAREC activated. Here you would like to
add ALLDIFF to find the transistors.

MMMMMM

<<<<<

rrrrrr

-
wmg%w&_

A\

7Z

]])) I A

Once you are done, you can for now close integrator.

QUESTION 2-6 : Now that you have played with a memory compiler. Comment on the memory size you
have been using. Considering the area ratio inside the memories you generated. Does it make sense to use
this family of SRAM memories for such a small memory array?

3. MAKE YOUR DESIGN READY FOR A SRAMHD 16X64 MEMORY

Let’s now solve the memory area bottleneck problem by replacing the sramHD 64x64 from the
top_32b block, by a sramHD 16x64.

3.1.MODIFY THE TOP_32B

Let’s modify the top 32b to have a version of it ready for future explorations.

1. With your terminal move to the HDL/RTL/

2. Make a copy of the file top 32b.vhd
> cp top 32b.vhd top 32b 16x64bitMEM.vhd

3. Open the newly created top 32b 16x64bitMEM.vhd with gedit or any text

editor of your choice. Modify lines 159 to 191 in the following way :
MEMO : component sramHD 16x64

14/112

https://en.wikichip.org/wiki/65_nm_lithography_process

port map (

Q => data out memO,
ADR => addr memO (3 downto 0),
D => data in memO,

WE => we memO,

ME => en_ memO,

CLK => clk,

TEST1 => '0"',

RME => '0',

RM => (others => '0"));

MEM1 : component sramHD_16x64
port map (
Q => data_out meml,
ADR => addr meml (3 downto 0),
D => data_ in_ meml,

WE => we meml,

ME => en meml,

CLK => clk,

TEST1 => '0',

RME => '0',

RM => (others => '0"));

MEMZ2 : component sramHD_16x64
port map (
Q => data out mem2,
ADR => addr mem2 (3 downto 0),
D => data in mem2,

WE => we mem2,

ME => en mem2,

CLK => clk,

TEST1L => '0"'",

RME => '0',

RM => (others => '0"));

4. Save the file and close it.

You should also update the alu32 pkg.vhd file as it does contain definitions of memories for the
simulation.

1. Open the file alu32 pkg.vhd
2. Add the following lines before line 85 as already done in the file for the sramHD 32x64.

component sramHD_16x64

port (

0 : out std logic vector (63 downto 0);
ADR : in std logic vector (3 downto 0);

D : in std logic _vector (63 downto O0);
WE : in std _logic;

ME : in std logic;

CLK : in std logic;

TEST1 in std logic;

RME : in std _logic;

RM : in std logic _vector (3 downto 0));

end component sramHD 32x64;

3. Save and close the file

3.2.COMPILE THE LIB INTO A DB FILE

Before proceeding with logic synthesis, you must generate the db for your memory. This step is
needed as designCompiler does not understand liberty files, and requires the lib file to be compiled

15/112

in a db file. Also, Embedit does not generate db files for you, so you need to generate them using
a tool called LibraryCompiler and its command line : Ic_shell

1. Go in the LibraryCompiler folder

2. Run>Ic_shell

3. Run the following commands :
lc _shell> read_1lib
. ./EMBEDIT/EDALABS/compout/views/sramHD_16x64/ss1lp08v125c/sramHD_16
x64.1ib

@ The tool will read the lib file and check its syntax. As the lib file has been generated by
a tool, you may want to read the warnings it does issue, though, at this point there is not
much you can do. Identifying errors, info and warnings generally gives you insights on
the quality and age of the model you deal with.

@ It should ﬁnish by Technology library 'sramHD 16x64 1ib' read
successfully

lc _shell> write_1lib sramHD_16x64_1ib -format db -output
. ./EMBEDIT/EDALABS/compout/views/sramHD_16x64/ss1lp08v125c/sramHD_16
x64 .db
Wrote the 'sramHD 16x64 1lib' library to
'.../EMBEDIT/EDALABS/compout/views/éramHﬁ_16x64/sslp08v125c/sramHD lox64.
db' successfully B B

Once you are done,

lc _shell> exit

Maximum memory usage for this session: 127.71 MB

CPU usage for this session: 2 seconds (0.00 hours)
Elapsed time for this session: 571 seconds (0.16 hours)
Thank you for using Library Compiler.

Thank vyou...

Now, you have your db file ready for when you want to run a synthesis with this new memory
size. At this point, when this is needed, it will be your duty to update the tcl script with the path to
this new IP.

You could, for e.g., run the following command, to copy this new sramHD 16x64 folder in your

IP/Memories folder (in this example, we run it from the LibraryCompiler folder):
[>cp -r ../EMBEDIT/EDALABS/compout/views/sramHD 16x64 ../IPS/MEMORIES/ |

4. PLACE AND ROUTE THE MAPPED DESIGN WITH INNOVUS

In this step, you will learn how to place the synthesized design from DesignCompiler. Here, you
should take a design that you generated in the previous step. The Verilog and SDC files should be
taken from the SDC and RTL/GATE!/ folders.

IMPORTANT DISCLAIMER : from 2020, Cadence released a new syntax for their tools,
called Stylus (or Common UI). This User Interface (UI) replaces what’s called Legacy UI. This
disclaimer is important for two reasons :

16/112

1- If you had experience in the past with Innovus, you did most likely learn legacy UI.
Switching to Common UI will require a bit of gymnastics, but is an investment for the
future, as from now on, only Common UI will be formally supported by Cadence.

2- Ifyou go in a company, any flow developed before 2020 will most likely still use Legacy
UL It is important to be aware that these two UI will continue to co-exist.

In practice :

1- Some commands are discontinued between legacy and common
2- Some new commands have been introduced
3- Syntax has been homogenized between all cadence tools

a. Example of Legacy command :

globalNetConnect VDD -type pgpin -pin VDD -inst *

b. example of Common Ul command :
connect global net VDD -type pgpin -pin VDD -inst *

4- Even in the 2022 version of Innovus , the GUI does not fully support yet Common UI.
Which means... we will not use the GUI commands in this lab ! (it’s a good thing, trust
me)

For the curious you, on moodle you will find a documentation called “Translation of Innovus
Legacy Ul Commands into Common UI (CUI) Commands” and which proposed examples of
how to translate a flow from Legacy to Common UL

4.1.BEFORE STARTING

Innovus, as DesignCompiler, is an EXTREMELY COMPLEX tool. It does take commands
through the terminal, and has, as expected, a long documentation which you would be expected,
as a designer, to dive through.

To cope with that, besides the translation guide, we also provide the following documentation on
moodle :

- The “Innovus Stylus Common UI Text Command Reference” which contains the details of
all the commands used in innovus

- The “Innovus Stylus Common Ul User Guide” which helps you selecting the good
commands, and gives insights on how to use innovus and the Ul

For reference, the user guide is 2000+ pages and the command reference is 5000+ pages. Not
something you would read before sleeping, though it can be extremely helpful during your designs.

4.2.STARTING INNOVUS

To start the Innovus tool, go to the InNOvVUs directory and run the innovus command:

> cd INNOVUS
> innovus -common ui -log LOG

17/112

System 20.18

it Partiton Floorplan Power Place ECQ Clock Route Timing Check

on_ui -log LOG

Xeon(R) Gold 6248R CPU @ 3.00GHz 36608KB)

ur required CPU count.

The -10g option redirects all log files to the LoG directory. Three log files are created: the file
innovus.cmd records all entered commands and the files innovus.log and innovus.logv
contain the respectively compact and verbose session logs.

Two things happen. The terminal becomes a @innovus> command line as it did with dc_shell. A
window called Innovus Implementation System appears. You’ll notice that this window looks a
lot like virtuoso.

@ Make the Innovus console terminal large and visible enough, so you can better monitor what
is happening during the place and route steps.

=EE)

The design display area includes three different design views that you can toggle during a session
(from left to right): the Floorplan view, the Amoeba view, and the Physical view:

e The Floorplan view displays the hierarchical module and block guides, connection flight
lines, and floorplan objects, including block placement, and power/ground nets.

o The Amoeba view displays the outline of the modules and submodules after placement,
showing physical locality of the module.

o The Physical view displays the detailed placements of the module’s blocks, standard cells,
nets, and interconnects.

When the AutoQuery box is enabled, the properties of the object below the cursor are
automatically displayed.

There are a number of binding keys available (hit the key when the Innovus GUI is active). Some
useful binding keys:

18/112

Binding key | Action

b display the list of binding keys

d (de)select or delete objects

f zoom the display to fit the core area

k create a ruler

K remove last ruler displayed

q display the object attribute editor form for the selected object
click the left-button mouse to select an object
shift-click to select or deselect an object

u undo the last command

U redo the last command

z zoom-in 2x

Z zoom-out 2X

Arrows pan the display

CTRL+R refresh the display

4.3.REQUIRED DATA

A number of specific data must be available or defined before using the Innovus tool.

Physical libraries

This includes information on the technology process to be used (routing layers (kind
(metal, poly), name, pitch, and spacing), via/cut cells, core and pad site definitions, legal
placement orientations) and abstract® information for every standard macro cell (type of
site (core, pad, etc.), bounding box size, pins (name, kind, size, and position), blockages
(routing obstructions)).
Physical libraries are provided by a foundry or an IP provider as LEF (Library Exchange
Format) files®. LEF files have the .1ef extension. There could be two LEF files, one for
the technology process and one for the macro cells, or a single one including both aspects.

Timing libraries

This includes the timing information for all macro cells (path delays, setup/hold times,
etc.) and for various PVT (process/voltage/temperature) corners. Timing libraries will be
used in the so-called BC-WC (best case - worst case) timing analysis mode: max/worst-
case (resp., min/best-case) timing libraries are used for verifying setup (resp., hold) time

8 The place and route does not need full geometrical layouts. i.e., you can work with LEF files and not gds as inputs.
® The Innovus help provides a LEF language reference.

19/112

https://en.wikipedia.org/wiki/Library_Exchange_Format
https://en.wikipedia.org/wiki/Library_Exchange_Format

constraints.

These libraries are the same as the ones used by DesignCompiler synthesizer, but here in
the Liberty text (.1ib) format. As opposed to designCompiler, innovus does not need the
lib files to be compiled in db.

Parasitics extraction data

This includes technological data required to extract actual parasitics (RC) values for wires
in the design. There could either be capTables (.capTbl) or directly extracted from the
technology files (qrcTechFile). Generally nodes older than 65 would rely on captables
while more advanced nodes will consider the more precise qrc files.

Gate-level netlist

This is the netlist to be placed and routed defined as a Verilog (.v) file. The file has been
generated during logic synthesis and is placed in the HDL/GATE folder.

Timing constraints

This relates to the constraints used in logic synthesis. A .sdc constraint file has been
generated at that step that can be used, although only timing commands (clock
specification, timing delays) are supported.

The SDC file generated in synthesis defines typical conditions. Place and route allows you
more optimization through buffer insertion and clock tree synthesis, thereby, you could
overconstrain the required timings by, say, 10%, to exploit possible further timing
optimizations during place and route. We propose you one way to do it at the end of
section.

4.4.DEFINING YOUR DESIGN ENVIRONMENT

The first step to do, as for designCompiler, is to define the working environment.

In the cadence environment, this is called the view definition, and it does define what’s called the
MMMC, i.e., Multi Mode Multi Corner.

1.
2.

3.

>gedit top32 mmmc svt mem64 4pbdns.view

Go in the INNOVUS/BIN/ folder and find the “default mmmc.view” file.

You will find also a copy of this file identified with the features of your design : svt,
mem64, 4.5ns top32 mmmc_svt mem64 4pSns.view

Open this file with a text editor

We define this file for you already as it can be a bit complex to setup. Though, you must understand
it as you will need to update it in order to use it.

Disclaimer. As usual, there is no absolute rule on how to deal with scripts in IC design. Here,
we propose to use a MMMC template which have been used in EPFL for circuit design projects.

The approach described in this section is quite hierarchical and allows for some flexibility when
adding or removing corners. Indeed, it becomes easy to add a new standard cell library, a new
corner, or a new constraint file.

20/112

4.4.1. DEFINTION OF THE TECHNOLOGY CORNERS
first check lines 12 to 15

set cap_ tbl(rcbest) /dkits/gf/65nm/65LPe/pdk/65LPe/PEX/QRC/EDA-CAD-65N~-
EX038/Rev9/cmosl0Olpe 6 00 01 00 LB/cmoslOlpe FuncCmin_ 6 00 _01 00 LB effective/qrc
TechFile

set cap_ tbl(rcworst) /dkits/gf/65nm/65LPe/pdk/65LPe/PEX/QRC/EDA-CAD-65N-
EX038/Rev9/cmoslO0lpe 6 00 01 00 LB/cmoslOlpe FuncCmax 6 00 01 00 LB effective/qrc
TechFile

set cap tbl(typical) /dkits/gf/65nm/65LPe/pdk/65LPe/PEX/QRC/EDA-CAD-65N-
EX038/Rev9/cmosl0lpe 6 00 01 00 LB/cmoslOlpe nominal 6 00 01 00 LB effective/qrcT
echFile

set cap_tables {rcworst rcbest typical}

foreach rc $Scap tables {
create rc_corner -name corner_ S${rc} \
-grc_tech Scap tbl($rc) \
-T {25}
}

Here we first define the technology files for the metal levels. Note that relative paths are not
supported by the view files.

Note that we use the qrcTechFile which is a compiled version of the parasitic. This file can also
be used for parasitic extraction in virtuoso.

QUESTION 4-1 : what do these 3 corners correspond to ?

4.4.2. DEFINITION OF THE IPS CORNERS

check lines 30 to 32

set lib std(wc)
/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/s
vt/5.00a/liberty/ccs/cp65npksdst sslp08v125c.1lib

set lib std(bc)
/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/s
vt/5.00a/liberty/ccs/cp65npksdst fflp32vn40c.lib

set lib std(tc)
/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/s
vt/5.00a/liberty/ccs/cp65npksdst ttlp2v25c.lib

Here we define the three corners for the standard cell library with the svt flavour as used during
synthesis. If you intend to use lvt and hvt, you would need to add them there.

Check lines 37 to 39

set lib mem(wc) ../IPS/sramHD 64x64/sslp08v125c/sramHD 64x64.1ib
set lib mem(bc) ../IPS/sramHD 64x64/fflp32vn40c/sramHD 64x64.1ib
set lib mem(tc) ../IPS/sramHD 64x64/ttlp2v25c/sramHD 64x64.1ib

21112

Same as for the standard cells, we define here the lib file corresponding to the sramHD 64x64
memory.

Then, lines 42 to 48 the lib files are being clustered together per corner in a library set.
set libsets {wc bc tc}
foreach libset $libsets {
create library set -name libset ${libset} -timing [list \
$1ib_std($libset) \
$1lib mem($libset)
]

4.4.3. DEFINITION OF THE CONSTRAINTS

Here we import the SDC file containing the design constraints. This is where the clock is being
defined for e.g. The design constraints are being matched to all the libsets defined before. i.e., here
we define a single constraint_mode for all the corners.

Lind 54 to 56
foreach libset $libsets {
create constraint mode -name constraint ${libset} -sdc_files
{../DesignCompiler/SDC/DATE/TIME/postSynthesis svt clk 4.5.sdc}
}

Here you are expected to update the XXXX and DATE/TIME to match with the one of your
design. Also make sure that the SDC file name matches.

4.4.4. DEFINE THE DELAY CORNERS

Then we match the capacitance corners defined before, with the timing conditions from the
standard cell libraries.

Line 58 to71

foreach libset $libsets {

create timing condition -name timing condition S${libset} -
library sets [list libset ${libset}]
}

set cap map {rcworst rcbest typical}

association of the capacitance corners (called cap map) with the

timing conditions and constraints in the delay corner

foreach libset Slibsets rc Scap map {

create delay corner -name delay corner S${libset} \

—early timing condition [list timing condition ${libset}] \
-late timing condition [list timing condition ${libset}] \
-early rc corner corner S${rc} \
-late rc corner corner S$S{rc}

}

4.4.5. DEFINITION OF THE HOLD AND SETUP VIEWS

First we define the name of the variables being used. Note that here, we associate the hold corner
to bc only and the setup corner to wc only.

22/112

Here, one may want to define much more than only 1 corner per check. Various voltages,
temperatures could make sense to be added. In some conditions temperature inversion effects
force the designers to add more than one corner.

Line 77 to 81
set hold 1ib corners {bc}
set setup lib corners {wc}

set setup views {}
set hold views {}

QUESTION 4-2: why is the BC corner (ff, 1.32V, -40C) being used in the hold view ?

QUESTION 4-3 why is the WC corner (ss, 1.08V, -125C) being used in the setup view ?
From line 83 to 102

for each hold lib corner we define an analysis view called
analysis hold $ (corner)
foreach corner $hold 1lib corners {
create analysis view -name analysis hold ${corner} \
-constraint mode constraint S{corner} \
-delay corner delay corner $S{corner}
lappend hold views analysis hold S${corner}

}
for each setup lib corner we define an analysis view called
analysis setup_ $ (corner)
foreach corner S$setup lib corners {
create analysis view -name analysis setup ${corner} \
-constraint mode constraint $S{corner} \
-delay corner delay corner S$S{corner}
lappend setup views analysis setup ${corner}

}

we define the set analysis view and associate setup views to -setup
and hold views to -hold
this approach is extremely scalable and allows for the definition
of a large range of corners used during hold and setup.
for the example given here, it could seem like a bit of overdoing
though.
set analysis view -setup $setup views \

-hold Shold views

We now define the views to be considered during hold and setup checks.
4.5.IMPORT THE MMMC AND INITIALIZE THE DESIGN ENVIRONMENT

4.5.1. IMPORT THE MMMC

First we want to import the MMMC file which we just read. Let’s import it and check the

corresponding logs.
Innovus > read_mmmc BIN/top32 mmmc_svt_memé64_4p5ns.view
Note that innovus does read the commands you import starting them with a @

#@ Begin verbose source (pre):

@file 1: # Version:1.0 MMMC View Definition File

@file 2: # Do Not Remove Above Line

@file 3: #this script has been written and prepared by Alexandre Levisse in oct2023 -
alexandre.levisse@epfl.ch

@file 4: #this script is designed as an example for the labs on EDA for innovus.

@file 5: #feel free to use it as a basis for your designs in EPFL

23/112

@file 6:

@file 7: # mmmc files do not accept relative paths, thereby, in the rest of the file, the
paths are using EPFL's edadk file organization. feel free to update them with your environment.
@file 8: # definition of the technology corners

@file 9: # here the grcTechFile is being used. One could use a capTable in 65nm if available
- not available for this technology

@file 10: # definition of the different metal corners through variables

@file 11: # 3 corners are being selected rcbest, rcworst and typical.

}
@file 97:
@file 98: # we define the set_analysis_view and associate setup_views to -setup and hold_views
to -hold
@file 99: # this approach is extremely scalable and allows for the definition of a large range
of corners used during hold and setup.
@file 100: # for the example given here, it could seem like a bit of overdoing though.
@file 101: set analysis view -setup S$setup_views \
-hold Shold_views
#@ End verbose source: BIN/top32 mmmc_svt _mem64 4pSns.view

Until this point innovus was simply reading and printing the file

Reading libset_wc timing library
'/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp
65npksdst_sslp08v125c.1lib’ .

**WARN: (TECHLIB-302): No function defined for cell 'SEN_TIEDIN 1'. The cell will only
be used for analysis. (File
/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6
Snpksdst_sslp08v125c.1lib)

**WARN: (TECHLIB-302): No function defined for cell 'SEN_DCAP32'. The cell will only
be used for analysis. (File
/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6
Snpksdst_sslp08v125c.1lib)

**WARN: (TECHLIB-302): No function defined for cell 'SEN_DCAPl16'. The cell will only
be used for analysis. (File
/dkits/synopsys/DesignWare logic_libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6
5npksdst_sslp08v125c.1lib)

Here innovus complains about some cells not having a defined 1logic
functionality. Think about what TIE cells and DCAP cells are. Does that
make sense ?

**WARN: (TECHLIB-1435): For dc_current table defined in cell 'SEN_FDNRBSBQ 2' and pin
'Q', the current values are not monotonically decreasing in the range '-0.00339' to '-
0.003388" for 'input_voltage' '0.702000". (File

/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6
5Snpksdst_sslp08v125c.1lib, Line 4281393)

**WARN: (TECHLIB-1435): For dc_current table defined in cell 'SEN_FDNRBSBQ 2' and pin
'Q', the current values are not monotonically decreasing in the range '-0.005477' to '-
0.005426" for 'input_voltage' '0.756000". (File

/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6
S5npksdst_sslp08v125c.1lib, Line 4281393)

**WARN: (TECHLIB-1435): For dc_current table defined in cell 'SEN_FDNRBSBQ 2' and pin
'Q', the current values are not monotonically decreasing in the range '-0.007974' to '-
0.007907" for 'input_voltage' '0.810000". (File

/dkits/synopsys/DesignWare logic_ libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6
5npksdst_sslp08v125c.lib, Line 4281393)

**WARN: (TECHLIB-1435): For dc_current table defined in cell 'SEN_EO3_6' and pin 'X',

the current values are not monotonically decreasing in the range '-0.231' to '0.1281' for
'output_voltage' '0.486000". (File

/dkits/synopsys/DesignWare logic_ libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6
5npksdst_sslp08v125c.lib, Line 4022900)

**WARN: (TECHLIB-1435): For dc_current table defined in cell 'SEN_EO3_6' and pin 'X',
the current values are not monotonically decreasing in the range '-0.2372' to '0.1214' for
'output_voltage' '0.540000". (File

/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6
Snpksdst_sslp08v125c.1lib, Line 4022900)

Message <TECHLIB-1435> has exceeded the message display limit of '20'. Use 'set message -
no_limit -id list_of msgIDs' to reset the message limit.

Some more complains about some device definition in the 1lib file. At this
point you can ignore these. Though remember that in real 1life, you must

24/112

make sure that you understand what all the warnings mean. Because otherwise
you could be in a situation where your results are incorrect because of
some wrong assumption taken by the tool

Read 1128 cells in library 'cp65npksdst sslp08v125c’

Reading libset _wc timing library
'/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/IPS/sramHD_ 64x64/sslp
08v125c/sramHD_ 64x64.1ib" .

Read 1 cells in library 'sramHD 64x64 1ib'

Here Innovus acknowledges the read of the stdcells and memories
defined in the mmmc file for the libset_wc case.
Then it does the same for libset_bc

Reading libset bc timing library
'/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp

65npksdst fflp32vnd40c.lib' .

**WARN: (TECHLIB-302): No function defined for cell 'SEN TIEDIN 1'. The cell will only
be used for analysis. (File
/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cpb

Snpksdst fflp32vnd40c.1lib)

**WARN: (TECHLIB-302): No function defined for cell 'SEN_DCAP8'. The cell will only be
used for analysis. (File
/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cpb

Snpksdst fflp32vnd40c.1lib)

**WARN: (TECHLIB-302): No function defined for cell 'SEN DCAP64'. The cell will only
be used for analysis. (File
/dkits/synopsys/DesignWare logic_ libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6

Snpksdst_ fflp32vnd40c.1lib)

**WARN: (TECHLIB-302): No function defined for cell 'SEN_DCAP4'. The cell will only be
used for analysis. (File
/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6

Snpksdst_ fflp32vnd40c.1lib)

**WARN: (TECHLIB-302): No function defined for cell 'SEN_DCAP32'. The cell will only
be used for analysis. (File
/dkits/synopsys/DesignWare logic_ libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6

Snpksdst_ fflp32vnd40c.1lib)

**WARN: (TECHLIB-302): No function defined for cell 'SEN_DCAP16'. The cell will only
be used for analysis. (File
/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt/5.00a/liberty/ccs/cp6b

Snpksdst fflp32vnd40c.1lib)

Read 1128 cells in library 'cp65npksdst fflp32vn40c'

Reading libset bc timing library
'/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/IPS/sramHD_ 64x64/fflp

32vn40c/sramHD_ 64x64.1ib" .

Read 1 cells in library 'sramHD 64x64 1ib'

timing initialized

QUESTION 4-4: Why do TIE and DCAP cells not have logic behaviour ? what are these cells doing ?

4.5.2. IMPORT THE PHYSICAL FOOTPRINT OF THE IPS BEING USED
Before starting the design we need to tell innovus the physical shape of all the cells.
In other words :

- The physical footprint of the standard cells and memory : area and shape
- Where are the pins located : inputs, outputs, vdd, grounds (cf what you did in the layout)
- How large are the pins

Though, for this, we do not use the GDS file, but a simplified version of it, inside a file called
LEF.

@ One of the reasons for using a LEF file instead of the GDS is that it allows to only show the
interface pins. This is of value for companies which do not want to share the details of their
design to their users.

25/112

@ The second reason is that lef files are much lighter and more efficient to handle.

Note that besides the lef file for cp65nkpstdt you also import a file with a reference to m06f0f1.
This is called the tech LEF. It does contain a simplified version of the DRC for a given metal stack
(here we use m06f0f1), so that innovus knows how to connect wires.

@ For some reason, the lef file of the sramHD is called plef for physical LEF, but this does
not have any impact in your design.

Innovus > read_physical -lef
{../IPS/STDCELLS/hd/base/svt/latest/lef/5.6/cp65npksdst m06£f0£fl.lef
../IPS/STDCELLS/hd/base/svt/latest/lef/5.6/cp65npksdst.lef
../IPS/MEMORIES/sramHD_64x64/sramHD_64x64.plef}

Loading LEF file ../IPS/hd/base/svt/latest/lef/5.6/cp65npksdst mO6£f0fl.lef
**WARN: (IMPLF-122): The direction of the layer 'M2' is the same as
the previous routing layer. Make sure this is on purpose or correct

the direction of the layer. In most cases, the routing layers

alternate in direction between HORIZONTAL and VERTICAL.

Note how innovus reads about the routing directions.

Loading LEF file ../IPS/hd/base/svt/latest/lef/5.6/cp65npksdst.lef
Set DBUPerIGU to M2 pitch 400.

Loading LEF file ../IPS/sramHD_64x64/sramHD 64x64.plef

WARNING (LEFPARS-2007): NAMESCASESENSITIVE statement i1s obsolete in version 5.6 and
later.

The LEF parser will ignore this statement.

To avoid this warning in the future, remove this statement from the LEF file with
version 5.6 or later. See file ../IPS/sramHD 64x64/sramHD 64x64.plef at line 39.

This warning comes from the memory compiler and can be ignored

**WARN: (IMPLF-200) : Pin 'X' in macro 'SEN_TIEDIN_1' has no ANTENNAGATEAREA
value defined. The library data is incomplete and some process antenna rules will
not be checked correctly.

Type 'man IMPLF-200' for more detail.

This warning means that in the standard cell library, the cell sex_TiEpIN_ 1 does not have some
antenna protection on one of its outputs. This could lead to errors in DRC later on. At this point
there is nothing we can do about it as this was designed by the IP provider, but it’s a good
example of something to be aware of.

viaInitial starts at Tue Nov 7 11:54:22 2023
viaInitial ends at Tue Nov 7 11:54:22 2023

Check design process and node:
Both design process and tech node are not set.

4.5.3. READ THE POST SYNTHESIS NETLIST

Innovus> read netlist -top top_32b
../HDL/GATE/XXXXX/postSynthesis_svt_clk_4.5.v

Update the XX XX with the path to your netlist
#% Begin Load netlist data ... (date=11/07 13:21:19, mem=646.5M)

26/112

*** Begin netlist parsing (mem=838.2M) *x*x*

Created 1129 new cells from 4 timing libraries.

Reading netlist

Backslashed names will retain Dbackslash and a trailing Dblank
character.

Reading verilog netlist
'../HDL/GATE/11072023/10h50m4ls/postSynthesis svt clk 4.5.v'

**% Memory Usage v#1l (Current mem = 838.184M, initial mem = 292.316M)
* x %

*** End netlist parsing (cpu=0:00:00.1, real=0:00:00.0, mem=838.2M)
* % %

#% End Load netlist data C.. (date=11/07 13:21:19, total
cpu=0:00:00.1, real=0:00:00.0, peak res=679.2M, current mem=679.2M)
Set top cell to top 32b.

Hooked 2258 DB cells to tlib cells.

Starting recursive module instantiation check.

No recursion found.

Building hierarchical netlist for Cell top 32b

*** Netlist 1s unique.

** info: there are 2317 modules.

** info: there are 3675 stdCell insts.

** info: there are 3 macros.

*** Memory Usage v#1l (Current mem = 907.109M, initial mem = 292.316M)
* Kk %

0

4.5.4. INITIALIZE THE DESIGN ENVIRONMENT

Let’s initialize some variables being useful later on in the design

@innovus 6> set_db init_ground_nets VSS
1 VvSS
@innovus 7> set_db init power_ nets VDD
1 VDD

Here we defined the names of the power nets being used in the design

@innovus 8> set_db timing_analysis_type ocv
1 ocv
@innovus 9> set_db timing_analysis_cppr both
1 both

Here we define the type of timing analysis being performed. OCV for on chip variations,
and remove pessimism in the clock tree path (CPPR — Clock Path Pessimism Removal) in
both hold and setup. This simplifies the clock tree design for this design which is simple.

@innovus 10> set_db design_process_node 65
Process: 65 (User Set)
#4 Node: (not set)

Check design process and node:
Design tech node is not set.

27112

Applying the recommended capacitance filtering threshold values for
65nm process node: total ¢ th=0, relative c th=1 and
coupling c th=0.1.

These values will be used by all post-route extraction engines,
including TQuantus, IQuantus and Quantus QRC extraction.

Capacitance filtering mode (extract rc cap filter mode option of
the set db) 1is 'relative and coupling' for all engines.

The accuracy mode for post route extract rc effort level low
extraction will be set to 'high'.

Default value for EffortLevel (extract rc effort level option of
the set db) in post route extraction mode will be 'medium' if Quantus
QRC technology file is specified else 'low'.

1 65

Defining a process sets several parameters in innovus, and aligns the flow with the
constraints associated with a 65Snm technology process. It does select different types of RC
extraction for coupling, threshold on R and C etc.

@innovus 11> set_db design_top_routing_layer M5

1 M5

@innovus 12> set_db design_bottom_routing_ layer M2
1 M2

Here we define the Top and Bottom routing layers. In this flow, the tool will be allowed to
route from M2 to MS.

Then, we initialize the design

Innovus > init_design

Set Default Net Delay as 1000 ps.
Set Default Net Load as 0.5 pF.
Set Default Input Pin Transition as 0.1 ps.

**WARN: (IMPFP-3961): The techSite 'VLC_SITE sramHD 64x64' has no related
standard cells in LEF/OA library. Cannot make calculations for this site type unless
standard cell models of this type exist in the LEF/OA library. If the SITE is not
used by the library you can ignore this warning or remove the SITE definition from
the LEF/OA to avoid this message.

Type 'man IMPFP-3961' for more detail.

This warning comes from the lef of the memory. You can ignore it at this point

Extraction setup Started

Initializing multi-corner RC extraction with 2 active RC Corners

Captable file(s) not specified in multi-corner setup. PreRoute extraction will use
technology file. For post route extraction, default value for effort level would be
'medium' and effort level 'low' would not be allowed.

Generating auto layer map file.

Importing multi-corner technology file(s) for preRoute extraction...
/dkits/gf/65nm/65LPe/pdk/65LPe/PEX/QRC/EDA-CAD-65N-

EX038/Rev9/cmoslOlpe 6 00 01 00 LB/cmoslOlpe FuncCmax 6 00 01 00 LB effective/qrc
TechFile

Generating auto layer map file.
/dkits/gf/65nm/65LPe/pdk/65LPe/PEX/QRC/EDA-CAD-65N-

EX038/Rev9/cmoslOlpe 6 00 01 00 LB/cmoslOlpe FuncCmin 6 00 01 00 LB effective/qrc
TechFile

Generating auto layer map file.

Completed (cpu: 0:00:03.5 real: 0:00:04.0)

Set Shrink Factor to 1.00000

28/112

From the technology corners defined and the RC parasitic files (qrcTechFile) selected, the
tool summarizes all the parameters.

Summary of Active RC-Corners

Analysis View: analysis setup wc

RC-Corner Name : corner_rcworst
RC-Corner Index : 0
RC-Corner Temperature : 25 Celsius

RC-Corner Cap Table .

RC-Corner PreRoute Res Factor 1

RC-Corner PreRoute Cap Factor 1

RC-Corner PostRoute Res Factor 1 {1 1 1}

RC-Corner PostRoute Cap Factor 1 {1 1 1}

RC-Corner PostRoute XCap Factor 1 {1 1 1}

RC-Corner PreRoute Clock Res Factor 1 [Derived from postRoute res
(effortLevel low)]

RC-Corner PreRoute Clock Cap Factor : 1 [Derived from postRoute cap
(effortLevel low)]

RC-Corner PostRoute Clock Cap Factor 1 {1 1 1} [Derived from
postRoute cap (effortLevel low)]

RC-Corner PostRoute Clock Res Factor 1 {1 1 1} [Derived from
postRoute res (effortLevel low)]

RC-Corner Technology file: '/dkits/gf/65nm/65LPe/pdk/65LPe/PEX/QRC/EDA-CAD-
65N~

EX038/Rev9/cmoslOlpe 6 00 01 00 LB/cmoslOlpe FuncCmax 6 00 01 00 LB effective/qrc
TechFile'

Analysis View: analysis _hold bc
RC-Corner Name : corner rcbest
RC-Corner Index 1
RC-Corner Temperature : 25 Celsius
RC-Corner Cap Table HE
RC-Corner PreRoute Res Factor
RC-Corner PreRoute Cap Factor
RC-Corner PostRoute Res Factor
RC-Corner PostRoute Cap Factor
RC-Corner PostRoute XCap Factor
RC-Corner PreRoute Clock Res Factor

(effortLevel low)]

RC-Corner PreRoute Clock Cap Factor : 1 [Derived from postRoute cap
(effortLevel low)]

RC-Corner PostRoute Clock Cap Factor 1 {1 1 1} [Derived from
postRoute cap (effortLevel low)]

RC-Corner PostRoute Clock Res Factor 1 {1 1 1} [Derived from
postRoute res (effortLevel low)]

RC-Corner Technology file: '/dkits/gf/65nm/65LPe/pdk/65LPe/PEX/QRC/EDA-CAD-
65N-
EX038/Rev9/cmoslOlpe_6_00_01 00 _LB/cmoslOlpe FuncCmin_6_00_01_00_LB_effective/qrc
TechFile'

Updating RC grid for preRoute extraction

Initializing multi-corner resistance tables

Default value for post route extraction mode's extract rc_effort level
(extract _rc effort level option of set db) changed to 'medium'.

*Info: initialize multi-corner CTS.

Reading timing constraints file

'/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/DesignCompi

ler/SDC/11072023/10h50md41ls/postSynthesis_svt_clk_4.5.sdc' ...

Current (total cpu=0:14:12, real=1:29:00, peak res=1204.3M, current mem=1078.5M)
**WARN: (TCLCMD-1461): Skipped unsupported command: set units (File
/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/DesignCompil
er/SDC/11072023/10h50m4ls/postSynthesis_svt_clk _4.5.sdc, Line 8).

{11 1}
{11 1}
{1 1 1}
[Derived from postRoute res

el el

INFO (CTE) : Reading of timing constraints file
/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/DesignCompil
er/SDC/11072023/10h50m4ls/postSynthesis_svt_clk _4.5.sdc completed, with 1 WARNING

WARNING (CTE-25) : Line: 10 of File
/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/DesignCompil
er/SDC/11072023/10h50m4ls/postSynthesis svt clk 4.5.sdc : Skipped unsupported

command: set max area

29/112

WARNING (CTE-25) : Line: 9 of File
/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/DesignCompil
er/SDC/11072023/10h50m41ls/postSynthesis svt clk 4.5.sdc : Skipped unsupported
command: set operating conditions

Ending "Constraint file reading stats" (total cpu=0:00:00.1, real=0:00:00.0, peak
res=1095.6M, current mem=1095.6M)

Current (total cpu=0:14:12, real=1:29:00, peak res=1204.3M, current mem=1095.6M)
Reading timing constraints file
'/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/DesignCompi
ler/SDC/11072023/10h50mé41ls/postSynthesis_svt_clk_4.5.sdc’

Current (total cpu=0:14:12, real=1:29:00, peak res=1204.3M, current mem=1095.6M)
**WARN: (TCLCMD-1461): Skipped unsupported command: set units (File
/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/DesignCompil
er/SDC/11072023/10h50m4ls/postSynthesis svt clk 4.5.sdc, Line 8).

INFO (CTE) : Reading of timing constraints file
/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/DesignCompil
er/SDC/11072023/10h50m4ls/postSynthesis svt clk 4.5.sdc completed, with 1 WARNING

WARNING (CTE-25) : Line: 10 of File
/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/DesignCompil
er/SDC/11072023/10h50m41ls/postSynthesis svt clk 4.5.sdc : Skipped unsupported

command: set max area

WARNING (CTE-25) : Line: 9 of File
/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 2024/DesignCompil
er/SDC/11072023/10h50m41ls/postSynthesis svt clk 4.5.sdc : Skipped unsupported

command: set operating conditions

Ending "Constraint file reading stats" (total cpu=0:00:00.0, real=0:00:00.0, peak
res=1095.9M, current mem=1095.9M)
Current (total cpu=0:14:12, real=1:29:00, peak res=1204.3M, current mem=1095.9M)

Here the tool lists all the cells available for the design to come

Total number of combinational cells: 954

Total number of sequential cells: 174

Total number of tristate cells: O

Total number of level shifter cells: 0

Total number of power gating cells: O

Total number of isolation cells: O

Total number of power switch cells: 0

Total number of pulse generator cells: O

Total number of always on buffers: 0

Total number of retention cells: 0

List of usable buffers: SEN BUF 1 SEN BUF 10 SEN BUF 12 SEN BUF 16 SEN BUF 2
SEN_BUF_1P5 SEN BUF 20 SEN BUF 24 SEN BUF 3 SEN BUF 4 SEN BUF 6 SEN BUF_8
SEN_BUF AS 1 SEN BUF AS 0P5 SEN BUF AS 10 SEN BUF AS 12 SEN BUF AS 16 SEN BUF AS 2
SEN_BUF AS 1P5 SEN BUF AS 3 SEN BUF AS 4 SEN BUF AS 5 SEN BUF D 1 SEN BUF AS 6
SEN BUF_AS 8 SEN BUF D 12 SEN BUF D 16 SEN BUF S 1 SEN BUF D 2 SEN BUF D 3
SEN BUF D 4 SEN BUF D 6 SEN BUF D 8 SEN BUF S 12 SEN BUF S 16 SEN BUF S 2
SEN BUF S 3 SEN BUF S 4 SEN BUF S 6 SEN BUF_S 8

Total number of usable buffers: 40

List of unusable buffers:

Total number of unusable buffers: 0

List of usable inverters: SEN INV_0P5 SEN INV_0P65 SEN INV_ 1 SEN INV 0P8 SEN INV 10
SEN_INV_ 12 SEN INV 16 SEN INV_1P25 SEN INV 2 SEN INV_1P5 SEN INV 20 SEN INV_ 24
SEN_INV_3 SEN_INV_2P5 SEN_INV_32 SEN INV_4 SEN_INV_ 5 SEN INV_6 SEN _INV_8
SEN_INV_AS 1 SEN_INV_AS OP5 SEN INV_AS 10 SEN_INV_AS 12 SEN INV_AS 16 SEN INV_AS 2
SEN_INV_AS 1P5 SEN INV_AS 3 SEN INV AS 4 SEN INV_AS 5 SEN INV_AS 6 SEN INV_AS 8
SEN_INV_S 1 SEN INV_S OP5 SEN INV S 12 SEN INV S 16 SEN INV S 2 SEN INV_S 1P5
SEN_INV_S 3 SEN INV_S 32 SEN INV_S 4 SEN INV_S 6 SEN INV_S 8

Total number of usable inverters: 42

List of unusable inverters:

Total number of unusable inverters: 0

List of identified usable delay <cells: SEN DEL L4 1 SEN DEL L4 2 SEN_DEL L4 4
SEN DEL L4 8 SEN DEL L6 1 SEN DEL L6 2 SEN DEL L6 4 SEN DEL L6 8

30/112

Total number of identified usable delay cells: 8
List of identified unusable delay cells:
Total number of identified unusable delay cells: 0

4.5.5. INITIALIZE THE METRICS EXTRACTION
In the latest versions of innovus, it does embed some feature called metrics.

It does enable you do save the state of your design and some metrics in a html file which can be
opened at the end of the flow.

Let’s enable the metrics feature so that we can check the reports later.
innovus > enable metrics -on

@ What this function does is storing all the metrics of the design (area, slack, reports etc.) at
a certain point in time. You will see that we will use some snapshot-related commands
later on.

@ This relies on 2 commands :
>push_ snapshot stack
>pop_ snapshot stack

Everything happening between these two commands will be tracked and saved in the final
html file.
4.5.6. AUTOMATE THE FLOW

As for all the other tools you used until now, this step can be automatically done through a script
written in the tcl language.

1. From the terminal, using the gedit tool, open the following files and understand their

content :
INNOVUS/BIN/init.tcl
INNOVUS/BIN/top32 mmmc_ svt mem64 4pSns.view

@ These two files contain all the commands you did write before. From a new instance of
innovus, you can reach back the point where we are here, by running the following
commands.

@ Note that init.tcl imports the .view file through the read mmmc command, so sourcing the
init.tcl file will also setup the mmmec.

For innovus, we propose a different way to write a tcl script. If you take a look at the BIN folder,
you will notice several files, and a file called “fullflow.tcl” which contains source commands to
all the other files. This way allows you to handle longer scripts in a more comfortable way. And
ease the process of progressively go through the flow. Though, when making different versions of
the same flow, it does then require the designer to make an organizational effort.

4.5.7. SAVE AND RESTORE THE DESIGN STATE

As opposed to dc_shell, where you noticed that restoring the ddc file was not that straightforward,
innovus does provide a complete save/restore design function which allows you to fully save and
restore the actual state of the tool at any point.

As the place and route is a fairly longer process than logic synthesis, being able to save and restore
the tool state can actually be useful.

31/112

1. To save the state of a design, run the following command :
Innovus> write_db DB/tutorial/top_32b_ INIT

#% Begin save design ... (date=11/08 11:26:36, mem=1133.9M)

% Begin Save ccopt configuration Ce (date=11/08 11:26:36,
mem=1137.0M)

% End Save <ccopt configuration ... (date=11/08 11:26:36, total
cpu=0:00:00.0, real=0:00:00.0, peak res=1137.8M, current
mem=1137.8M)

% Begin Save netlist data ... (date=11/08 11:26:36, mem=1137.9M)

Writing Binary DB to DB/tutorial/top 32b INIT/top 32b.v.bin in
single-threaded mode...

% End Save netlist data . (date=11/08 11:26:36, total
cpu=0:00:00.0, real=0:00:00.0, peak res=1138.0M, current

mem=1138.0M)
Saving symbol-table file

Saving congestion map file
DB/tutorial/top 32b INIT/top 32b.route.congmap.gz

% Begin Save AAE data ... (date=11/08 11:26:37, mem=1138.6M)

Saving AAE Data

% End Save AAE data ... (date=11/08 11:26:37, total cpu=0:00:00.0,

real=0:00:00.0, peak res=1138.6M, current mem=1138.6M)

Saving preference file DB/tutorial/top 32b INIT/gui.pref.tcl
Saving mode setting

Saving root attributes to be loaded post write db

Saving global file

Saving root attributes to be loaded previous write db .

% Begin Save floorplan data ... (date=11/08 11:26:38, mem=1142.9M)

Saving floorplan file
% End Save floorplan data . (date=11/08 11:26:38, total
cpu=0:00:00.0, real=0:00:00.0, peak res=1143.4M, current

mem=1143.4M)
Saving Drc markers
No Drc file written since there is no markers found.
% Begin Save placement data ... (date=11/08 11:26:38, mem=1143.5M)
* Saving stdCellPlacement binary (version# 2)
Save Adaptive View Pruning View Names to Binary file

% End Save placement data e (date=11/08 11:26:38, total
cpu=0:00:00.0, real=0:00:01.0, peak res=1143.7M, current
mem=1143.7M)

% Begin Save routing data ... (date=11/08 11:26:39, mem=1143.7M)

Saving route file

*** Completed saveRoute (cpu=0:00:00.0 real=0:00:00.0 mem=1283.5M)
* % %

% End Save routing data . (date=11/08 11:26:39, total
cpu=0:00:00.0, real=0:00:00.0, peak res=1147.9M, current
mem=1147.9M)

Saving property file DB/tutorial/top 32b INIT/top 32b.prop

xxx Completed saveProperty (cpu=0:00:00.0 real=0:00:00.0
mem=1286.5M) ***

Saving preRoute extracted patterns in file
'"DB/top 32b INIT/top 32b.techData.gz'

Saving preRoute extraction data in directory
'"DB/tutorial/top 32b INIT/extraction/' .

% Begin Save power constraints data ... (date=11/08 11:26:39,

mem=1149.1M)

32/112

% End Save power constraints data ... (date=11/08 11:26:39, total
cpu=0:00:00.0, real=0:00:00.0, peak res=1149.2M, current
mem=1149.2M)

Generated self-contained design top 32b INIT

#% End save design ... (date=11/08 11:26:40, total cpu=0:00:01.5,
real=0:00:04.0, peak res=1153.6M, current mem=1153.6M)
*** Message Summary: 0 warning(s), 0 error(s)

Essentially here the tool is saving all the details of the design.

In the same way, from a new version of innovus (if you exit it and start it again), you can restore
a db.

1. To restore the init state you just saved, from a new innovus instance
innovus > read db DB/tutorial/top 32b INIT.db

Note that here, innovus will go through the configuration of the mmmoc file again, as this step is
kind of mandatory. But restoring more advanced part of the design will be faster.

4.6.FLOORPLANNING THE DESIGN

The logic cells in the gate-level netlist obtained from synthesis will be placed in rows in the so-
called core area. All physical cells in the standard cell library have the same height and different
widths. They all have a power rail at their top and a ground rail at their bottom. Physical cells are
abutted in a row so their power and ground rails connect between cells. The rows in the core area
are further flipped so power and ground rails of neighboring rows coincide.

The floorplan defines the actual form, or aspect ratio, of the core area, the global and detailed
routing grids, the rows to host the core cells and the I/O pad cells (if required), the area for power
rings, the (pre)placement of blocks/macros, and the location of the corner cells (if required). After
the design import, an initial default floorplan is displayed in the display area.

4.6.1. DEFINE THE FLOORPLAN

Run the following command :

@innovus 7> create_floorplan -site CP65_DST -core_size 980 110
20 20 20 20

**WARN: (IMPFP-3961): The techSite 'VLC _SITE sramHD 64x64' has no
related standard cells in LEF/OA library. Cannot make calculations
for this site type unless standard cell models of this type exist in
the LEF/OA library. If the SITE is not used by the library you can
ignore this warning or remove the SITE definition from the LEF/OA to
avoid this message.

Type 'man IMPFP-3961' for more detail.

You can ignore this warning which comes from the memory macro which also has a SITE being
defined. Though here we use the site reference of the standard cell library (see after).

33/112

**WARN: (IMPFP-325): Floorplan of the design is resized. All current
create floorplan objects are automatically derived based on specified
new create floorplan. This may change blocks, fixed standard cells,
existing routes and blockages.

Here we purposely create a suboptimal floorplan which you will need to update and optimize later
on.

The create floorplan command has many parameters. Here we use the -site CP65 DST which
comes from the standard cell library. Line 11 of the lef file (cp65npksdst.lef) you will find the
following syntax. This defines the size of the rows of standard cells. The 1.8um corresponds to
the height of the standard cell track. Using a different standard cell height (for e.g. a HS cell) will
require the -site to be updated accordingly.

Placement site definition for this library.
SITE CP65 DST

SYMMETRY Y ;

CLASS core ;

SIZE 0.2 BY 1.8 ;
END CP65 DST

The lef can be found in
IPS/STDCELLS/hd/base/svt/5.00a/lef/5.6/cp65npksdst.lef

The -core size command is described in the innovus TCR document in the description of the
create_floorplan command page 8§14.

It is documented as follows :

-core size {w h left bottom right top}

Specifies the core size and the spacing, in micrometers, between the
core edge, which is the margin between the outside edge of the core
(head) box.

® w: Specifies the core box's width value.

¢ h: Specifies the core box's height wvalue.

e Jleft: Specifies the margin from the outside edge of the core
box to the left.

e bottom: Specifies the margin from the outside edge of the core
box to the bottom.

e right: Specifies the margin from the outside edge of the core
box to the right.

¢ top: Specifies the margin from the outside edge of the core box
to the top.
The following command creates floorplan by specifying a core size of
1000 x 1000, and the spacing between core edge to each die edge of
300.

Then, some examples are given.

In other words, here, we created a 980um wide by 110um tall box, with 20um space on all sides.

34/112

The corresponding floorplan can be observed in the design display area.

(g
Click on the floorplan view . to print the design units. The floorplan is now visible

s

Note the three memory macros on the right. And on the left, the two largest blocks (I MULT and
I ADDSUB).

4.6.2. REPORT THE FLOORPLAN UTILIZATION

At this point you can already report the projected density of your design. To make sure that your

floorplan makes sense from a design standpoint.

innovus 9> check_floorplan -report_density
Checking routing tracks.....

Checking other grids.....

Checking FINFET Grid is on Manufacture Grid.....
Checking core/die box is on Grid.....

Checking snap rule

Checking Row is on grid......

Checking AreaIO row.....

Checking row out of die

Checking routing blockage.....

Checking components.....

Checking IO Pads out of die...

Checking constraints (guide/region/fence).....
Checking groups.....

Checking Preroutes.....
No. of regular pre-routes not on tracks : 0

Reporting Utilizations.....
Here the core utilization is projected to be 54% which is low enough to make sure the design

can be routed. There is no absolute rule here, as everything depends on your design and
floorplan, though consider that you should generally not go above 80% at this point.

Core utilization = 54.,142904
Effective Utilizations
**ERROR: (IMPSP-365): Design has inst (s) with SITE

'"VLC _SITE sramHD 64x64', but the floorplan has no rows defined for
this site. Any locations found for such insts will be illegal; create
rows for this site to avoid this.

Type 'man IMPSP-365'" for more detail.

This error can be ignored at this point. You can use the “man IMPSP-365” command to read
about it (we do it after in this code snippet).

Average module density = 0.542.
Density for the design = 0.542.
= (stdcell area 35621 sites (12824 um™2) + block area 126507
sites (45542 um”2)) / alloc_area 298900 sites (107604 um”"2).
Pin Density = 0.04940.

35/112

= total # of pins 14766 / total area 298900.

*** Summary of all messages that are not suppressed in this session:

Severity ID Count Summary
ERROR IMPSP-365 1 Design has inst(s) with SITE '%s',
but t...

*** Message Summary: 0 warning(s), 1 error(s)

0
@innovus 15> man IMPSP-365
IMPSP-365(20.14) IMPSP-365(20.14)
NAME
IMPSP-365
SUMMARY
Design has inst (s) with SITE '$s', but the floorplan has no rows

defined for this site. Any locations found for such insts will be ille-
gal; create rows for this site to avoid this.

DESCRIPTION
This warning will be reported by commands such as check floorplan and
place design
when the floorplan does not contain any rows for the specified site.
Each
standard cell in the LEF should have a SITE defined for it. Instances
of this
cell can only be placed in rows defined for this site.

Run the following command(replace RAM site with your specific site
name) to report the instances which use this site:

dbGet [dbGet -p3 top.insts.cell.site.name RAM site].name
When you create the initial floorplan, it should automatically create

rows for
the standard cells defined in the netlist. You can add additional rows

using

Floorplan - Row - Create Core Row or using the create row text command.
If this

warning is occurring on standard cells you must define rows for them or
else

they will not be placed.

If this problem occurs for hard macros such as memories you can ignore
it.

Rows are not required by the hard macros. Remove the SITE definition in

the LEF for the
hard macros to avoid this message for them.

If this occurs for IO pads you can also ignore it. Rows for IO pads are
optional. You can create IO rows using Floorplan - Row - Create I/O Row
or

using the create io_row text command.

IMPSP-365(20.14)

Note that here the problem occurs for hard macros. So you can ignore the issues related to
VLC SITE sramHD...

This is one good example of the designer role in the process of filtering useful errors and
warnings.

Save the design state as DB/tutorial/top_32b_ fplan.

36/112

4.7.PLACING 1O PINS

One important part of the floorplan, is the placement of input and output pins. Here in this
proposed floorplan, we will place all the IOs on the top.

The IO file could be generated by hand, however, in this case, we will generate it using the GUI
for simplicity reasons.

1. Inthe Innovus main menu, select Edit > Pin Editor.... IET Partition Floorplan _Power _Place

It can happen that a “overlay’ window superposes with your

innovus window, on the top-left corner. You can catch it and | 55°° (Shiftrl)
close it, or simply slightly move the window to bring the | Sopy h
“edit” menu outside of the top left corner. @ Object Attributes @

Move/Resize/Reshape (Shift+R)

2. In the Pin Editor window: Edit Pin Group...

Edit Met Group...

e Start by selecting all the pins from the pin group panel Edit Pin Gulde..
on the left. Use shift-click to select them all. Bus Guide ,
e Then select spread and center in the location panel P e

e Then in the pin attributes select TOP as side/edge

e Select M2 for the layer of the pins

e Input 0.5 for depth and 0.1 for width — this is the size
of the pin

e Make sure that the position is absolute based

e Select clockwise

e Put a 5.0 spacing and make sure the unit is in layer pitch — this represents the spacing
between the pins — here 5*200ns for a lum min pitch on M2.

3. Click apply and check the results in the design window.

Wire 4

Create Non Default Rule...

37/112

L] Pin Editor — edasrvl e e Bl Ed

L
Pin Attribute

Pin Name(s):ata_out_mepn2[62] pin_data_out_mem2[63] rd_mem_start rst wr_mem_start

Partition:top_32b _ Clone Side/Edge: Top

Layer: M1(1) | M2(2)| M3(3) | M4(4) | M5(5) EA(6) LB(7) PRIORITIZE..
LayerV: ailadsk vz vizEy viaay L isis) L EAle) eI\ PRIGRITIZE ..

¥ Show Partition Edge Number LayerH:niigan b mvizey bvzE)viam) | sis)) EAe) LBF)\ FRIGRITIZE. .

__ Edge number based on master Depth: 0.5 Width: 0.1
Location

' Update attribute

— Assign locat]

L & Spread
3 Spread Type From Center g 2
3 w Pattern
Pattern Name(, ElLL_TRACK b

— Reverse Alternate

— Include Rectilinear Edge

Pin Group
Position

— ~ Absolute based _ Offset based
alu_compute_start (Top)

array_select[] _ Global Coordinates Starting:

Starting ¥ 2151.0 | Y:750.0 |2 ending:

cmd_top [1] g (21518] —\:} g
data_in_top[]_ Ending X 29460 v:7500 (L&

. - Start to end Direction, Cloclavise »

pin_data out_m

pin_dat _mem: Spacing: 5.0

rd_mem 0 Unit:_ Micron & Layer Pitch «

T Snap To
wr_mem_start (Top)

 Manufacturing Grid

w User Grid

® Layer Track ‘

_ Assign Fixed Status ¥ Batch Mode _ Master Clone Aware

= ¥ Fix Overlapping
EPREIRI IR I
A — 4 =l Ty ey S _ Henor Partition and/or Pin-Level Constraints

M Group Bus
— Reverse Order

Sort By:® Name . Location

Find Pins:
&
— Append Pin(s) to Pin Name List ' =
PP (s) Use: SIGNAL » 7
m Apply Align... Cancel Help

4. In the design window you should see the pins appear on the top

5. Use the Ei button to create rulers, and check the sizes of the pins. These should

correspond to the data you did input. Then press shift-k to remove the rulers and |D[ﬁ
to pass back to normal selection (and not ruler).

38/112

@ The pitch used in this technology can be seen from the tech lef file line 135 onwards

LAYER M2
TYPE ROUTING ;
OFFSET 0.00 0.00 7
AREA 0.052 ;
WIDTH 0.10 ;
PITCH 0.20 ;

The lef file can be found in :

/dkits/synopsys/DesignWare logic libs/commonplatformé65nlp/hd/base/svt
/5.00a/lef/5.6/cp65npksdst mO6£f0fl.1lef

4.7.1. SAVING THE I/O PLACEMENT

Once you have created your IO placement. Let’s save the file inside the CONF folder.

innovus> write_io_file -locations CONF/top_32b_tutorial.io
Dumping FTerm of cell top 32b to file

You can then open the file and have a look at the syntax of the 10O :

(globals
version = 3
io order = default

39/112

)
(iopin
(bottom
(pin name="wr mem start" 0ffset=87.4000 layer=2 width=0.1000
depth=0.5200 place status=placed)
(pin name="start compute" o0ffset=88.0000 layer=2 width=0.1000
depth=0.5200 place status=placed)

(pin name="rst" o0ffset=88.6000 layer=2 width=0.1000
depth=0.5200 place status=placed)

(pin name="rd mem start" offset=89.2000 layer=2 width=0.1000
depth=0.5200 place status=placed)

(pin name="pin data out mem2[63]" offset=89.8000 layer=2
width=0.1000 depth=0.5200 place status=placed)

(pin name="pin data out mem2[62]" offset=90.4000 layer=2
width=0.1000 depth=0.5200 place status=placed)

(pin name="pin data out mem2[61]" offset=91.0000 layer=2
width=0.1000 depth=0.5200 place status=placed)

(pin name="pin data out mem2[60]" offset=91.6000 layer=2
width=0.1000 depth=0.5200 place status=placed)

(pin name="pin data out mem2[59]" offset=92.2000 layer=2
width=0.1000 depth=0.5200 place status=placed)

(pin name="pin data out mem2[58]" offset=92.8000 layer=2
width=0.1000 depth=0.5200 place status=placed)

(pin name="pin data out mem2[57]" offset=93.4000 layer=2

width=0.1000 depth=0.5200 place status=placed)

Each pin is detailed with its name, position, layer, width, depth and status.

Save the design state as DB/tutorial/top 32b io with the write db command
4.8.PLACING THE MACRO BLOCK
The next step consists in placing the memories MEMO MEM1 and MEM2.

In this floorplan, we place them on the bottom, pins facing up, with MEMO on the left, MEM1 in
the middle and MEM?2 on the right.

For this, we will use the create relative flooplan command. Check page 845 of the innovus TCR
documentation. Page 847 shows examples of how to understand the command.

innovus > delete_relative_floorplan -all
to remove the existing relative floorplan — this is generally a good practice
innovus > create_relative_ floorplan -ref type core_boundary -

orient mx -horizontal_ edge_separate {3 0 3} -
vertical_ edge_separate {0 0 0} -place MEMO -ref top_32b

place MEMO.

Here we reference the core_boundary created before during the floorplan.

Then, we select the orientation as mx (mirror along the x axis to flip the memory vertically).

40/112

We select the horizontal edges to align. From the documentation, the edges calculations are
done from the most bottom left edge, and counting clock-wise. Here both the core boundary
and MEMO are rectangles (here the left picture). Considering the already flipped memory, We
want to align the edge 3 of MEMO with the edge 3 of core boundary with a 0 offset.

Leading to -horizontal_edge separate {3 0 3}

Then, we do the same with the vertical edge. Edge 0 aligned on edge 0 with a 0 offset :
vertical _edge separate {0 0 0}

@ Examples are given page 847 of the documentation

Finally we select the instance to place (MEMO), and it’s reference design (top 32b)

(5) (9)
(1)
(6) (8)
(4) (7)
(0) (2) =) (10)
@
(3) *“l
Start point)
Start point

Then we do the same with MEM1 :

innovus > create_relative_ floorplan -ref type core_boundary
orient mx -horizontal edge_ separate {3 0 3}
vertical_ edge_separate {0 330 0} -place MEM1l -ref top_32b

and with MEM2

innovus > create_relative_ floorplan -ref type core_boundary
orient mx -horizontal_ edge_separate {3 0 3} -
vertical edge separate {2 0 2} -place MEM2 -ref top 32b

41/112

QUESTION 4-5: Why is the horizontal edge separate the same for the 3 memories ?

QUESTION 4-6: Why is the vertical edge separate of mem1 set as {0 330 0} and the one of mem2 as {3 0
317

4.8.1. ADDING PLACEMENT HALO AROUND THE MEMORIES

At this point you can note that there is some space between the memories. With rows where
standard cells could be placed.

Zooming-in between MEM1 and MEM?2.

However, it can be that placing standard cells too close to the memory causes issues. Also the
available space between the memories may not allow to properly place and route gates. You can
note that the memory macros partially occupy half a row of cells. Finally, as the pins are on the
top, we want to make sure that we have enough space for the router to place connections there.

One way to cope with that is to add a Halo where nothing can be placed. This will also avoid
issues if the lef of the memory is not properly designed (it can happen).

4.8.2. ADD A PLACEMENT HALO AROUND THE MEMORIES

innovus> delete_place_halo

innovus> create_ place_halo -insts MEMO -halo_deltas
innovus> create_ place_halo -insts MEM1l -halo_deltas
innovus> create place halo -insts MEM2 -halo deltas

R IR N o]
o oo
(@ BN BEN
oo O

The -halo_delta command takes the following arguments left bottom right top.
MEMO gets a halo on top and right

MEMI gets a halo on top, left and right

MEM?2 gets a halo on left and top.

42/112

By putting the halo on 7um on the left and right sides, we ensure overlap between them, and no
placement of standard cells being done between them.

Save the design state as DB/tutorial/top 32b floorplan with the write db command

4.9.ADDING TAP CELLS

As in full custom design, tap cells must be introduced in the design, to make sure that no biasing
issue will happen at the end. To do so, TAP cells must be included in the design before placing
the cells.

The technology documentation says the following :

3.45 Tap Cell Placement

Cells in this library do not contain any substrate or well taps. A tap cell must be placed during floorplanning
atlocations and a frequency that satisfies design objectives as well as process design rule requirements. It
consists of an nwell tap to VDD and a pwell tap to VSS. The tap is 2-grids wide.

The tap cellname is:

SEN_TAP_DS - VSS and VSS connected to Nwell/ Pwell

Innovus> add well tap -cell "SEN TAP DS" -cell interval 30 -
prefix "WELLTAP"

For 1054 new insts, *** Applied 0 GNC rules (cpu = 0:00:00.0)
Inserted 1054 well-taps <SEN TAP DS> cells (prefix WELLTAP) .

@ Note that if you had several power domains with different global power/ground nets,
you could select a different power net for them.

You can check the cell placed through the design Browser (tools>design browser). In the search
field, type SEN_TAP_DS and press enter. Press Ctrl+A to select them all to be able to highlight
them.

@ To highlight the selected cells, select a cell, select a color with the menu Lﬁj and
*
highlight it with s . To remove a highlighting, use the # button. To remove all of the

4

highlights, use

43/112

Design Browser — edasrvl e

Design Browser

File View Edit Tool cadence
™ Y TR
LB #8252 % 0% &
R . SEN_TAP DS

Instance - WELLTAP_T (SEN_TAP_DS)
Instance - WELLTAP_2 (SEN_TAP_DS)
Instance - WELLTAP_3 (SEN_TAP_DS)
Instance - WELLTAP_4 (SEN_TAP_DS)
Instance - WELLTAP_S (SEN_TAP_DS)
Instance - WELLTAP_6 (SEN_TAP_DS)
Instance - WELLTAP_7 (SEN_TAP_DS)
Instance - WELLTAP_8 (SEN_TAP_DS)
Instance - WELLTAP_9 (SEN_TAP_DS)
Instance - WELLTAP_10 (SEN_TAP_DS)
Instance - WELLTAP_11 (SEN_TAP_DS)
Instance - WELLTAP_12 (SEN_TAP_DS)
Instance - WELLTAP_13 (SEN_TAP_DS)
Instance - WELLTAP_14 (SEN_TAP_DS)
Instance - WELLTAP_15 (SEN_TAP_DS)
Instance - WELLTAP_16 (SEN_TAP_DS)
Instance - WELLTAP_17 (SEN_TAP_DS)
Instance - WELLTAP_18 (SEN_TAP_DS)
Instance - WELLTAP_19 (SEN_TAP_DS)
Instance - WELLTAP_20 (SEN_TAP_DS)
Instance - WELLTAP_21 (SEN_TAP_DS)
Instance - WELLTAP_22 (SEN_TAP_DS)
Instance - WELLTAP_23 (SEN_TAP_DS)
Instance - WELLTAP_24 (SEN_TAP_DS)
Instance - WELLTAP_25 (SEN_TAP_DS)
Instance - WELLTAP 26 (SEN TAP DS)

|| WELLTAP_1

4.10. CREATING THE POWER STRUCTURE

The goal here is to add a power ring and a ground ring around the core and the macro blocks as

well as make sure that the macro power nets are properly connected to the global power ring!'® !!
12

The imported Verilog netlist does not include any power and ground connections. However, the
cells that will be placed do have power/ground pins that will need to be routed to the global
power/ground nets. It is the required to logically connect all the power nets of the cells to the
global power (vpp) and ground (vss) nets'?.

4.10.1.LOGICALLY CONNECT ALL POWER/GROUND PINS AND NETS

This step consists in connecting the circuit global power/ground nets (that have been defined in
the design environment — cf init.tcl) to the power nets of the different instances being used in the
design. The names of the power nets for the standard cell library and memory macro can be found
in the corresponding lef files (they turn out to be aligned with the IPs we use, but it’s not always
the case). The standard cell library and memories power nets are vbp/vss. The tap cells substrate
biasing is VBP for pmos and VBN for the nmos.

Thereby, in this step, you want to connect the global power net vbp to vbp and vep. While you
want to connect the global ground net vss to vss and vBN.

innovus > connect_global net VDD -type pg pin -pin_base name VDD
-override -verbose

10You can take a look at this reference: http://vIsibyjim.blogspot.com/2015/03/power-planning.html

!! Inserting a pad ring is not addressed here. It is assumed that the considered design is a block to be included in a
larger design.

12 Additionally, you may want to add horizontal or vertical power stripes over the core area. This may be required for
large designs to limit voltage drops in the row power rails.

13 The global power and ground net names are defined in the technology LEF file.

44/112

http://vlsibyjim.blogspot.com/2015/03/power-planning.html

4732 new pwr-pin connections were made to global net 'VDD'.

innovus > connect_global net VDD -type pg_pin -pin_base name VBP
-override -verbose

3675 new pwr-pin connections were made to global net 'VDD'.

innovus > connect_global net VSS -type pg_pin -pin_base_ name VSS
-override -verbose

4732 new gnd-pin connections were made to global net 'VSS'.

innovus > connect_global net VSS -type pg pin -pin_base name VBN
-override -verbose

3675 new gnd-pin connections were made to global net 'VSS'.

4.10.2.CREATING POWER AND GROUND RINGS AROUND THE CORE

The next step consists in creating power rings around the core. Power ring are useful as they enable
an easy connectivity for the logic blocks from all sides with the power network. It is a good way
to avoid IR drop effects.

Here we use the 20um available space around the core to insert two power rings (one for VDD
and one for VSS) on all sides. Top and bottom parts of the rings are on Metal 5 (M5) while left
and right are in Metal 4 (M4). The width of each metal line in the ring is 2um with a 2um spacing.
The ~-type core ring makes the ring designed around the “core”, i.e., the main design
area of this design. The ~center option makes the ring centred on the core. This means that
ring will be centred between the core area and the sides.

innovus > add_rings -nets {VDD VSS} -type core_rings -center 1
-layer {top M5 bottom M5 right M4 left M4} -width 2 -spacing 2
#% Begin add rings (date=11/08 16:38:27, mem=2366.1M)

Loading cell geometries (cpu: 0:00:00.0, real: 0:00:00.0, peak mem:
2998.0M)

Ring generation 1is complete.

vias are now being generated.

add _rings created 8 wires.

ViaGen created 8 vias, deleted 0 via to avoid violation.

- B o — +

| Layer | Created \ Deleted

o o= = o — +

\ M4 \ 4 \ NA \

\ V4 | 8 \ 0 \

\ M5 \ 4 \ NA |

B o= - e +

#5% End add_rings (date=11/08 16:38:27, total cpu=0:00:00.0,

real=0:00:00.0, peak res=2367.9M, current mem=2367.9M)

45/112

4.10.3.CREATING POWER AND GROUND RING AND STRIPES TO CONNECT VDD/VSS PINS
FOR THE MACRO BLOCK

Macro or IP blocks sometimes have non-conventional or non-easy-to-connect pins. Thereby, the
designers must make sure that the power lines are well connected to the macro. Also, the designers
must make sure that the power lines are large and dense enough to supply the macro or IP.

From this perspective, various options are possible. Designers could want to make rings around
their macro blocks, or connect them with metal stripes. Also, as you did in the first phase of the
labs on EDA, you must make sure that your standard cells connections to VDD and VSS are dense
enough, to avoid IRdrop there.

First, let’s have a look at the power structure in the design.

Enable the pin shapes in the blocks to see how are VDD and VSS pins organized. As you can see,
there are vertical stripes in MEMO MEM1 and MEM2. As the memories are aligned with each
other, a couple of horizontal stripes could be enough to connect them all to VDD and VSS.

Then, for the standard cells, VDD and VSS Metall lines will be organized horizontally, as
standard cells contain horizontal VSS and VSS lines. Inserting vertical stripes at regular intervals
will allow to cut them and reduce their equivalent resistance. Thereby, we propose here to insert
here 2 sets of vertical stripes between the memory macros.

Check the documentation of the add stripes (p2834) and add rings (p2819) commands in the
innovus TCR document.

innovus > add_stripes -direction horizontal -nets {VDD VSS} -
width 2 -spacing 2 -layer M5 -start offset 20 -number of sets
1

#% Begin add stripes (date=11/10 09:03:48, mem=2450.3M)

Initialize fgc environment (mem: 3105.9M) ... fail and won't use fgc
to check drc(cpu: 0:00:00.0, real: 0:00:00.0, peak mem: 3105.9M)
**WARN: (IMPPP-133): The block boundary of the 'WELLTAP 1' instance
was increased to (20.000000 74.000000) (20.400000 75.849998) because
the (20.000000 75.750000) (20.400000 75.849998) cell geometry was
outside the original block boundary.

Type 'man IMPPP-133' for more detail.

**WARN: (IMPPP-133): The block boundary of the 'WELLTAP 19' instance
was 1ncreased to (560.000000 74.000000) (560.400024 75.849998)
because the (560.000000 75.750000) (560.400024 75.849998) cell

geometry was outside the original block boundary.
Type 'man IMPPP-133' for more detail.

**WARN: (IMPPP-133): The block boundary of the 'WELLTAP 20' instance
was 1increased to (590.000000 74.000000) (590.400024 75.849998)
because the (590.000000 75.750000) (590.400024 75.849998) cell

geometry was outside the original block boundary.

Type 'man IMPPP-133' for more detail.

**WARN: (EMS-27): Message (IMPPP-133) has exceeded the current
message display limit of 20.

To increase the message display limit, refer to the product command
reference manual.

You can ignore these warnings

46/112

Loading cell geometries (cpu: 0:00:00.0, real: 0:00:00.0, peak mem:
3105.9M)
Loading wires (cpu: 0:00:00.0, real: 0:00:00.0, peak mem: 3105.9M)
Loading wvia instances (cpu: 0:00:00.0, real: 0:00:00.0, peak mem:
3105.9M)
Starting stripe generation
Non-Default Mode Option Settings

NONE
Stripe generation is complete.
vias are now being generated.
**WARN: (IMPPP-532): ViaGen Warning: The top layer and bottom layer
have same direction but only orthogonal via is allowed between layer
M3 & M5 at (20.00, 40.99) (20.80, 41.38).

**WARN: (IMPPP-4500): Extended number of geometries exist around
850.215000, 45.000000 between the M4 and M5 layers. This may increase
the run time.

Type 'man IMPPP-4500' for more detail.

Here the tool does complain about a complex geometry between M4 amd M5. You can use the
suggested command to understand the warning. Looking at the 850-45 coordinates, you can see
the following. Indeed the vias organization is complex. This part would need to be controlled
post PnR with a DRC to make sure everything is correct.

add stripes created 2 wires.
ViaGen created 247 vias, deleted 0 via to avoid violation.

o= o - = o — +
\ Layer | Created | Deleted
- B e o — +
| V4 | 247 | 0 |
| M5 | 2 | NA
B e = o — +

#% End add _stripes (date=11/10 09:03:48, total cpu=0:00:00.1,
real=0:00:00.0, peak res=2450.5M, current mem=2450.5M)

47/112

14
it
l |l MEND MEM

:
;

Zoom in the drawing and observe the vias and connections.

E!---F_avorite
Enable the block shapes by ticking the cell>pin shapes>block , V, and E___,;;ta;i‘;'““’”
look at the details of the connections. & @ Type

Block

Note how all the pin are organized for the memory.

Look how the tool did automatically connect the horizontal stripes with '

£
Bl
the VDD and VSS pins all along the width of the memr Area 0

= Black Box
B Function

B Status

- Module

O W N A S
I O O O L N O R A R L [

10 Cell
10 Pin
Others

- Access Ar

Then let’s create vertical stripes between the memories.

innovus > add _stripes -direction vertical -nets {VDD VSS} -width 2 -
spacing 2 -layer M4 -start offset 320 -number of sets 1

innovus > add _stripes -direction vertical -nets {VDD VSS} -width 2 -
spacing 2 -layer M4 -start offset 650 -number of sets 1

we do not report all the warnings though the same as the ones before appear.

Make the calculations on the x offset to understand 320 and 650

Note 1 : here we did not setup the vdd and vss lines for the standard cells. Only for the sram
memories

48/112

Note 2 : here we do not insert specific rings around the memory macros, though we could with the
following commands :

>select obj MEMO

>add_rings -nets {VDD VSS} -type block rings -around selected -center
0 -skip side {left bottom} -layer {top M5 bottom M5 right M4 left M4}
-width 1 -spacing 1

>deselect obj -all

Note 3 : using the select obj and deselect obj is a good way to make sure that the tool does not
try to draw a ring around a block you are not trying to use.

QUESTION 4-7 : We could have drawn an horizontal stripe by using the add rings command and place it
above the macros. Try to come up with a command that does that. Hint 1: save your design before playing
with it, so that you can always restore it’s state. Hint 2 : you can delete metal lines either with the undo
button, or by selecting them and pressing the delete key on your keyboard.

4.10.4.ROUTE POWER NETS

Let’s now connect the power nets with the special route command. The special route does simply
connect power structures. It can be generally used to connect the VDD and VSS nets of the
standard cells, but you could use it, with the good arguments, to connect many power nets. Though,
always remember that the commands you input do only do what you tell them to do'*. Generally,
discard any configuration that gives unexpected results.

Here we limit the -connect to core pins to only create the standard cells power routing.
innovus > route_special -connect {core_pin} -net {VSS}

#% Begin route special (date=11/10 09:27:35, mem=2468.3M)

*** Begin SPECIAL ROUTE on Fri Nov 10 09:27:35 2023 ***

SPECIAL ROUTE ran on directory:
/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 202
4 /INNOVUS

SPECIAL ROUTE ran on machine: edasrvl (Linux 3.10.0-
1160.83.1.e17.x86_64 Xeon 3.00Ghz)

Begin option processing

srouteConnectPowerBump set to false

routeSelectNet set to "VSS"

routeSpecial set to true

srouteConnectBlockPin set to false
srouteConnectConverterPin set to false

srouteConnectPadPin set to false

srouteConnectStripe set to false

srouteFollowCorePinEnd set to 3

srouteFollowPadPin set to false

sroutedJogControl set to "preferWithChanges differentLayer"
sroutePadPinAllPorts set to true
sroutePreserveExistingRoutes set to true
srouteRoutePowerBarPortOnBothDir set to true

End option processing: cpu: 0:00:00, real: 0:00:00, peak: 440.00
megs.

Reading DB technology information...
Finished reading DB technology information.
Reading floorplan and netlist information...

14 As we generally say : “crap-in, crap-out”. Wrong configuration gives wrong results.

49/112

Finished reading floorplan and netlist information.
**WARN: (IMPSR-4302): Cap-table/grcTechFile is found in the design,
so the same information from the technology file will be ignored.
Read in 15 layers, 7 routing layers, 1 overlap layer
Read in 1184 macros, 110 used
Read in 1164 components
1161 core components: 107 unplaced, 0 placed, 1054 fixed
3 block/ring components: 0 unplaced, 0 placed, 3 fixed
Read in 266 physical pins
266 physical pins: 0 unplaced, 266 placed, 0 fixed
Read in 4 blockages
Read in 266 nets
Read in 2 special nets, 2 routed
Read in 2808 terminals
1 net selected.

Begin power routing
CPU time for FollowPin 0 seconds
Number of Core ports routed: 32
Number of Followpin connections: 16
End power routing: cpu: 0:00:00, real: 0:00:00, peak: 451.00 megs.

Begin updating DB with routing results
Updating DB with 266 io pins
Updating DB with 0 via definition
route special created 48 wires.
ViaGen created 192 vias, deleted 0 via to avoid violation.

Fm—————— Fmm e - Fmm e — - +
\ Layer | Created | Deleted
- o - +
\ M1 | 48 | NA

\ V1 | 64 | 0 |
\ V2 | 64 | 0 \
\ V3 | 64 | 0 \
R e e it T Fom e e +

#% End route special (date=11/10 09:27:36, total c¢cpu=0:00:00.3,
real=0:00:01.0, peak res=2477.8M, current mem=2477.8M)

innovus > route_special -connect {core_pin} -net {VDD}

#% Begin route special (date=11/10 09:28:14, mem=2473.6M)

*** Begin SPECIAL ROUTE on Fri Nov 10 09:28:14 2023 ***

SPECIAL ROUTE ran on directory:
/home/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs phase2 202
4/INNOVUS

SPECIAL ROUTE ran on machine: edasrvl (Linux 3.10.0-
1160.83.1.e17.x86_64 Xeon 3.00Ghz)

Begin option processing
srouteConnectPowerBump set to false
routeSelectNet set to "VDD"
routeSpecial set to true
srouteConnectBlockPin set to false
srouteConnectConverterPin set to false
srouteConnectPadPin set to false
srouteConnectStripe set to false
srouteFollowCorePinEnd set to 3

50/112

srouteFollowPadPin set to false

srouteJogControl set to "preferWithChanges differentLayer"
sroutePadPinAllPorts set to true

sroutePreserveExistingRoutes set to true
srouteRoutePowerBarPortOnBothDir set to true

End option processing: cpu: 0:00:00, real: 0:00:00, peak: 451.00
megs.

Reading DB technology information...
Finished reading DB technology information.
Reading floorplan and netlist information...
Finished reading floorplan and netlist information.
**WARN: (IMPSR-4302): Cap-table/grcTechFile is found in the design,
so the same information from the technology file will be ignored.
Read in 15 layers, 7 routing layers, 1 overlap layer
Read in 1184 macros, 110 used
Read in 1164 components
1161 core components: 107 unplaced, 0 placed, 1054 fixed
3 block/ring components: 0 unplaced, 0 placed, 3 fixed
Read in 266 physical pins
266 physical pins: 0 unplaced, 266 placed, 0 fixed
Read in 4 blockages
Read in 266 nets
Read in 2 special nets, 2 routed
Read in 2808 terminals
1 net selected.

Begin power routing
CPU time for FollowPin 0 seconds
Number of Core ports routed: 32
Number of Followpin connections: 16
End power routing: cpu: 0:00:00, real: 0:00:00, peak: 451.00 megs.

Begin updating DB with routing results
Updating DB with 266 io pins
Updating DB with 0 via definition
route special created 48 wires.
ViaGen created 192 vias, deleted 0 via to avoid violation.

- o — e it +
\ Layer | Created | Deleted
o= o= — o — +
| M1 | 48 | NA

\ Vi1 | 64 | 0 \
\ V2 | 64 | 0 \
\ V3 | 64 | 0 \
o o= — o — +

% End route special (date=11/10 09:28:14, total c¢cpu=0:00:00.3,
real=0:00:00.0, peak res=2474.7M, current mem=2474.7M)

check the documentation of the route special command p2915.

51/112

4.10.5. LEARN HOW TO DEAL WITH MACRO PROBLEMS

The digital design implementation flow can be seen from two different angles. On one hand, your
job is to setup the flow correctly and not make mistakes. On the other hand, you also have to deal
with issues that may have come before in the design flow.

Sometimes (mostly when the problem is too big to be handled) you can propagate the issues and
ask for corrections to the development team or the provider. Sometimes things are just as they are,
and corrections cannot be provided by the IP providers.

Reasons for this can be numerous :

- The block has been designed by another design team, and applying a patch does not allow
to meet the deadline.
- The block is provided as is, and/or the provider does not provide support.
o This is generally the case when you are a small entity (i.e., not Apple), a university,
or when dealing with “old” nodes.
- The block has been automatically generated, and the issue may not be easily patchable, or
does not occur in different configurations

In all these cases you must correct the issue yourself at your level and most importantly document
it, so that other users know how to face it in the future.

Here, as you can see in the screenshot, on the left side of the memories generated with the memory

compiler, when showing the pin, the lef is incorrectly extracted. From the GDS (right picture) you

can see that the horizontal metal lines for VDD and VSS continue, while in the LEF (left picture)

they stop. The VSS pin is correctly connected to the vertical pin, while the VDD is not. This leads

to incorrect connectivity checks when running verification as innovus does identify these VDD
ins as floating.

Run the command
innovus > check connectivity
VERIFY CONNECTIVITY use new engine.

kxxxkkxx Start: VERIFY CONNECTIVITY **x**xxx
Start Time: Fri Nov 10 09:31:50 2023

Design Name: top 32b
Database Units: 2000
Design Boundary: (0.0000, 0.0000) (1020.0000, 150.0000)

Error Limit = 1000; Warning Limit = 50
Check all nets
**WARN: (IMPVFC-96): Instance pin D of net cmd top[l] has not been

placed. Please make sure instance reg cmd top reg 1 1is placed and
rerun verifyConnectivity.

**WARN: (IMPVFC-96): Instance pin CK of net clk has not been placed.

Please make sure instance reg data out meml reg 19 is placed and
rerun verifyConnectivity.
**WARN: (EMS-27): Message (IMPVEFC-96) has exceeded the current

message display limit of 20.
To increase the message display limit, refer to the product command
reference manual.

It does here complain about unplaced cells, as we did not do the placement yet. You can ignore
these warnings.

52/112

Net clk: no routing.
Net n LogicO : no routing.

This last “net VDD violation is the issue we were mentioning before.

Look at the left side of the memories.
Begin Summary

not connected together.
66 total info(s) created.
End Summary

End Time: Fri Nov 10 09:31:50 2023
Time Elapsed: 0:00:00.0

k*xxk*xx End: VERIFY CONNECTIVITY ***x%%%x
Verification Complete : 66 Viols. 0 Wrngs.
(CPU Time: 0:00:00.0 MEM: 0.000M)

Run the

innovus > delete drc markers

to remove the white crosses

Net VDD: has an unconnected terminal, has special routes with opens.

2 Problem(s) (IMPVFC-98): Net has no global routing and no
special routing.

63 Problem(s) (IMPVEFC-96): Terminal (s) are not connected.

1 Problem(s) (IMPVFC-200): Special Wires: Pieces of the net are

Two solutions are possible :

1. Wave (ignore) these errors, knowing these are not actual errors
2. Correct them to feel better and have cleaner logs

Here we propose to use the special route to connect them.

route special -inst MEMO -connect block pin -nets
left boundary

route special -inst MEM1l -connect block pin -nets
left boundary

route special -inst MEM2Z -connect block pin -nets
left boundary

{VvDD} -block pin
{vDD} -block pin

{VvDD} -block pin

QUESTION 4-8 : explain with your own words what happens with the left side of the memory. You could

open the gds from the memory on embedit and comment on the gds.

QUESTION 4-9 : Explain the content of the route special command used there. Inspire from the

documentation p2915.

QUESTION 4-10 : Check the state of your design again by running a connectivity check. What does it

complain about now ?

Save the design state as DB/tutorial/top 32b power with the write db command

53/112

4.11. CHECKING THE DRC RULES

At any point in your design, as for the connectivity check, it is important to make sure that the
metal lines you draw, and the floorplan you design is correct from a design rule check standpoint.

Innovus does integrate a simple drc checker based on the technology lef you did provide when
setting up the tool.

Run a drc check with
innovus > check drc

remove the white cross with :
innovus > delete drc markers

QUESTION 4-11 : explain the results of the drc_check. Can you fully trust this drc check based on the
above explanation ? how different is that compared to the DRC from Calibre?

4.12. PLACING CORE CELLS

This step places the standard cells in the rows, according to the imported Verilog netlist. Placement
also follows legalization rules, such as cells cannot overlap each other and takes into account short
and spacing DRC rules required by routing.

4.12.1.PLACE THE CORE CELLS

Let’s first place the design cells. Start by a push snapshot_stack to track the timing info.

innovus > push_snapshot_stack

innovus > place_design

Extracting standard cell pins and blockage

Pin and blockage extraction finished

*** Starting place design default flow ***

*** Start delete buffer trees **~*

Info: Detect buffers to remove automatically.

Analyzing netlist

Updating netlist

AAE DB initialization (MEM=3184.36 CPU=0:00:00.0 REAL=0:00:01.0)

*summary: 73 instances (buffers/inverters) removed
*** Finish delete buffer trees (0:00:00.6) ***

First it does clean a bit the design, removing buffers that could have been inserted by some hold

correction before

**INFO: Enable pre-place timing setting for timing analysis

Set Using Default Delay Limit as 101.

**WARN: (IMPDC-1629): The default delay limit was set to 101. This is
less than the default of 1000 and may result 1in inaccurate delay
calculation for nets with a fanout higher than the setting. If
needed, the default delay limit may be adjusted by running the command
'set delaycal use default delay limit'.

Set Default Net Delay as 0 ps.

Set Default Net Load as 0 pF.

**INFO: Analyzing IO path groups for slack adjustment

54/112

Effort level <high> specified for reg2reg tmp.75869 path group

FHEHAHH A S A AR A AR A

SRS EEEEEEEEE

Design Stage: PreRoute

Design Name: top_ 32b

Design Mode: 65nm

Analysis Mode: MMMC OCV

Parasitics Mode: No SPEF/RCDB

Signoff Settings: SI Off

iZiiss A EA A RS RS EARE SRS EER SR SRS EEEEEEREEEEEREEEEEEEEEEEEES

i EE XSS EEEES

Start delay calculation (fullDC) (1 T). (MEM=3193.9)

Total number of fetched objects 4188

AAE INFO: Total number of nets for which stage creation was skipped

for all views O

End delay calculation. (MEM=3251.78 CPU=0:00:00.8 REAL=0:00:01.0)

End delay calculation (fullDC) . (MEM=3205.62 CPU=0:00:01.3

REAL=0:00:01.0)

**INFO: Disable pre-place timing setting for timing analysis

Set Using Default Delay Limit as 1000.

Set Default Net Delay as 1000 ps.

Set Default Net Load as 0.5 pF.

**INFO: Pre-place timing setting for timing analysis already disabled

Deleted 0 physical inst (cell - / prefix -).

Did not delete 1054 physical insts as they were marked preplaced.

INFO: #ExclusiveGroups=0

INFO: There are no Exclusive Groups.

*** Starting "NanoPlace (TM) placement v#9 (mem=3187.9M)"

**x* Build Buffered Sizing Timing Model (Used Compact Buffer Set)
. (cpu=0:00:01.5 mem=3203.9M) ***

** % Build Virtual Sizing Timing Model

(cpu=0:00:02.8 mem=3218.9M) ***

No user-set net weight.

Net fanout histogram:

H o S S o

2 : 2982 (71.2%) nets

3 : 800 (19.1%) nets

4 - 14 : 305 (7.3%) nets
15 - 39 : 92 (2.2%) nets
40 - 79 : 7 (0.2%) nets
80 - 159 0 (0.0%) nets
160 - 319 0 (0.0%) nets
320 - 639 2 (0.0%) nets
640 - 1279 0 (0.0%) nets
1280 - 2559 0 (0.0%) nets
2560 - 5119 : 0 (0.0%) nets
5120+ : 0 (0.0%) nets
Options: timingDriven clkGateAware ignoreScan pinGuide

congEffort=auto gpeffort=medium

Scan chains were not defined.

#std cell=4661 (1054 fixed + 3607 movable) #buf cell=0 #inv cell=365
#block=3 (0 floating + 3 preplaced)

#ioInst=0 #net=4188 #term=14630 fterm/net=3.49, #fixedIo=0,
#floatIo=0, #fixedPin=0, #floatPin=266

stdCell: 4661 single + 0 double + 0 multi

Total standard cell length = 7.4916 (mm), area = 0.0135 (mm"2)
Average module density = 0.245.

Density for the design = 0.245.

55/112

= stdcell area 35350 sites (12726 um”~2) / alloc area 144321
sites (51956 um”2).
Pin Density = 0.04895.
= total # of pins 14630 / total area 298900.
=== lastAutoLevel = 10
Clock gating cells determined by native netlist tracing.

Iteration 1: Total net bbox = 1.471e+05 (1.21e+05 2.58e+04)
Est. stn bbox = 1.535e+05 (1.27e+05 2.64e+04)
cpu = 0:00:00.0 real = 0:00:00.0 mem = 3329.5M

Iteration 2: Total net bbox = 1.471le+05 (1.21e+05 2.58e+04)
Est. stn bbox = 1.535e+05 (1.27e+05 2.64e+04)
cpu = 0:00:00.0 real = 0:00:00.0 mem = 3329.5M

Iteration 3: Total net bbox = 1.538e+05 (1.29e+05 2.52e+04)
Est. stn bbox = 1.704e+05 (1.44e+05 2.63e+04)
cpu = 0:00:00.3 real = 0:00:00.0 mem = 3334.9M

Active setup views:

analysis setup wc

Iteration 4: Total net bbox = 1.482e+05 (1.23e+05 2.53e+04)
Est. stn bbox = 1.629e+05 (1.36e+05 2.64e+04)
cpu = 0:00:00.2 real = 0:00:00.0 mem = 3334.9M

Iteration 5: Total net bbox = 1.728e+05 (1.48e+05 2.53e+04)
Est. stn bbox = 1.988e+05 (1.72e+05 2.65e+04)
cpu = 0:00:00.3 real = 0:00:00.0 mem = 3334.9M

Iteration 6: Total net bbox = 1.656e+05 (1.39%9e+05 2.66e+04)
Est. stn bbox = 1.916e+05 (1.64e+05 2.80e+04)
cpu = 0:00:00.4 real = 0:00:01.0 mem = 3337.2M

Iteration 7: Total net bbox = 1.661e+05 (1.39e+05 2.74e+4+04)
Est. stn bbox = 1.920e+05 (1.63e+05 2.88e+04)
cpu = 0:00:00.1 real = 0:00:00.0 mem = 3342.5M

Iteration 8: Total net bbox = 1.661e+05 (1.39%9e+05 2.74e+04)
Est. stn bbox = 1.920e+05 (1.63e+05 2.88e+04)
cpu = 0:00:01.6 real = 0:00:01.0 mem = 3342.5M

Iteration 9: Total net bbox = 1.677e+05 (1.35e+05 3.29e+04)
Est. stn bbox = 1.963e+05 (1.60e+05 3.59e+04)
cpu = 0:00:00.6 real = 0:00:01.0 mem = 3342.5M

Iteration 10: Total net bbox = 1.677e+05 (1.35e+05 3.29e+04)
Est. stn bbox = 1.963e+05 (1.60e+05 3.59e+04)
cpu = 0:00:01.6 real = 0:00:02.0 mem = 3342.5M

Iteration 11: Total net bbox = 1.754e+05 (1.40e+05 3.55e+04)
Est. stn bbox = 2.094e+05 (1.70e+05 3.91e+04)
cpu = 0:00:00.9 real = 0:00:01.0 mem = 3342.5M

Iteration 12: Total net bbox = 1.754e+05 (1.40e+05 3.55e+04)
Est. stn bbox = 2.094e+05 (1.70e+05 3.91e+04)
cpu = 0:00:01.6 real = 0:00:01.0 mem = 3342.5M

Iteration 13: Total net bbox = 1.822e+05 (1.45e+05 3.75e+04)
Est. stn bbox = 2.187e+05 (1.78e+05 4.10e+04)
cpu = 0:00:02.4 real = 0:00:03.0 mem = 3342.5M

Iteration 14: Total net bbox = 1.822e+05 (1.45e+05 3.75e+04)
Est. stn bbox = 2.187e+05 (1.78e+05 4.10e+04)
cpu = 0:00:00.0 real = 0:00:00.0 mem = 3342.5M

Iteration 15: Total net bbox = 1.822e+05 (1.45e+05 3.75e+04)
Est. stn bbox = 2.187e+05 (1.78e+05 4.10e+04)

cpu = 0:00:00.0 real = 0:00:00.0 mem = 3342.5M
*** cost = 1.822e+05 (1.45e+05 3.75e+04) (cpu for global=0:00:10.4)
real=0:00:12.0%***
Info: 0 clock gating cells identified, 0 (on average) moved 0/7
Solver runtime cpu: 0:00:04.6 real: 0:00:04.5

56/112

Core Placement runtime cpu: 0:00:05.1 real: 0:00:06.0
**WARN: (IMPSP-9025):No scan chain specified/traced.
Type 'man IMPSP-9025' for more detail.
*** Starting place detail (6:56:12 mem=3358.5M) ***
Total net Dbbox length = 1.822e+05 (1.447e+05 3.752e+04) (ext =
2.608e+04)
Move report: Detail placement moves 3607 insts, mean move: 0.88 um,
max move: 19.34 um
Max move on inst (reg data in top reg 47): (424.99, 114.73) -
-> (432.40, 102.80)
Runtime: CPU: 0:00:00.3 REAL: 0:00:00.0 MEM: 3358.5MB
Summary Report:
Instances move: 3607 (out of 3607 movable)
Instances flipped: O
Mean displacement: 0.88 um
Max displacement: 19.34 um (Instance: reg data in top reg 47)
(424.988, 114.727) -> (432.4, 102.8)
Length: 23 sites, height: 1 rows, site name: CP65 DST, cell
type: SEN FDPRBQ D 1
Total net Dbbox length = 1.793e+05 (1.420e+05 3.733e+04) (ext =
2.554e+04)
Runtime: CPU: 0:00:00.4 REAL: 0:00:00.0 MEM: 3358.5MB
*** Finished place detail (6:56:12 mem=3358.5M) **x*
*** End of Placement (cpu=0:00:14.6, real=0:00:15.0, mem=3346.5M)

* K Kk

default core: bins with density > 0.750 = 41.04 % (158 / 385)

Density distribution unevenness ratio = 29.646%

*** Free Virtual Timing Model ... (mem=3346.5M)

UM: flow.cputime flow.realtime timing.setup.tns timing.setup.wns

snapshot

UM: * final
flow.cputime flow.realtime timing.setup.tns

timing.setup.wns snapshot

UM: * global place

**INFO: Enable pre-place timing setting for timing analysis

Set Using Default Delay Limit as 101.

**WARN: (IMPDC-1629): The default delay limit was set to 101. This is
less than the default of 1000 and may result 1in 1inaccurate delay
calculation for nets with a fanout higher than the setting. If
needed, the default delay limit may be adjusted by running the command
'set delaycal use default delay limit'.

Set Default Net Delay as 0 ps.

Set Default Net Load as 0 pF.

**INFO: Analyzing IO path groups for slack adjustment

Effort level <high> specified for reg2reg tmp.75869 path group
ifiissas AR AE SRS ARR SRR AR EEREEEREE SRR EREE R EEEEEE
SRR SRR EEEEEEE

Design Stage: PreRoute

Design Name: top 32b

Design Mode: 65nm

Analysis Mode: MMMC OCV

Parasitics Mode: No SPEF/RCDB

Signoff Settings: SI Off

iEisAEE RS RE AR AR R R SRR R R SRR R EEEEEEEEEEEEE
iEEEEEEEE XSRS

Start delay calculation (fullDC) (1 T). (MEM=3318.75)

Total number of fetched objects 4188

H o S S o =

57/112

AAE_INFO

Total number of nets for which stage creation was skipped

for all views O

End delay calculation.
delay

End

(MEM=3354.17 CPU=0:00:00.6 REAL=0:00:00.0)
calculation (fullDC) . (MEM=3354.17 CPU=0:00:00.8

REAL=0:00:00.0)

**INFO:

Disable pre-place timing setting for timing analysis

Set Using Default Delay Limit as 1000.
Set Default Net Delay as 1000 ps.
Set Default Net Load as 0.5 pF.

Info: Disable timing driven in postCTS congRepair.

Starting congRepair

[NR-eGR] Num Prerouted Nets = 0 Num Prerouted Wires = 0

[NR-eGR] Read numTotalNets=4188 numIgnoredNets=0

[NR-eGR] There are 1 clock nets (0 with NDR).

[NR-eGR] ============ Routing rule table ============

[NR-eGR] Rule id: 0O Nets: 4188

[NR-eGR] ==

[NR-eGR]

[NR-eGR] Layer group l: route 4188 net(s) in layer range [2, 5]
[NR-eGR] Early Global Route overflow of layer group 1: 0.13% H +
0.00% V. EstWL: 1.890486e+05um

[NR-eGR] Overflow after Early Global Route (GR compatible) 0.07% H +
0.00% V

[NR-eGR] Overflow after Early Global Route 0.10% H + 0.00% V

FEarly Global Route congestion estimation runtime: 0.16 seconds, mem
= 3344.4M

Local HotSpot Analysis: normalized max congestion hotspot area =
0.44, normalized total congestion hotspot area = 0.89 (area is in
unit of 4 std-cell row bins)

Skipped repairing congestion.

[NR-eGR] ———==="—="—"="—"—"—"——"————— =~ =~~~ —m—m e — ——————————— - —————
[NR-eGR] M1 (1F) length: 0.000000e+00um, number of vias: 12874
[NR-eGR] M2 (2H) length: 6.319813e+04um, number of vias: 22430
[NR-eGR] M3 (3V) length: 3.538140e+04um, number of vias: 3637
[NR-eGR] M4 (4H) length: 8.191603e+04um, number of vias: 757
[NR-eGR] M5 (5V) length: 1.120127e+04um, number of vias: 0
[NR-eGR] Total length: 1.916968e+05um, number of vias: 39698
[NR-eGR] ———=———————— -~ —— o m e —
[NR-eGR] Total eGR-routed clock nets wire length: 2.471223e+03um
[NR=€GR] —mmmmm e e oo oo oo

Early Global Route wiring runtime:

Tdgp not

End of congRepair

* Kk Kk
* kK ok Kk Kk
* k k kK

Tdgp not

* % %

Severity
WARNING
sd. T...
WARNING

3247 .4M
skip clearing
real=0:00:00.0)

0.10 seconds,
successfully inited but do clear!
(cpu=0:00:00.3,

mem =

Finishing place design default flow ***
Total cpu
Total real time
**place design

0:0:19

20

cpu 0:19, real = 0:
successfully inited but do clear!

0:0:
= 0: 0:20, mem = 3247.4M **

skip clearing

Summary of all messages that are not suppressed in this session:

ID Count Summary
IMPDC-1629 2 The default delay limit was set to
IMPSP-9025 1 No scan chain specified/traced.

58/112

*** Message Summary: 3 warning(s), 0 error(s)
flow.cputime flow.realtime
timing.setup.wns snapshot

UM: *

Current design flip-flop statistics

Single-Bit FF Count : 500

Multi-Bit FF Count : 0

Total Bit Count : 500

Total FF Count : 500

Bits Per Flop : 1.000
flow.cputime flow.realtime

timing.setup.wns snapshot

UM: 24915.7

place design

0

timing.setup.tns

final

timing.setup.tns

164110

The default placing option for place design is timing-driven. If design views (here bc for hold and
wc for setup) are defined, it will place the cells considering timing constraints. This way, wires

are appearing. But these wires are not yet the final ones. Click on the [E button to see the shape
of the placed entities. See how is the different blocks are placed.

You can click back on to see the actual placement of wires. At this point the wires are not yet

optimally placed, and timing is not yet met.

’ nﬂ_rﬂmirﬂmﬂ [T i T

TLAR

HITIeR] 1l

59/112

Run the check place command :

@innovus 346> check place

Begin checking placement ... (start mem=3433.8M, init mem=3450.6M)
*info: Placed = 4928 (Fixed = 1057)

*info: Unplaced = 0

Placement Density:24.83%(13391/53925)

Placement Density (including fixed std cells) :25.88%(14150/54684)
Finished check place (total: cpu=0:00:00.1, real=0:00:00.0; vio
checks: cpu=0:00:00.1, real=0:00:00.0; mem=3450.6M)

0

As you can see from the density check, the density is only around 25%. The remaining space will
be used to insert buffers or inverters (e.g., when synthesizing the clock tree) or to replace cells
with other cells with the same function, but with higher drive capabilities (e.g., when performing
timing-driven optimizations).

Defining a floorplan that allows a sufficiently low core utilization is important, though, as we will
see in the following part, is not always enough. Targeting 60% can be a good starting point, here
we are much below, which means we have a lot of room to play with.

4.12.2.DO THE PRECTS TIMING OPTIMIZATION

The opt design command can be used at various stages of the design to reoptimize the netlist
under various constraints. It does optimize the design in the context of the timing constraints.
Options such as -pre_cts, -post_cts, -post_route control general optimization associated with these
stages. Specific optimizations such as -hold, -setup can be used to meet the timing constraints in
hold or setup.

Latest optimizations of the command suggest to use place opt design, merging both place and
opt_design -pre_cts commands.

innovus > opt_design -pre_cts

**opt design ... cpu = 0:00:00, real = 0:00:00, mem = 2555.09M,
totSessionCpu=6:56:43 **

Executing: place opt design -opt

**INFO: User settings:

delaycal default net delay 1000ps
delaycal default net load 0.5pf
delaycal default net load ignore for ilm 0
delaycal ignore net load false
delaycal use default delay limit 1000
setAnalysisMode -cts postCTS
setAnalysisMode -virtualIPO false
setDelayCalMode -engine aae
design bottom routing layer M2

design process node 65
design_ top routing layer M5
extract rc coupling cap threshold 0.1
extract rc _engine pre route
extract rc relative cap threshold 1.0
extract rc total cap threshold 0.0

60/112

* ok cpu/real =

place opt design #1 [begin] totSession
6:56:42.7/45:38:53.7 (0.2), mem = 3288.9M

No user sequential activity specified, applying default sequential
activity of "0.2" for Dynamic Power reporting.

'set _default switching activity' finished successfully.

*** Starting GigaPlace ***

#optDebug: fT-E <X 2 3 1 0>

xxx GlobalPlace #1 [begin] totSession cpu/real =
6:56:42.8/45:38:53.7 (0.2), mem = 3318.9M

*** GlobalPlace #1 [finish] cpu/real = 0:00:00.0/0:00:00.0 (0.0),
totSession cpu/real = 6:56:42.8/45:38:53.7 (0.2), mem = 3318.9M
**opt design cpu 0:00:00, real = 0:00:00, mem = 2563.7M,
totSessionCpu=6:56:43 **

**INFO: set db design flow effort standard -> setting 'set db

for the duration of this command.
totSession cpu/real = 6:56:42.8/45:38:53.7

opt _all end points true'
*** TnitOpt #1 [begin]
(0.2), mem = 3318.9M
GigaOpt running with 1 threads.

Updating RC grid for preRoute extraction

Initializing multi-corner resistance tables

AAE DB initialization (MEM=3324.89 CPU=0:00:00.0 REAL=0:00:00.0)

Setting timing disable library data to data checks to 'true'.
Setting timing disable user data to data checks to 'true'.

**opt design cpu = 0:00:02, real = 0:00:03, mem = 2549.1M,
totSessionCpu=6:56:45 **

* k x * Kk x

opt design -pre cts
DRC Margin: user margin 0.0; extra margin 0.2
Setup Target Slack: user slack 0; extra slack 0.0
Hold Target Slack: user slack O

**WARN: (IMPOPT-3195): Analysis mode has changed.

Type 'man IMPOPT-3195'" for more detail.

Multi-VT timing optimization disabled based on library information.
[NR-eGR] Started Early Global Route kernel (Curr Mem: 3324.89 MB)
[NR-eGR] Num Prerouted Nets = 0 Num Prerouted Wires = 0

[NR-eGR] Read numTotalNets=4188 numIgnoredNets=0

[NR-eGR] There are 1 clock nets (0 with NDR).

[NR-eGR] ============ Routing rule table ============

[NR-eGR] Rule id: 0O Nets: 4188

[NR-eGR] ==

[NR-eGR]

[NR-eGR] Layer group l: route 4188 net(s) in layer range [2, 5]
[NR-eGR] Early Global Route overflow of layer group 1l: 0.13% H +
0.00% V. EstWL: 1.894608e+05um

[NR-eGR] Overflow after Early Global Route (GR compatible) 0.08% H +
0.00% V

[NR-eGR] Overflow after Early Global Route 0.11% H + 0.00% V
[NR-@GR] == m o m oo oo oo oo oo -
[NR-eGR] M1 (1F) length: 0.000000e+00um, number of vias: 12874
[NR-eGR] M2 (2H) length: 6.356315e+04um, number of vias: 22583
[NR-eGR] M3 (3V) length: 3.553300e+04um, number of vias: 3653
[NR-eGR] M4 (4H) length: 8.196267e+04um, number of vias: 720
[NR-eGR] M5 (5V) length: 1.113550e+04um, number of vias: 0
[NR-eGR] Total length: 1.921943e+05um, number of vias: 39830
[NR-eGR] ————=——————m—mmmm mm —m
[NR-eGR] Total eGR-routed clock nets wire length: 2.591127e+03um

61/112

[NR-eGR] Finished Early Global Route kernel (CPU: 0.23 sec, Real:
0.27 sec, Curr Mem: 3324.81 MB)
Extraction called for design 'top 32b' of dinstances=4664 and
nets=4190 using extraction engine 'pre route'
pre route RC Extraction called for design top 32b.
RC Extraction called in multi-corner (2) mode.
RCMode: PreRoute
RC Corner Indexes 0 1

Capacitance Scaling Factor 1.00000 1.00000
Resistance Scaling Factor 1.00000 1.00000
Clock Cap. Scaling Factor 1.00000 1.00000
Clock Res. Scaling Factor 1.00000 1.00000
Shrink Factor 1.00000

PreRoute extraction is honoring NDR/Shielding/ExtraSpace for clock
nets.

Using Quantus QRC technology file

Updating RC grid for preRoute extraction

Initializing multi-corner resistance tables

PreRoute RC Extraction DONE (CPU Time: 0:00:00.1 Real Time:
0:00:00.0 MEM: 3324.809M)

Starting delay calculation for Setup views

i E AR R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEE RS
HHEHH S

Design Stage: PreRoute

Design Name: top 32b

Design Mode: 65nm

Analysis Mode: MMMC OCV

Parasitics Mode: No SPEF/RCDB

Signoff Settings: SI Off

iZisaaE RS EERE AR R AR RS EREE RS EEEEEE
A E SRS EEEEES

Start delay calculation (fullDC) (1 T). (MEM=3337.36)

Total number of fetched objects 4188

AAE INFO: Total number of nets for which stage creation was skipped
for all views O

End delay calculation. (MEM=3428.46 CPU=0:00:00.9 REAL=0:00:01.0)
End delay calculation (fullDC) . (MEM=3372.77 CPU=0:00:01.3
REAL=0:00:01.0)

KK Done Building Timing Graph (cpu=0:00:01.7 real=0:00:02.0
totSessionCpu=6:56:48 mem=3372.8M)

H o o e

Setup views included:
analysis setup wc

e fomm - +
\ Setup mode | all |
o fomm - +
\ WNS (ns):| -23.927 |
\ TNS (ns):|-11866.6

| Violating Paths: | 629 |
| All Paths: | 1408 |
o e +

62/112

This is reporting the current status of the slack (WNS — worst negative slack), which is above
20ns. As the place command did not optimize the timing, this is expected.

e = — e o —
-+

| | Real | Total

\ DRVs Fomm e - tommm - i il
-

\ \ Nr nets (terms) | Worst Vio | Nr nets(terms)
\

o = - e o= — o —
-+

\ max_cap | 50 (50) \ -1.214 \ 50 (50) |
\ max_tran | 228 (1413) | -28.054 | 228 (1413) |
\ max fanout | 7 (7) | -444 | 7 (7) |
\ max length | 0 (0) | 0 \ 0 (0) |
o - - o — o= — o -

Density: 23.599%

The initial density is around 24%, and this will be the starting point of the optimization.

**opt design ... cpu = 0:00:05, real = 0:00:06, mem = 2616.2M,
totSessionCpu=6:56:48 **

*** TnitOpt #1 [finish] : cpu/real = 0:00:05.3/0:00:06.5 (0.8),
totSession cpu/real = 6:56:48.1/45:39:00.2 (0.2), mem = 3343.0M

** INFO : this run is activating medium effort placeOptDesign flow

*** Starting optimizing excluded clock nets MEM= 3343.0M) ***
*info: No excluded clock nets to be optimized.

**% Finished optimizing excluded clock nets (CPU Time= 0:00:00.0
MEM= 3343.0M) ***

The useful skew maximum allowed delay is: 0.3

xx K SimplifyNetlist #1 [begin] : totSession cpu/real
6:56:48.4/45:39:00.5 (0.2), mem = 3343.0M

Info: 1 clock net excluded from IPO operation.

Footprint cell information for calculating maxBufDist
*info: There are 22 candidate Buffer cells
*info: There are 20 candidate Inverter cells

Netlist preparation processing...

Removed 0 instance

*info: Marking 0 isolation instances dont touch
*info: Marking 0 level shifter instances dont touch

*** SimplifyNetlist #1 [finish] : cpu/real = 0:00:02.2/0:00:02.2
(1.0), totSession cpu/real = 6:56:50.6/45:39:02.7 (0.2), mem =
3397.4M

Begin: GigaOpt high fanout net optimization

GigaOpt HFN: use maxLocalDensity 1.2

GigaOpt Checkpoint: Internal optDRV -uselevelizedBufferTreeOnly
auxMaxFanoutCountLimit 500 -largeScaleFixing -maxIter 1 -

63/112

maxLocalDensity 1.2 -numThreads 1
preRouteDontEndWithRefinePlaceIncrSteinerRouteDC

-preCTS

**% DrvOpt #1 [begin] totSession cpu/real = 6:56:50.7/45:39:02.7
(0.2), mem = 3397.4M
Info: 1 clock net excluded from IPO operation.
*** DrvOpt #1 [finish] cpu/real = 0:00:02.0/0:00:02.0 (1.0),
totSession cpu/real = 6:56:52.7/45:39:04.7 (0.2), mem = 3397.4M
GigaOpt HFN: restore maxLocalDensity to 0.98
End: GigaOpt high fanout net optimization
Begin: GigaOpt DRV Optimization
GigaOpt Checkpoint: Internal OptDRV -max_tran -max_cap -
maxLocalDensity 1.2 -numThreads 1 -largeScaleFixing -maxIter 2 -
preCTS -preRouteDontEndWithRefinePlaceIncrSteinerRouteDC
**% DrvOpt #2 [begin] totSession cpu/real = 6:56:52.7/45:39:04.7
(0.2), mem = 3397.4M
Info: 1 clock net excluded from IPO operation.
e .
| max-tran | max-cap | max-fanout | max-length | setup
o
___ +
| nets | terms| wViol | nets | terms| wViol | nets | terms| nets | terms| WNS TNS
| #Buf | #Inv | #Resize|Density] Real | Mem |
e .
[263] 1688 -28.49] 70 70 -1.23] 7 7 0] 0] -23.93-
11866.63] 0l 0l 0] 23.60%] [
\ 3 3 -0.02] 0l 0l 0.00] 12| 12 0l 0] -3.30] -
154.13] 146 5 57| 24.07%] 0:00:01.0] 3476.8M|
\ 0l 0 0.00] 0l 0 0.00] 12 12 0l 0] -3.30] -
154.13] 0l 0 3] 24.08%] 0:00:00.0] 3476.8M]
e .
Check these tables from the innovus report, which is easier to read
*** Finish DRV Fixing (cpu=0:00:01.2 real=0:00:01.0 mem=3476.8M) ***
***% DrvOpt #2 [finish] cpu/real = 0:00:02.2/0:00:02.2 (1.0),
totSession cpu/real = 6:56:54.8/45:39:06.9 (0.2), mem = 3409.7M
End: GigaOpt DRV Optimization
GigaOpt DRV: restore maxLocalDensity to 0.98
**opt design cpu = 0:00:12, real = 0:00:13, mem = 2696.1M,
totSessionCpu=6:56:55 **
Active setup views:

analysis setup wc

Dominating endpoints: O

Dominating TNS: -0.000
Begin: GigaOpt Global Optimization
*info: use new DP (enabled)
GigaOpt Checkpoint: Internal globalOpt -maxLocalDensity 1.2 -
numThreads 1 -preCTS -rebufferAll -

preRouteDontEndWithRefinePlace
enableHighLayerOpt -maxIter 50

IncrSteinerRouteDC
-maxIterForLEPG 50

Info: 1 clock net excluded from IPO operation.
**% GlobalOpt #1 [begin] totSession cpu/real
(0.2), mem = 3409.7M

*info: 1 clock net excluded

*info: 2 special nets excluded.

*info: 2 no-driver nets excluded.

6:56:54.9/45:39:07.

64/112

** GigaOpt Global Opt WNS Slack -3.299 TNS Slack -154.130

o - to— - tom - to— - i b
R F o e +

\ WNS | TNS | Density | Real | Mem | Worst View
| Pathgroup | End Point |

fo—————— to—————— Fom—————— Fom - to—————— Fom e -
R F o e +

| -3.2991-154.130] 24.08% | 0:00:00.0| 3428.8M|analysis setup wc|
default| I MULT/res reg 63 /D |

\ -2.5791-112.102| 24 .17% | 0:00:02.0| 3474.5M|analysis_setup wc|
default| I MULT/res _reg 30 /D |

| -1.436| -49.799] 24.63%| 0:00:02.0] 3474.5M|analysis setup wc|
default| I MULT/res reg 30 /D |

| -1.436| -49.799] 24.63%| 0:00:00.0] 3474.5M|analysis setup wc|
default| I MULT/res reg 30 /D |

\ -0.509] -11.941| 25.25% | 0:00:03.0| 3478.6M|analysis setup wc|
default| I MULT/res reg 50 /D |

| -0.340| -7.344] 25.28%| 0:00:02.0] 3483.1M|analysis setup wc|
default| I MULT/res reg 25 /D |

\ -0.293| -4.873| 25.37% | 0:00:01.0| 3485.1M|analysis setup wc|
default| I MULT/res reg 25 /D |

| -0.293] -4.873] 25.37%] 0:00:00.0] 3485.1M|analysis setup wc|
default| I MULT/res reg 25 /D |

| -0.030] -0.177] 25.49%| 0:00:00.0] 3485.1M|analysis setup wc|
default| I MULT/res _reg 59 /D |

\ 0.000] 0.000] 25.51%| 0:00:00.0] 3485.1M| NA |
NA| NA |

o - to— - tom - to— - i b
R F o e +

*** Finish pre-CTS Global Setup Fixing (cpu=0:00:09.8 real=0:00:10.0
mem=3485.1M) ***

*** Finish pre-CTS Setup Fixing (cpu=0:00:09.8 real=0:00:10.0
mem=3485.1M) ***

** GigaOpt Global Opt End WNS Slack 0.000 TNS Slack 0.000

*** GlobalOpt #1 [finish] : cpu/real = 0:00:12.3/0:00:12.3 (1.0),
totSession cpu/real = 6:57:07.2/45:39:19.2 (0.2), mem = 3416.0M
End: GigaOpt Global Optimization

** % Timing Is met

*** Check timing (0:00:00.0)

GigaOpt Checkpoint: Internal reclaim -numThreads 1 -preCTS -force -
doRemoveUselessTerm -tgtSlackMult 3 -routeType -
noRouteTypeResizePolish -noViewPrune -weedwhack -nonlLegal -
nativePathGroupFlow

Info: 1 clock net excluded from IPO operation.

Begin: Area Reclaim Optimization

*** AreaOpt #1 [begin] : totSession cpu/real = 6:57:07.3/45:39:19.4
(0.2), mem = 3435.1M

Reclaim Optimization WNS Slack 0.000 TNS Slack 0.000 Density 25.51

| 25.51%| 0 0 0

| 25.51%| 0 0. 0: : .

| 25.49% | 5| 0.000| 0.000] 0:00:00.0| 3479.8M|
| 24.95%| 0 0 0

\ 24.92%| 0 0 0

65/112

\ 24.92%| 0| 0.000] 0.000] 0:00:00.0]
\ 24.92%| 0 0.000] 0.000] 0:00:00.0]
o= o e e o — +
Reclaim Optimization End WNS Slack 0.000 TNS Slac
24.92

End: Core Area Reclaim Optimization (cpu = 10:00
0:00:06.0) **

*** AreaOpt #1 [finish] cpu/real = 0:00:05.4/0

totSession cpu/real 6:57:12.7/45:39:24.38
Executing incremental physical updates
Executing incremental physical updates

(0.2),

End: Area Reclaim Optimization (cpu=0:00:05,
mem=3417.68M, totSessionCpu=6:57:13).

xx K IncrReplace #1 [begin] totSession
6:57:12.8/45:39:24.9 (0.2), mem = 3417.7M

*x *x % * k* *

Start incrementalPlace

No Views given,

SKP will enable view:
analysis setup wc

mem

use default active views for adaptive

3479.8M|
3479.8M|

k 0.000 Density

:05.4) (real

:00:05.4 (1.0),
3479.8M

real=0:00:006,

cpu/real

view pruning

[NR-eGR] Num Prerouted Nets = 0 Num Prerouted Wires = 0
[NR-eGR] Read numTotalNets=4444 numIgnoredNets=0
[NR-eGR] There are 1 clock nets (0 with NDR).
[NR-eGR] ============ Routing rule table ============
[NR-eGR] Rule id 0 Nets: 4444
[NR-eGR] ==
[NR-eGR]
[NR-eGR] Layer group 1l: route 4444 net(s) in layer range [2, 5]
[NR-eGR] Early Global Route overflow of layer group 1: 0.15% H +
0.00% V. EstWL: 1.895004e+05um
[NR-eGR] Overflow after Early Global Route (GR compatible) 0.12% H +
0.00% V
[NR-eGR] Overflow after Early Global Route 0.16% H + 0.00% V
Early Global Route congestion estimation runtime: 0.17 seconds, mem
= 3417.7M
Local HotSpot Analysis: normalized max congestion hotspot area =
0.44, normalized total congestion hotspot area = 0.89 (area 1is 1in
unit of 4 std-cell row bins)
=== incrementalPlace Internal Loop 1 ===
*** Finished SKP initialization (cpu=0:00:00.4, real=0:00:01.0)**%*
Iteration 8: Total net bbox 1.770e+05 (1.41e+05 3.56e+04)

Est. stn bbox = 2.078e+05 (1.69e+05 3.89e+04)

cpu = 0:00:00.4 real = 0:00:00.0 mem = 3397.2M
Iteration 9: Total net bbox = 1.752e+05 (1.39e+05 3.63e+04)

Est. stn bbox = 2.045e+05 (1.65e+05 3.97e+04)

cpu = 0:00:00.5 real = 0:00:01.0 mem = 3395.2M
Iteration 10: Total net bbox = 1.753e+05 (1.39e+05 3.66e+04)

Est. stn bbox = 2.046e+05 (1.65e+05 4.00e+04)

cpu = 0:00:08.3 real = 0:00:08.0 mem = 3393.2M
Iteration 11: Total net bbox 1.766e+05 (1.39e+05 3.78e+04)

Est. stn bbox = 2.057e+05 (1.64e+05 4.12e+04)

cpu = 0:00:05.6 real = 0:00:06.0 mem = 3399.2M
Iteration 12: Total net bbox 1.778e+05 (1.39e+05 3.84e+04)

Est. stn bbox = 2.069e+05 (1.65e+05 4.18e+04)

cpu = 0:00:00.5 real = 0:00:00.0 mem = 3395.2M
Move report: Timing Driven Placement moves 3863 insts, mean move:

15.59 um, max move: 92.46 um

66/112

Max move on 1inst (I MULT/FE OFC239 reg op2 30): (560.40,
115.40) --> (647.16, 121.10)

Finished Incremental Placement (cpu=0:00:16.2, real=0:00:16.0,
mem=3395.2M)
**WARN: (IMPSP-9025):No scan chain specified/traced.
Type 'man IMPSP-9025' for more detail.
*** Starting place detail (6:57:29 mem=3395.9M) **x*
Total net Dbbox length = 1.788e+05 (1.402e+05 3.864e+04) (ext =
2.577e+04)
Move report: Detail placement moves 3863 insts, mean move: 0.75 um,
max move: 27.92 um

Max move on inst (FE OFC149 addr mem2 1): (769.90, 73.98) -->
(797.80, 74.00)

Runtime: CPU: 0:00:00.3 REAL: 0:00:01.0 MEM: 3395.9MB
Summary Report:
Instances move: 3863 (out of 3863 movable)
Instances flipped: O
Mean displacement: 0.75 um
Max displacement: 27.92 um (Instance: FE OFC149 addr mem2 1) (769.9,
73.981) -> (797.8, 74)

Length: 4 sites, height: 1 rows, site name: CP65 DST, cell type:
SEN_ BUF 1

Violation at original loc: Placement Blockage Violation
Total net Dbbox length = 1.760e+05 (1.373e+05 3.864e+04) (ext =
2.520e+04)
Runtime: CPU: 0:00:00.3 REAL: 0:00:01.0 MEM: 3395.9MB
*** Finished place detail (6:57:30 mem=3395.9M) **x*

[NR-eGR] Num Prerouted Nets = 0 Num Prerouted Wires = 0

[NR-eGR] Read numTotalNets=4444 numIgnoredNets=0

[NR-eGR] There are 1 clock nets (0 with NDR).

[NR-eGR] ============ Routing rule table ============

[NR-eGR] Rule id: O Nets: 4444

[NR-eGR] ==

[NR-eGR]

[NR-eGR] Layer group l1l: route 4444 net(s) in layer range [2, 5]
[NR-eGR] Early Global Route overflow of layer group 1: 0.15% H +

0.00% V. EstWL: 1.840842e+05um

[NR-eGR] Overflow after Early Global Route (GR compatible) 0.10% H +
0.00% VvV

[NR-eGR] Overflow after Early Global Route 0.13% H + 0.00% V

Early Global Route congestion estimation runtime: 0.17 seconds, mem
= 3393.9M

Local HotSpot Analysis: normalized max congestion hotspot area =

0.89, normalized total congestion hotspot area = 1.33 (area 1is in
unit of 4 std-cell row bins)

[NR-=€@GR] == mmmm oo oo oo oo -
[NR-eGR] M1 (1F) length: 0.000000e+00um, number of vias: 13416
[NR-eGR] M2 (2H) length: 6.043116e+04um, number of vias: 22887
[NR-eGR] M3 (3V) length: 3.702324e+04um, number of vias: 3751
[NR-eGR] M4 (4H) length: 7.965043e+04um, number of vias: 739
[NR-eGR] M5 (5V) length: 9.729430e+03um, number of vias: 0
[NR-eGR] Total length: 1.868343e+05um, number of vias: 40793
[NR-@GR] mmm o m oo oo oo o o -

[NR-eGR] Total eGR-routed clock nets wire length: 2.269565e+03um

67/112

Early Global Route wiring runtime: 0.11 seconds, mem = 3393.9M
0 delay mode for cte disabled.

*** Finished incrementalPlace (cpu=0:00:17.1, real=0:00:17.0)***
Start to check current routing status for nets...
All nets are already routed correctly.
End to check current routing status for nets (mem=3373.9M)
Extraction called for design '"top 32b' of dinstances=4920 and
nets=4446 using extraction engine 'pre route'
pre route RC Extraction called for design top 32b.
RC Extraction called in multi-corner (2) mode.
RCMode: PreRoute

RC Corner Indexes 0 1

Capacitance Scaling Factor 1.00000 1.00000
Resistance Scaling Factor 1.00000 1.00000
Clock Cap. Scaling Factor 1.00000 1.00000
Clock Res. Scaling Factor 1.00000 1.00000
Shrink Factor 1.00000

PreRoute extraction is honoring NDR/Shielding/ExtraSpace for clock
nets.

Using Quantus QRC technology file

Updating RC grid for preRoute extraction

Initializing multi-corner resistance tables

PreRoute RC Extraction DONE (CPU Time: 0:00:00.1 Real Time:
0:00:00.0 MEM: 3373.914M)

Compute RC Scale Done

**opt design ... cpu = 0:00:48, real = 0:00:49, mem = 2671.7M,
totSessionCpu=6:57:31 **

ifitsssas A EAEEASRE RS ARRARERERERRRERREREERER R R RS
SRR SRR EEEEEEE

Design Stage: PreRoute

Design Name: top 32b

Design Mode: 65nm

Analysis Mode: MMMC OCV

Parasitics Mode: No SPEF/RCDB

Signoff Settings: SI Off

s saaaE A RE AR EER AR R AR RS R R RS
i EE XSS EEEEEEES

Start delay calculation (fullDC) (1 T). (MEM=3378.46)

Total number of fetched objects 4444

AAE INFO: Total number of nets for which stage creation was skipped
for all views O

End delay calculation. (MEM=3421.88 CPU=0:00:00.8 REAL=0:00:01.0)

H o 3 S o

End delay calculation (fullDC) . (MEM=3421.88 CPU=0:00:01.0
REAL=0:00:01.0)
*** TncrReplace #1 [finish] : cpu/real = 0:00:19.4/0:00:19.5 (1.0),

totSession cpu/real = 6:57:32.3/45:39:44.4 (0.2), mem = 3421.9M

***% Timing NOT met, worst failing slack is -0.193

*** Check timing (0:00:00.0)

Begin: GigaOpt Optimization in WNS mode

GigaOpt Checkpoint: Internal optTiming -maxLocalDensity 1.0 -
maxLocalDensityForHardenOpt 0.92 -numThreads 1 -preCTS -wtns -
integratedAreaOpt -pgMode all -ipoTgtSlackCoef 1.5 -effTgtSlackCoef
1 -nativePathGroupFlow -NDROptEffortAuto -usefulSkew -
nonlegalPlaceEcoBumpRecoveryInWNSOpt

Info: 1 clock net excluded from IPO operation.

68/112

*** WnsOpt #1 [begin] : totSession cpu/real = 6:57:32.4/45:39:44.5
(0.2), mem = 3437.9M

*info: 1 clock net excluded

*info: 2 special nets excluded.

*info: 2 no-driver nets excluded.

** GigaOpt Optimizer WNS Slack -0.193 TNS Slack -0.422 Density 24.92
OptDebug: Start of Optimizer WNS Pass O0:

e - - +
|Path Group| WNS | TNS |
o — - === +
|default | 0.643| 0.000]
| reg2reqg |-0.193|-0.422|
| HEPG |-0.1931-0.422]
|A1ll Paths |-0.193]|-0.422|
o —— - === +

Active Path Group: reg2reg

o o= - - e o —— -
e - Fmm e
—————— +

| WNS | ALl WNS | TNS | A1l TNS | Density | Real \ Mem
\ Worst View |Pathgroup| End Point |
o e i fo—— fom - e Fo— - o=
e tom Fm e
—————— +

\ -0.193] -0.193]| -0.422| -0.422| 24.92%| 0:00:00.0]
3473.0M|analysis setup wc| reg2reg| MEMO /ME
\

\ 0.008] 0.008] 0.000] 0.000] 24.95%| 0:00:00.0]
3499.6M|analysis setup wc| reg2req| I MULT/res reg 63 /D
\

\ 0.015] 0.015] 0.000] 0.000] 24.96% | 0:00:01.0]
3499.6M|analysis setup wc| reg2reg] I MULT/res reg 63 /D
\

\ 0.029] 0.029] 0.000] 0.000] 24.98% | 0:00:00.0]
3499.6M|analysis setup wc| reg2req| I MULT/res reg 56 /D
\

\ 0.029] 0.029] 0.000] 0.000] 24.98% | 0:00:00.0]
3499.6M|analysis setup wc| reg2reg] I MULT/res reg 56 /D
o fo—m - to—————- tom - o o= -
i e e i
—————— +

Here it is progressively optimizing the reg2reg slack using the wc corner.

xx K Finish Core Optimize Step (cpu=0:00:00.6 real=0:00:01.0
mem=3499.6M) ***

*** Finished Optimize Step Cumulative (cpu=0:00:00.6 real=0:00:01.0
mem=3499.6M) ***
OptDebug: End of Optimizer WNS Pass O0:

- +-—-——- +-—-——- +
|Path Group| WNS | TNS |
Fom— +-———- +-———- +
|default [1.209]10.000 |
| reg2reg [0.02910.000|
| HEPG |0.02910.000 |

A1l Paths [0.029]0.000]

69/112

** GigaOpt Optimizer WNS Slack 0.029 TNS Slack 0.000 Density 24.98
*** Starting place detail (6:57:36 mem=3499.6M) **x*

Total net Dbbox length = 1.768e+05 (1.381e+05 3.869e+04) (ext =
2.520e+04)

Starting Small incrNP...
Skipped incrNP (cpu=0:00:00.0, real=0:00:00.0, mem=3499.6M)
End of Small incrNP (cpu=0:00:00.0, real=0:00:00.0)
Move report: Detail placement moves 25 insts, mean move: 0.97 um,
max move: 3.00 um
Max move on inst (I _MULT/FE RC 2 0): (534.20, 108.20) =-->
(537.20, 108.20)
Runtime: CPU: 0:00:00.1 REAL: 0:00:00.0 MEM: 3502.6MB
Summary Report:
Instances move: 25 (out of 3872 movable)
Instances flipped: O
Mean displacement: 0.97 um
Max displacement: 3.00 um (Instance: I _MULT/FE RC 2 0) (534.2, 108.2)
-> (537.2, 108.2)
Length: 8 sites, height: 1 rows, site name: CP65 DST, cell type:
SEN_INV_AS 5
Total net Dbbox length = 1.768e+05 (1.381le+05 3.870e+04) (ext =
2.520e+04)
Runtime: CPU: 0:00:00.1 REAL: 0:00:00.0 MEM: 3502.6MB
*** Finished place detail (6:57:36 mem=3502.6M) ***
*** maximum move = 3.00 um ***
*** Finished re-routing un-routed nets (3499.6M) ***

KK Finish Physical Update (cpu=0:00:00.3 real=0:00:00.0
mem=3499.6M) ***

** GigaOpt Optimizer WNS Slack 0.029 TNS Slack 0.000 Density 24.98
OptDebug: End of Setup Fixing:

|default [1.20910.000 |
| reg2reg [0.02910.000]
| HEPG [0.02910.000]
|A1l Paths [0.029]0.000|

KKK Finish pre-CTS Setup Fixing (cpu=0:00:01.2 real=0:00:01.0
mem=3499.6M) ***

**x* WnsOpt #1 [finish] : cpu/real = 0:00:03.5/0:00:03.5 (1.0),
totSession cpu/real = 6:57:35.9/45:39:48.0 (0.2), mem = 3433.6M
End: GigaOpt Optimization in WNS mode

** % Timing Is met

*** Check timing (0:00:00.0)

GigaOpt Checkpoint: Internal reclaim -numThreads 1 -customPhyUpdate
-noGCompAndPhase -ensureOneAreaReclaim -force -svrReclaim -
rtrShortNets -preCTS -tgtSlackMult 2 -wtns -noRouteTypeResizePolish
-noViewPrune -nativePathGroupFlow

Info: 1 clock net excluded from IPO operation.

Begin: Area Reclaim Optimization

70/112

*** AreaOpt #2 [begin] : totSession cpu/real = 6:57:36.0/45:39:48.2
(0.2), mem = 3452.6M
Reclaim Optimization WNS Slack 0.000 TNS Slack 0.000 Density 24.98

- - - - = - +
| Density | Commits | WNS | TNS | Real | Mem |
t——— t———————— t——— t——————— e ———————— t——————— +
| 24.98% | - 0.000 | 0.000 | 0:00:00.0| 3452.06M|
| 24.98% | 0| 0.000 | 0.000] 0:00:00.0] 3452.6M|
| 24.96% | 4 | 0.000] 0.000] 0:00:00.0] 3495.3M|
| 24.84% | 77 | 0.000] 0.000 | 0:00:02.0] 3495.3M|
| 24.83%| 7 0.000] 0.000 | 0:00:00.0|] 3495.3M|
| 24.83%| 0 0.000 | 0.000] 0:00:00.0| 3495.3M|
| 24.83%| 0| 0.000 | 0.000] 0:00:00.0| 3495.3M|

Reclaim Optimization End WNS Slack 0.000 TNS Slack 0.000 Density
24.83
End: Core Area Reclaim Optimization (cpu = 0:00:02.9) (real
0:00:03.0) =*x*
*** Starting place detail (6:57:39 mem=3495.3M) **x*
Total net Dbbox length = 1.768e+05 (1.381e+05 3.870e+04) (ext =
2.520e+04)
Move report: Detail placement moves 0 insts, mean move: 0.00 um, max
move: 0.00 um
Runtime: CPU: 0:00:00.0 REAL: 0:00:00.0 MEM: 3495.3MB
Summary Report:
Instances move: 0O (out of 3868 movable)
Instances flipped: O
Mean displacement: 0.00 um
Max displacement: 0.00 um
Total net Dbbox length = 1.768e+05 (1.381e+05 3.870e+04) (ext =
2.520e+04)
Runtime: CPU: 0:00:00.1 REAL: 0:00:00.0 MEM: 3495.3MB
*** Finished place detail (6:57:39 mem=3495.3M) **x*
*** maximum move = 0.00 um ***
*** Finished re-routing un-routed nets (3495.3M) **%*

xx K Finish Physical Update (cpu=0:00:00.2 real=0:00:00.0
mem=3495.3M) ***

*** AreaOpt #2 [finish] : cpu/real = 0:00:03.1/0:00:03.1 (1.0),
totSession cpu/real = 6:57:39.2/45:39:51.3 (0.2), mem = 3495.3M
End: Area Reclaim Optimization (cpu=0:00:03, real=0:00:03,

mem=3433.23M, totSessionCpu=6:57:39).
Begin: GigaOpt postEco DRV Optimization

GigaOpt Checkpoint: Internal optDRV -inPostEcoStage -
smallScaleFixing -maxIter 3 -max_ tran -max cap -maxLocalDensity 0.98
-numThreads 1 -preRouteDontEndWithRefinePlacelIncrSteinerRouteDC -
preCTS

*** DrvOpt #3 [begin] : totSession cpu/real = 6:57:39.2/45:39:51.3

(0.2), mem = 3433.2M
Info: 1 clock net excluded from IPO operation.

\ max—-tran | max—-cap | max—-fanout | max-—
length | setup | | | | |

71112

__________________ +

| nets | terms| wViol | nets | terms| wViol | nets | terms| nets
| terms| WNS | TNS | #Buf | #Inv | #Resize|Density|
Real | Mem |

+ __
__________________ +

\ 3 3 -0.02] 0] 0] 0.00| 12 12|
0| 0] 0.01] 0.00] 0 0] 0] 24.83%]
\ \

\ 0] 0| 0.00] 0] 0| 0.00| 12 12
0| 0] 0.01] 0.00] 3 0] 0] 24.83%]
0:00:00.0 3498.1M|

\ 0] 0| 0.00] 0] 0| 0.00| 12 12
0| 0] 0.01] 0.00] 0 0] 0] 24.83%]
0:00:00.0| 3498.1M|

*** Finish DRV Fixing (cpu=0:00:00.1 real=0:00:00.0 mem=3498.1M) ***

*** DrvOpt #3 [finish] : cpu/real = 0:00:01.0/0:00:01.0 (1.0),
totSession cpu/real = 6:57:40.2/45:39:52.3 (0.2), mem = 3435.0M
End: GigaOpt postEco DRV Optimization

Running refinePlace -preserveRouting true -hardFence false

*** Starting place detail (6:57:40 mem=3435.0M) ***

Starting Small incrNP...
Skipped incrNP (cpu=0:00:00.0, real=0:00:00.0, mem=3435.0M)
End of Small incrNP (cpu=0:00:00.0, real=0:00:00.0)
Move report: Detail placement moves 3 insts, mean move: 0.67 um, max
move: 1.00 um
Max move on inst (U543): (334.40, 74.00) --> (335.40, 74.00)
Runtime: CPU: 0:00:00.1 REAL: 0:00:00.0 MEM: 3435.0MB
Summary Report:
Instances move: 3 (out of 3871 movable)
Instances flipped: 0
Mean displacement: 0.67 um
Max displacement: 1.00 um (Instance: U543) (334.4, 74) -> (335.4,
74)
Length: 4 sites, height: 1 rows, site name: CP65 DST, cell type:
SEN _NR2 S 0P5
Runtime: CPU: 0:00:00.1 REAL: 0:00:00.0 MEM: 3435.0MB
*** Finished place detail (6:57:40 mem=3435.0M) **x*

Active setup views:
analysis setup wc
Dominating endpoints: O
Dominating TNS: -0.000

Extraction called for design '"top 32b' of 1instances=4928 and
nets=4454 using extraction engine 'pre route'

pre route RC Extraction called for design top 32b.

RC Extraction called in multi-corner (2) mode.

RCMode: PreRoute

72/112

RC Corner Indexes 0 1

Capacitance Scaling Factor 1.00000 1.00000
Resistance Scaling Factor 1.00000 1.00000
Clock Cap. Scaling Factor 1.00000 1.00000
Clock Res. Scaling Factor 1.00000 1.00000
Shrink Factor 1.00000

PreRoute extraction is honoring NDR/Shielding/ExtraSpace for clock
nets.

Using Quantus QRC technology file

Skipped RC grid update for preRoute extraction.

Initializing multi-corner resistance tables

PreRoute RC Extraction DONE (CPU Time: 0:00:00.1 Real Time:
0:00:00.0 MEM: 3399.273M)

Skewing Data Summary (End of FINAL)

Starting delay calculation for Setup views

SRR R R R R R AR R EEEEEEEEEEEEEEEEEEEEEEEEEEEE
i EEEEEEEEEEEES

Design Stage: PreRoute

Design Name: top 32b

Design Mode: 65nm

Analysis Mode: MMMC OCV

Parasitics Mode: No SPEF/RCDB

Signoff Settings: SI Off

EisaEEE RS EERE R R AR AR R RS RS SRR EEEEEEEEEEEEEEE
S E A SR EEEES

Start delay calculation (fullDC) (1 T). (MEM=3403.82)

Total number of fetched objects 4452

AAE INFO: Total number of nets for which stage creation was skipped
for all views O

End delay calculation. (MEM=3439.23 CPU=0:00:00.8 REAL=0:00:01.0)
End delay calculation (fullDC) . (MEM=3439.23 CPU=0:00:01.0
REAL=0:00:01.0)

KK Done Building Timing Graph (cpu=0:00:01.2 real=0:00:01.0
totSessionCpu=6:57:42 mem=3439.2M)

H o HE e

[NR-eGR] Num Prerouted Nets = 0 Num Prerouted Wires = 0

[NR-eGR] Read numTotalNets=4452 numIgnoredNets=0

[NR-eGR] There are 1 clock nets (0 with NDR).

[NR-eGR] ============ Routing rule table ============

[NR-eGR] Rule id: 0 Nets: 4452

[NR-eGR] ==

[NR-eGR]

[NR-eGR] Layer group 1l: route 4452 net(s) in layer range [2, 5]
[NR-eGR] Early Global Route overflow of layer group 1: 0.14% H +

0.00% V. EstWL: 1.849824e+05um

[NR-eGR] Overflow after Early Global Route (GR compatible) 0.08% H +
0.00% V

[NR-eGR] Overflow after Early Global Route 0.11% H + 0.00% V

[NR-eGR] Finished Early Global Route kernel (CPU: 0.15 sec, Real:
0.20 sec, Curr Mem: 3447.24 MB)

[hotspot] +-—--=-----—--—- e - +

[hotspot] | | max hotspot | total hotspot |

[hotspot] +--—-=-----—---- - - +

[hotspot] | normalized | 0.89 | 1.78 |

[hotspot] +-—--7-—---———- - === +t-——————————— === +

73/112

Local HotSpot Analysis: normalized max congestion hotspot area =
0.89, normalized total congestion hotspot area = 1.78 (area 1is 1in
unit of 4 std-cell row bins)

[hotspot] top 3 congestion hotspot bounding boxes and scores of
normalized hotspot

[hotspot] +----- o e — tom—————————
-——+

[hotspot] | top | hotspot bbox | hotspot score
\

[hotspot] +----- - - e -
-——+

[hotspot] | 1 l 331.40 72.20 345.80 86.60 | 0.89
\

[hotspot] +----- e e ittt -
-——+

[hotspot] | 2 \ 662.60 65.00 677.00 79.40 | 0.44
\

[hotspot] +----- e e ittt -
-——+

[hotspot] | 3 l 662.60 79.40 677.00 93.80 | 0.44
\

[hotspot] +----- e e i -
-——+

Reported timing to dir ./timingReports

**opt design ... cpu = 0:00:59, real = 0:01:00, mem = 2747.5M,
totSessionCpu=6:57:42 **

Setup views included:
analysis setup wc

e - - e e o= = +

| Setup mode | all | reg2reg | default |
e - - e e o= +

\ WNS (ns) :| 0.005 | 0.005 | 1.2009 \

\ TNS (ns) : | 0.000 | 0.000 | 0.000 \

| Violating Paths: | 0 | 0 | 0 |

\ All Paths:| 1408 | 650 | 762

B - o o= +
o= = B e o —
-+

| | Real | Total

\ DRVs Fomm e - tommm - i il
-

\ | Nr nets(terms) | Worst Vio | Nr nets (terms)
\

o = - e o= — o —
-+

\ max_ cap | 0 (0) | 0.000 | 0 (0) |
\ max tran | 0 (0) | 0.000 | 0 (0) |
\ max_ fanout | 12 (12) | -25 \ 12 (12) |
\ max length | 0 (0) | 0 \ 0 (0) |
o - - o — o= — o -

74/112

Density: 24.833%
Routing Overflow: 0.11% H and 0.00% V

**opt design ... cpu = 0:01:00, real = 0:01:02, mem = 2750.1M,
totSessionCpu=6:57:42 **
**WARN: (IMPOPT-3195): Analysis mode has changed.

Type 'man IMPOPT-3195' for more detail.
*** Finished opt design ***

flow.cputime flow.realtime timing.setup.tns
timing.setup.wns snapshot
UM: * 0.000 ns 0.005
ns final

Current design flip-flop statistics

Single-Bit FF Count : 500
Multi-Bit FF Count : 0
Total Bit Count : 500
Total FF Count : 500
Bits Per Flop : 1.000
flow.cputime flow.realtime timing.setup.tns
timing.setup.wns snapshot
UM: 88.08 222

opt design prects
#optDebug: fT-D <X 1 0 0 0>
**place opt design ... cpu = 0:01:00, real

* *

*** Finished GigaPlace ***

0:01:03, mem = 3373.5M

*** Summary of all messages that are not suppressed in this session:

Severity 1ID Count Summary
WARNING IMPSP-9025 1 No scan chain specified/traced.
WARNING IMPOPT-3195 2 Analysis mode has changed.

*** Message Summary: 3 warning(s), 0 error(s)

*** place opt design #1 [finish] : cpu/real = 0:01:00.1/0:01:03.1
(1.0), totSession cpu/real = 6:57:42.8/45:39:56.8 (0.2), mem =
3373.5M

At this point the optimization is finished and the tool did not point any warnings or errors.

Let’s check the worst setup path and check it. The -late option puts the report timing in setup
check, and extracts the corresponding worst setup time. Here as you can see the path being
reported is in the multiplier. As post synthesis, it does show you the details of the path and the
contribution of each gate in the timing analysis. Parasitics contributions are collapsed on the timing
of the gates, the fanout column gives some information on the load of the corresponding gate.

@innovus 353> report timing -late
###

Generated by: Cadence Innovus 20.14-s095 1
0S: Linux x86 64 (Host ID edasrvl)
Generated on: Fri Nov 10 11:08:28 2023
Design: top 32b
Command: report timing -late

B R R R
Path 1: MET (0.005 ns) Setup Check with Pin I MULT/res reg 22 /CK->D

75/112

View:
Group:
Startpoint:
Clock:
Endpoint:
Clock:

Clock Edge:
Src Latency:
Net Latency:

Arrival:

Setup:

Cppr Adjust:
Required Time:
Launch Clock:
Data Path:
Slack:

Timing Point
Delay Arrival
ns) (ns)

o+ + +

I+

I+

analysis setup wc

I _MULT/reg_opl_reg_ 2 /CK

0.000

I_MULT/reg_opl_reg_2 /Q

.234 0.234
I_MULT/U1607/X
.150 0.384
I_MULT/U681/X
.160 0.544

I MULT/FE OFC217 nl369/X

.572 1.116
I_MULT/U1600/X
.533 1.649
I_MULT/U2025/X
.250 1.899
I_MULT/U2026/X
.212 2.110
I_MULT/U989/X
.114 2.224
I_MULT/U75/X
.104 2.328
I_MULT/U2033/X
.122 2.449
I_MULT/U2036/X
.111 2.560
I_MULT/U2038/X
.121 2.681
I_MULT/U2039/X
.106 2.787
I_MULT/U2049/X
.095 2.882

I _MULT/U689/X
.095 2.976
I_MULT/U811/X
111 3.087
I_MULT/U2070/X
.121 3.208
I_MULT/U114/X
.105 3.313
I_MULT/U103/X
.107 3.420
I_MULT/U2298/X
.577 3.997
I_MULT/U77/X
.354 4.352

clk
(R) I_MULT/reg_opl_reg_2_ /CK
(R) clk
(R) I_MULT/res _reg 22 /D
(R) clk
Capture Launch
4.500 0.000
0.000 0.000
0.000 (1) 0.000 (1)
4.500 0.000
0.143
0.000
4.357
0.000
4.352
0.005
Flags Arc Edge
clcz2 CK R
clc2 CK->0Q R
ClC2 A2->X F
Clc2 B->X R
clcz A->X R
cicz2 A2->X F
ClC2 A2->X F
clc2 Al->X F
clc2 A2->X R
ClC2 A2->X F
Cclc2 Al->X R
cClc2 Al->X F
Cclc2 A2->X R
ClC2 A2->X F
clc2 Al->X R
clc2 Al->X F
clcz2 Al->X R
ClC2 A2->X F
clc2 A->X R
Cclc2 Al->X F
cicz2 A2->X R
clc2 Al->X R

(arrival) 503
SEN FDPRBQ D 1P5 9
SEN_EO2 S O0P5 3
SEN_ND2B_V1DG_1 6
SEN_BUF 1 29
SEN OAI21 S 0P5 1
SEN_EO2 S O0P5 2
SEN_OR2 DG 1 2
SEN AOI21 G 1 2
SEN_OAI21 G 1 2
SEN_AOI21 G 1 2
SEN_OAI21 G 1 2
SEN_AOI21 T 1 2
SEN_OAI21 G 2 2
SEN_AOI21 T 2 2
SEN_OAI21 G 2 2
SEN_AOI21 3 2
SEN_OAI21 s 3 2
SEN_INV_0P8 3
SEN_OAI21 s 1 1
SEN_EN2 0P5 1
SEN_A022 DG 1 1

76/112

I MULT/res reg 22 /D cic2 D R SEN FDPRBQ D 1 1 0.138
0.000 4.352

Save the design state as DB/tutorial/top 32b place with the write db command

Save the current state of the design in the snapshot stack and call it place
pop_snapshot stack
create snapshot -name place

4.13. SYNTHESIZING THE CLOCK TREE

As the paths that will propagate the clock signal in the design are not necessarily balanced, some
registers may receive the active clock edge later than others (clock skew) and may therefore violate
the assumed synchronous design operation. The clock tree synthesis (or optimization) aims at
minimizing the clock skew by inserting clock buffers'>.

4.13.1.DISPLAY THE INITIAL CLOCK TREE

1. In the Innovus main menu, select Tools > Design Browser....

In the Design Browser window, select the c1k net in the Net part.
Deselect the visibility toggle V of the Net item.

After having observed the clock tree, exit the Design Browser window.
Select the visibility toggle V of the Net item.

el ol

cadence

©8 x[F%IE L & B

% 0 B

=
IR
(E

4.13.2.SYNTHESIZE THE CLOCK TREE

As you can see in the previous screenshot, the clock signal is extremely long and does connect to
all the flipflops and the clock input of the memory. Let’s now replace this by a realistic clock tree
which will make sure that hold violations do not occur. The Clock Tree Synthesis (CTS) can also
be used to balance paths and reclaim a bit of time which can be lost in some parts of the circuit
because of the routing.

15 See also http://www.signoffsemi.com/cts-part-1-2

771112

http://www.signoffsemi.com/cts-part-1-2

Start with a push in the metrics snapshots

[innovus > push _snapshot_stack

First we define a few variables which will be used to optimize the routing of the clock tree. This
may not always be mandatory, but as usual, you can always customize things if you need so.

innovus> set_db opt_useful skew_ccopt standard

This enables the ccopt command to perform clock skew optimization and use it in a standard
way to improve the timing. Putting it to extreme would enable better potential optimization
gains at the cost of a higher runtime.

innovus> create route_ type -name leaf rt -top preferred layer M4 -
bottom preferred layer M2

innovus> create_ route_type -name trunk rt -top_ preferred layer M5 -
bottom_preferred layer M4

innovus> set_db cts_route_ type leaf leaf rt

innovus> set_db cts_route_ type trunk trunk rt

Here we customize the construction of the clock tree by separating the leaf and the trunk routing
and matching each to different metal layers.

innovus> ccopt_design

o o o o +

| Setup mode | all | reg2reg | default |
o F——————— F—————— F—————— +

\ WNS (ns):| 0.003 | 0.003 | 1.261 |

\ NS (ns):| 0.000 | 0.000 | 0.000 |

| Violating Paths: | 0 | 0 | 0

\ All Paths:| 1408 | 650 | 762
o F—————— F——————— F—— +
- e et et +
\ | Real | Total |
\ DRVs R et et e e |
| | Nr nets(terms) | Worst Vio | Nr nets (terms) |
o o Fom e ——— o +
\ max_cap | 0 (0) | 0.000 | 0 (0)

\ max_tran | 0 (0) | 0.000 | 0 (0)

\ max_ fanout | 12 (12) | -25 | 18 (18)

\ max length | 0 (0) | 0 | 0 (0)

R — —————— - o s o +

Density: 24.961%
Routing Overflow: 0.12% H and 0.00% V

innovus > check place

78/112

Begin checking placement ... (start mem=3512.7M, init mem=3512.7M)
*info: Placed = 4937 (Fixed = 1063)

*info: Unplaced = 0

Placement Density:24.96%(13460/53925)

Placement Density (including fixed std cells) :26.00%(14219/54684)
Finished check place (total: cpu=0:00:00.2, real=0:00:00.0; vio checks:
cpu=0:00:00.0, real=0:00:00.0; mem=3512.7M)

At this point you could run the following commands to check the status of your clock tree
report clock trees
report skew groups

QUESTION 4-12 : explain in a few lines what these report tell you

Let’s now optimize the design post clock tree synthesis. As we now have a design that has a clock

tree, we can optimize now for both setup and hold.
innovus > opt_design -post_cts -hold -setup

Setup views included:
analysis setup_ wc

o - - - - +

\ Setup mode | all | reg2reg | default |

R i Fomm————— Fomm Fom—————— +

\ WNS (ns) :| 0.003 | 0.003 \ 1.261 \

\ TNS (ns) :| 0.000 | 0.000 \ 0.000 \

\ Violating Paths: | 0 \ 0 | 0 |

\ All Paths: | 1408 | 650 \ 762

R R ikt Fomm == Fom +

R ke e i i e R it
-+

\ \ Real \ Total

| DRVsS o - fmmm - o -
il

\ | Nr nets (terms) | Worst Vio | Nr nets(terms)
\

o= - o o
-+

\ max_cap | 0 (0) | 0.000 | 0 (0) |
\ max_ tran | 0 (0) | 0.000 | 0 (0) |
\ max_ fanout \ 12 (12) \ -25 | 18 (18) |
\ max length \ 0 (0) | 0 \ 0 (0) |
T — - i s i
-+

Density: 24.961%
Routing Overflow: 0.12% H and 0.00% V

79/112

Hold Opt Initial Summary

Setup views included:
analysis setup wc
Hold views included:

analysis hold bc

o - - - - +

\ Setup mode | all | reg2reg | default |

R i Fomm————— Fomm Fom—————— +

\ WNS (ns) :| 0.007 | 0.007 | 1.255 \

\ TNS (ns) :| 0.000 | 0.000 | 0.000 \

\ Violating Paths: | 0 | 0 | 0 \

\ All Paths:| 1408 | 650 | 762 |
o - Fomm o Fom— +
o — fom—————— Fomm - +

\ Hold mode | all | reg2reg | default |
o - o o Fom—————— +

\ WNS (ns):| -0.034 | 0.103 | -0.034 |

\ TNS (ns):| -1.960 \ 0.000 | =-1.960 |

\ Violating Paths: | 71 | 0 | 71 \

\ All Paths: | 1408 | 650 | 762
o — - o o o +
o e et e e
-+

\ \ Real \ Total

\ DRVs - === t-——————————- - ===
=

\ | Nr nets(terms) | Worst Vio | Nr nets(terms)
\
o= - o o
-+

\ max_cap | 0 (0) | 0.000 | 0 (0) |
\ max_tran | 0 (0) | 0.000 | 0 (0) |
\ max_ fanout | 12 (12) | -25 \ 18 (18) |
\ max length | 0 (0) | 0 \ 0 (0) |
o o — o —— o -
-+
Density: 24.957%
opt design Final Summary

Setup views included:

analysis setup wc
Hold views included:

analysis_hold bc
o - o o - +

\ Setup mode | all | reg2reg | default |
o - - Fomm————— - +

80/112

\ WNS (ns) :| 0.007 | 0.007 | 1.254 |
\ TNS (ns) : | 0.000 | 0.000 | 0.000 \
\ Violating Paths: | 0 | 0 | 0 \
\ All Paths: | 1408 | 650 | 762
R Fom—————— o - +
o - - - - +
\ Hold mode | all | reg2reg | default |
o - - - - +
\ WNS (ns) :| 0.002 | 0.103 | 0.002 \
\ TNS (ns) :| 0.000 | 0.000 | 0.000 \
\ Violating Paths: | 0 | 0 | 0 |
\ All Paths:| 1408 | 650 | 762
o — fom o - +
o - e e i it o —
-+
\ l Real | Total
\ DRVs e it e tommm - fom e
=
\ \ Nr nets(terms) | Worst Vio | Nr nets(terms)
\
o= - o o
-+
\ max_cap | 0 (0) | 0.000 | 0 (0) |
\ max_ tran | 0 (0) | 0.000 | 0 (0) |
\ max_ fanout | 12 (12) | -25 \ 18 (18) |
\ max length | 0 (0) | 0 \ 0 (0) |
o= - o o
-+
Density: 25.147%
Routing Overflow: 0.14% H and 0.00% V
**opt design ... cpu = 0:00:27, real = 0:00:29, mem = 2863.6M,
totSessionCpu=7:14:13 **
*** Finished opt design ***

flow.cputime flow.realtime timing.setup.tns
timing.setup.wns snapshot
UM: * 0.000 ns 0.007
ns final

Current design flip-flop statistics
Single-Bit FF Count : 500
Multi-Bit FF Count : 0
Total Bit Count : 500
Total FF Count : 500
Bits Per Flop : 1.000

flow.cputime flow.realtime timing.setup.tns
timing.setup.wns snapshot
UM: 119.09 637

opt design postcts

Info: Destroy the CCOpt slew target map.

*** opt design #1 [finish] : cpu/real = 0:00:27.4/0:00:29.2 (0.9),
totSession cpu/real = 7:14:13.9/47:21:16.3 (0.2), mem = 3525.9M

81/112

You can note that the density increased slightly. Run a report timing -late and a report_timing -

early.
@innovus 423> report_timing -late
iR AR AR RA AR AR

Generated by: Cadence Innovus 20.14-s095 1
0S: Linux x86 64 (Host ID edasrvl)
Generated on: Fri Nov 10 11:33:04 2023

Design: top_ 32b

Command: report timing -late

AR AR EEEE
Path 1: MET (0.007 ns) Setup Check with Pin I MULT/res reg 41 /CK->D
View: analysis setup wc
Group: clk
Startpoint: (R) I MULT/reg opl reg 28 /CK

Clock: (R) clk
Endpoint: (R) I MULT/res reg 41 /D
Clock: (R) clk
Capture Launch
Clock Edge:+ 4.500 0.000
Src Latency:+ -0.129 -0.129
Net Latency:+ 0.128 (P) 0.129 (P)
Arrival:= 4.499 -0.000
Setup: - 0.081
Cppr Adjust:+ 0.000
Required Time:= 4.418
Launch Clock:= -0.000
Data Path:+ 4.410
Slack:= 0.007
__
Timing Point Flags Arc Edge Cell Fanout
Trans Delay Arrival
(ns)
(ns) (ns)
__
I MULT/reg opl reg 28 /CK ClC2 CK R (arrival) 89
0.222 - -0.000
I MULT/reg opl reg 28 /Q ClC2 CK->Q R SEN _FDPRBQ D 1P5 2
0.222 0.366 0.366
I MULT/U1377/X clic2 Al->X R SEN_EN2 0P5 2
0.257 0.257 0.623
I_MULT/U1530/X clc2 A2->X R SEN _AN3 1 7
0.362 0.291 0.914
I _MULT/FE OFC301 n79/X clc2 A->X R SEN BUF D 3 26
0.239 0.236 1.150
I MULT/U1016/X clic2 Ccl->Xx F SEN _AO0I222 OP5 1
0.241 0.186 1.336
I_MULT/U39/X clc2 B->X R SEN OAI21 G 1 1
0.238 0.091 1.427
I MULT/U1687/X clc2 A2->X R SEN EO2 S 0P5 1
0.162 0.157 1.584
I_MULT/U1756/S clCc2 CI->s F SEN_ADDF 0P5 1
0.367 0.355 1.939
I MULT/U1745/CO ClC2 CI->CO F SEN_ADDF O0P5 1
0.159 0.265 2.204
I MULT/U2145/CO clCc2 B->CO F SEN_ADDF O0P5 1
0.139 0.277 2.482
I _MULT/U2158/S clC2 CI->s R SEN_ADDF 0P5 1
0.134 0.325 2.806

82/112

I _MULT/U2156/S ClCc2 B->S F SEN_ADDF 0P5 1
0.138 0.279 3.085

I _MULT/U2165/S clc2 CI->s R SEN_ADDF O0P5 2
0.123 0.365 3.450

I_MULT/U196/X Clc2 Al->X F SEN NR2 G 1 2
0.236 0.092 3.543

I_MULT/U2186/X Clc2 Al->X R SEN NR2 G 1 2
0.108 0.120 3.663

I_MULT/U2187/X clCc2 Al->X F SEN ND2 1 3
0.179 0.136 3.799

I MULT/U128/X ClC2 A->X R SEN_INV_ 0P8 4
0.176 0.125 3.924

I_MULT/U1486/X ClC2 Al->X F SEN _ND2 S O0P5 1
0.155 0.101 4.024

I_MULT/U2226/X Clc2 A2->X R SEN OAI21 G 1 1
0.111 0.146 4.171

I MULT/U2227/X clc2 A2->X R SEN EN2 S 1 1
0.199 0.115 4.286

I_MULT/U2228/X clc2 Al->X R SEN AO022 1 1
0.134 0.124 4.410

I MULT/res reg 41 /D clc2 D R SEN_FDPRBQ D 1 1
0.109 0.000 4.410

@innovus 424> report_timing -early
X EE AR R AR AL

Generated by: Cadence Innovus 20.14-s095 1
0S: Linux x86 64 (Host ID edasrvl)
Generated on: Fri Nov 10 11:33:25 2023

Design: top_ 32b

Command: report timing -early

iEEaEE A EAE AR EEEARREEAR AR EEE R R ER R AR AR AR EEE A
A RS EE R E R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
RS AR
Design Stage: PreRoute
Design Name: top 32b
Design Mode: 65nm
Analysis Mode: MMMC OCV
Parasitics Mode: No SPEF/RCDB
Signoff Settings: SI Off
RS R R SRR EEEE
#HEHEESH
Start delay calculation (fullDC) (1 T). (MEM=3532.44)
Total number of fetched objects 4532
AAE INFO: Total number of nets for which stage creation was skipped for all
views 0
End delay calculation. (MEM=3575.06 CPU=0:00:00.8 REAL=0:00:01.0)
End delay calculation (fullDC). (MEM=3575.06 CPU=0:00:01.0 REAL=0:00:01.0)
Path 1: MET (0.002 ns) Hold Check with Pin reg rd mem start reg/CK->D

View: analysis hold bc

Group: clk

Startpoint: (F) rd mem start
Clock:
Endpoint: (F) reg rd mem start reg/D
Clock: (R) clk

e

Capture Launch
Clock Edge:+ 0.000 0.000
Src Latency:+ -0.063 0.000
Net Latency:+ 0.068 (P) 0.000 (1)
Arrival:= 0.005 0.000
Hold:+ 0.026
Cppr Adjust:- 0.000

83/112

Required Time:= 0.031
Launch Clock:= 0.000
Data Path:+ 0.032
Slack:= 0.002
__
Timing Point Flags Arc Edge Cell Fanout
Trans Delay Arrival
(ns)
(ns) (ns)
__
rd mem start - rd mem start F (arrival) 1
0.004 0.000 0.000
FE PHC376 rd mem start/X ClC2 A->X F SEN_BUF 1 1
0.004 0.032 0.032
reg _rd mem start reg/D clc2 D F SEN FDPRBQ D 1 1
0.017 0.000 0.032
__

4.13.3.DISPLAY THE OPTIMIZED CLOCK TREE

1. To see the clock nets post CTS:
o In the Innovus main menu, select Tools > Design Browser....
o In the nets subsection, search for “clk” and “CTS ..”
o Select them (CTRL+Shift) and highlight the nets with a specific color.

@ Your design may be different from the screenshot.
2. To see the buffers post CTS :
o From the design browser, in stdcells
o Search for CTS ... select them and highlight them with a different color

B

To see the cells, you must switch to
the screenshot.

.and disable the metals, to see something as shown in

84/112

-Layer -
PC(0) -
CA[D)

M1(1)
V(1)

- L M2(2)
- LV2(2)

- M3(3)
- LW3(3) -
- L WMA4) -
- L M5(3)
- LNT{5) -
- EA[B) -
- LLB(7)

N T O T L Y

35e2_2024/INNOVUS - top_32b asrv Design Browser — edasrvl e

‘Design Browser

Fle View Edit Tool cadence
Iz 0 e [E=X=NEm AR
0 ERE TR

5 Design - top_32b, 4732 LeafCls, 3 Blocks
- Terms (266)
- Nets (1204)

FE_PHNA4S_array select_1
FE_PHNA44_array_select 0
FE_PHNAL3_cmd_t0p_0
FE_PHNA42_data_in_top_14
FE_PHNA41_mode_top
FE_PHNA0_data_in_(0p.5.
FE_PHNA39_data_in_top_3
FE_PHNA38_data_in_top_4
FE_PHN37_data_In_t0p_8
FE_PHNA36_data_in_top_11
FE_PHNA35_alu_compute.
FE_PHN&34_data_in_top_1
FE_PHNA33_data_in_top_2
FE_PHNA32_data_In_top_7
FE_PHN31_data_in_(0p_10
FE_PHN430_data_in_top_9.
FE_PHN429_data_n_top_17
FE_PHNA28_data_In_(0p_0
FE_PHNA27_data_in_top_6
FE_PHN426_data_in_top_18
FE_PHN&25_data_in_t0p_12
FE_PHNA24_data_in_top_13
FE PHN&23 data In top 15

innovus(TM) Implementation System 20,14 - /nome/levisse/projects/CLASSROOM/PHASE2/testdirs/edalabs_phase2_2024/INNOVUS - top_32b — edasrvl = Design Browser — edasrvl S

Design Browser

Flle View Edit Tool cadence

(==K © 8 x (SR
L # 8 %% 4% ©

Ll
i

[[vet I A dk [x)
& Stdcells (825)

D]

CTs_ccl_a_buf_00008 (SEN_BUF_AS_10)

CT5_ccl_a_buf 00010 (SEN_BUF_S_12)
_buf_00012 (SEN_BUF_AS_10)
_buf_00014 (SEN_BUF_AS_10)

CTS_ccl_a_buf_00016 (SEN_BUF_AS_10)

FE_DBTCT_rst (SEN_INV_2)
FE_OFCO_FE_DBTN1_rst (SEN_BUF D_2)
FE_OFC100_data_in_memo_9 (SEN_BUF_1)
FE_OFC101_data_in_memo_8 (SEN_BUF_1)
FE_OFC102_data_in_memo_7 (SEN_BUF_1)
FE_OFC103_data_in_mem0_6 (SEN_BUF_1)
FE_OFC104_data_in_memo_5 (SEN_BUF_1)
FE_OFC105_data_in_memo_a (SEN_BUF_1)
FE_OFC106_data_in_memo_3 (SEN_BUF_1)
FE_OFC107_data_in_mem0_2 (SEN_BUF_1)
FE_OFC108_data_in_mem0_1 (SEN_BUF_1)
FE_OFC109_data_in_memo_0 (SEN_BUF_1)
FE_OFC10_n235 (SEN_BUF_D_2)
FE_OFC110_data_in_mem?1_63 (SEN_BUF_1)
FE_OFC111_data_in_mem1_62 (SEN_BUF_1)
FE_OFC112_data_in_mem1_61 (SEN_BUF_1)
FE_OFC113_data_in_mem?1_60 (SEN_BUF_1)
FE_OFC114_data_in_mem1_59 (SEN_BUF_1)
FE OFC115 data in mem1 58 (SEN BUF 1)
F| | CT5_ccl_a_buf 00008

Save the design state as DB/tutorial/top 32b cts with the write db command

Save the current state of the design in the snapshot stack and call it cts

85/112

pop_snapshot stack
create snapshot -name cts

4.14. ROUTING THE DESIGN
This steps performs global and detailed routing.

In the global routing phase, the router breaks the routing portion of the design into rectangles
called global routing cells (gcells) and assigns the signal nets to the gcells. The global router
attempts to find the shortest path through the gcells, but does not make actual connections or assign
nets to specific tracks within the gcells. It tries to avoid assigning more nets to a geell than the
tracks can accommodate.

In the detailed routing phase, the router follows the global routing plan and lays down actual wires
that connect the pins to their corresponding nets. The router runs search-and-repair routing: it
locates shorts and spacing violations and reroutes the affected areas to eliminate as many of the
violations as possible. The primary goal of detailed routing is to complete all of the required
interconnect without leaving shorts or spacing violations.

4.14.1.TO ROUTE THE DESIGN

Here we use the route design command which takes as input the parameters defined at the
beginning of the design. i.e., the routing will only be done between M2 and MS5.

innovus > push_snapshot_stack
innovus > route_design

You can note at this point that the placement is much more organized than before.

QUESTION 4-13: Zoom in the design above MEMO, what do you see in M2 ? what kind of issues do you
believe you will face there when (i) increasing the frequency, (ii) reducing the available place.

QUESTION 4-14: run a report_timing -early and a report_timing -late. Comment the results.

4.14.2.D0 A POST-ROUTE TIMING OPTIMIZATION

Post-route timing optimization is better done using text commands:

> opt_design -post_route -hold -setup

86/112

QUESTION 4-15: run a report_timing -early and a report timing -late. Why is it different compared to
before ?

The design display area now shows the routed design.

W T '||||||||\%%§ U G émlurnluuu‘n“nm T

At this point, it could be that your design still does not pass the setup check. This is because the
floorplan we propose here is highly suboptimal. Running the opt design command again could
solve the issue, as it gives the tool another chance to converge to a better optimum.

Still, remember that generally, when a flow requires an arbitrary amount of operations to converge,
it probably means that you are close to the failing point, and most likely need to relax some
constraint somewhere.

Save the design state as DB/tutorial/top 32b routed with the write db command

Save the current state of the design in the snapshot stack and call it cts
pop_snapshot stack
create snapshot -name routed

4.15. ADDING FILLER CELLS

Now that the design is finalized, let’s insert filler cells to fill the remaining holes in the rows and
ensure the continuity of power/ground rails and N+/P+ wells. But also will ensure that Front end
of line (active, diffusions, polysilicon, contacts etc.) density DRC constraints are met in the placed
area.

The list of filler cells can be found in the technology documentation of the standard cells.
Page 17 onward of the documentation presents the special cells utilization. While page 41 onwards

shows the list of special cells. For Filler cells, the site option range from 1 to 64 (1, 2, 4, 8, 16, 32,
64).

/dkits/synopsys/DesignWare logic libs/commonplatformé5nlp/hd/base/svt
/latest/doc/1lped0186 cp65npkslogcasdst000f.pdf

87/112

> push_snapshot_stack

> add_fillers -base_cells SEN_FILLl1 SEN_FILL2 SEN_FILL4
SEN_FILL8 SEN_FILL16 SEN_FILL32 SEN_FILL64 -prefix FILLER
**WARN: (IMPSP-5217):add fillers command is running on a postRoute
database. It 1is recommended to be followed by eco route -target
command to make the DRC clean.

Type 'man IMPSP-5217' for more detail.

*INFO: Adding fillers to top-module.

*INFO: Added 954 filler insts (cell SEN FILL64 / prefix FILLER)
*INFO: Added 165 filler insts (cell SEN FILL32 / prefix FILLER)
*INFO: Added 1015 filler insts (cell SEN FILL16 / prefix FILLER)
*INFO: Added 1208 filler insts (cell SEN FILL8 / prefix FILLER).
*INFO: Added 2185 filler insts (cell SEN FILL4 / prefix FILLER)
*INFO: Added 2079 filler insts (cell SEN FILL2 / prefix FILLER)
*INFO: Added 2244 filler insts (cell SEN FILLI / prefix FILLER)
*INFO: Swapped 0 special filler inst.

*INFO: Total 9850 filler 1insts added - prefix FILLER (CPU:
0:00:01.4).

For 9850 new insts, 9850 new pwr-pin connections were made to global
net 'VDD'.

9850 new pwr-pin connections were made to global net 'VDD'.

9850 new gnd-pin connections were made to global net 'VSS'.

9850 new gnd-pin connections were made to global net 'VSS'.

*** Applied 4 GNC rules (cpu = 0:00:00.0)

*INFO: Filler mode add fillers with drc 1is default true to avoid
gaps, which may add fillers with wviolations. Please check the
violations for FILLER incr* fillers and fix them before
routeDesign. Set it to false can avoid the violation but may leave
gaps.

*INFO: Second pass addFiller without DRC checking.

*INFO: Adding fillers to top-module.

*INFO: Added 12 filler insts (cell SEN FILLG64 / prefix
FILLER incr).
*INFO: Added 27 filler insts (cell SEN FILL32 / prefix
FILLER incr).
*INFO: Added 42 filler insts (cell SEN FILLI16 / prefix
FILLER incr).
*INFO: Added 49 filler insts (cell SEN_ FILLS / prefix
FILLER incr).
*INFO: Added 60 filler insts (cell SEN FILL4 / prefix
FILLER incr).
*INFO: Added 750 filler insts (cell SEN FILLZ2 / prefix
FILLER incr).
*INFO: Added 6l filler insts (cell SEN_ FILLI / prefix

FILLER incr).

*INFO: Swapped 0 special filler inst.

*INFO: Total 1001 filler insts added - prefix FILLER incr (CPU:
0:00:00.0) .

For 1001 new insts, 1001 new pwr-pin connections were made to global
net 'VDD'.

1001 new pwr-pin connections were made to global net 'VDD'.

1001 new gnd-pin connections were made to global net 'VSS'.

1001 new gnd-pin connections were made to global net 'VSS'.

*** Applied 4 GNC rules (cpu = 0:00:00.0)

Pre-route DRC Violation: 1001

If when running a >check drc you still get drc violations you can do the following :

88/112

innovus > check_filler
*INFO: Total number of padded cell violations: 0
*INFO: Total number of gaps found: 0

To make sure there are no gaps and issues with the filling

Then, youcanrun >route eco -fix drc which will solve the drc errors by moving
wires around.

Though it could induce timing violations which you can check with >report timing
-lateand >report timing early

Finally, running an >opt design -post route -hold -setup would finally
solve the issue.

Alternatively, you could probably insert the fillers before the first opt_design -post route

Save the design state as DB/tutorial/top 32b filled with the write_db command

Save the current state of the design in the snapshot stack and call it cts
pop_snapshot stack
create snapshot -name filled

4.16. VERIFY THE DESIGN
4.16.1.CONNECTIVITY CHECK

The connectivity verification detects problems such as opens, unconnected wires, unconnected
pins, loops, partial routing, and unrouted nets:

innovus > check_connectivity
VERIFY CONNECTIVITY use new engine.

kxkkxkkx Start: VERIFY CONNECTIVITY **%xk%xx*
Start Time: Fri Nov 10 13:52:56 2023

Design Name: top 32b

Database Units: 2000

Design Boundary: (0.0000, 0.0000) (1020.0000, 150.0000)
Error Limit = 1000; Warning Limit = 50

Check all nets

Begin Summary
Found no problems or warnings.
End Summary

End Time: Fri Nov 10 13:52:56 2023
Time Elapsed: 0:00:00.0

FHrxxFkxxk FEnd: VERIFY CONNECTIVITY *****x**xx
Verification Complete : 0 Viols. 0 Wrngs.
(CPU Time: 0:00:00.4 MEM: -0.375M)

89/112

4.16.2.GEOMETRY VERIFICATION (DRC)

As in phase 1, DRC verification check the spacing, and the internal geometry of objects and the
wiring between them. this drc check is not based on the DRC sign-off rules but on the tech lef.
This cannot replace an actual DRC check, but ensures that the routing has been done correctly.

innovus > check_drc
*** Starting Verify DRC (MEM: 2551.4) ***
VERIFY DRC Starting Verification
VERIFY DRC Initializing
VERIFY DRC Deleting Existing Violations
VERIFY DRC Creating Sub-Areas
VERIFY DRC Using new threading
VERIFY DRC Sub-Area: {0.000 0.000 86.400 76.320} 1 of 24
VERIFY DRC Sub-Area : 1 complete 0 Viols.
VERIFY DRC Sub-Area: {86.400 0.000 172.800 76.320} 2 of 24
VERIFY DRC Sub-Area : 2 complete 0 Viols.
VERIFY DRC Sub-Area: {172.800 0.000 259.200 76.320} 3 of 24
VERIFY DRC Sub-Area : 3 complete 0 Viols.
VERIFY DRC Sub-Area: {259.200 0.000 345.600 76.320} 4 of 24
VERIFY DRC Sub-Area : 4 complete 0 Viols.
VERIFY DRC Sub-Area: {345.600 0.000 432.000 76.320} 5 of 24
VERIFY DRC Sub-Area : 5 complete 0 Viols.
VERIFY DRC Sub-Area: {432.000 0.000 518.400 76.320} 6 of 24
VERIFY DRC Sub-Area : 6 complete 0 Viols.
VERIFY DRC Sub-Area: {518.400 0.000 604.800 76.320} 7 of 24
VERIFY DRC Sub-Area : 7 complete 0 Viols.
VERIFY DRC Sub-Area: {604.800 0.000 691.200 76.320} 8 of 24
VERIFY DRC Sub-Area : 8 complete 0 Viols.
VERIFY DRC Sub-Area: {691.200 0.000 777.600 76.320} 9 of 24
VERIFY DRC Sub-Area : 9 complete 0 Viols.
VERIFY DRC Sub-Area: {777.600 0.000 864.000 76.320} 10 of 24
VERIFY DRC Sub-Area : 10 complete 0 Viols.
VERIFY DRC Sub-Area: {864.000 0.000 950.400 76.320} 11 of 24
VERIFY DRC Sub-Area : 11 complete 0 Viols.
VERIFY DRC Sub-Area: {950.400 0.000 1020.000 76.320} 12 of 24
VERIFY DRC Sub-Area : 12 complete 0 Viols.
VERIFY DRC Sub-Area: {0.000 76.320 86.400 150.000} 13 of 24
VERIFY DRC Sub-Area : 13 complete 0 Viols.
VERIFY DRC Sub-Area: {86.400 76.320 172.800 150.000} 14 of 24
VERIFY DRC Sub-Area : 14 complete 0 Viols.
VERIFY DRC Sub-Area: {172.800 76.320 259.200 150.000} 15 of 24
VERIFY DRC Sub-Area : 15 complete 0 Viols.
VERIFY DRC Sub-Area: {259.200 76.320 345.600 150.000} 16 of 24
VERIFY DRC Sub-Area : 16 complete 0 Viols.
VERIFY DRC Sub-Area: {345.600 76.320 432.000 150.000} 17 of 24
VERIFY DRC Sub-Area : 17 complete 0 Viols.
VERIFY DRC Sub-Area: {432.000 76.320 518.400 150.000} 18 of 24
VERIFY DRC Sub-Area : 18 complete 0 Viols.
VERIFY DRC Sub-Area: {518.400 76.320 604.800 150.000} 19 of 24
VERIFY DRC Sub-Area : 19 complete 0 Viols.
VERIFY DRC Sub-Area: {604.800 76.320 691.200 150.000} 20 of 24
VERIFY DRC Sub-Area : 20 complete 0 Viols.
VERIFY DRC Sub-Area: {691.200 76.320 777.600 150.000} 21 of 24
VERIFY DRC Sub-Area : 21 complete 0 Viols.
VERIFY DRC Sub-Area: {777.600 76.320 864.000 150.000} 22 of 24

90/112

VERIFY DRC Sub-Area : 22 complete 0 Viols.

VERIFY DRC Sub-Area: {864.000 76.320 950.400 150.000} 23 of 24
VERIFY DRC Sub-Area : 23 complete 0 Viols.
VERIFY DRC Sub-Area: {950.400 76.320 1020.000 150.000} 24 of 24
VERIFY DRC Sub-Area : 24 complete 0 Viols.

Verification Complete : 0 Viols.

*** End Verify DRC (CPU: 0:00:01.3 ELAPSED TIME: 1.00 MEM: 0.0M) ***

4.16.3.PERFORM A CONGESTION ANALYSIS

One important step when routing a design with dense interconnect is identify the routing hotspots.
This will give you important information on the bottlenecks that may exist in a design, and allow

ou to properly adapt your floorplan strategy.
innovus > report_congestion -3d -hotspot
the report here may be different from yours

[hotspot] +-------—----- tommm o Fommm e i inininiet +
[hotspot] | layer | max hotspot | total hotspot | hotspot bbox |
[hotspot] +-----—--—----- tommm o Fommm e i inininiet +
[hotspot] | M1 (H) | 4.00 | 13.33 | 468.00 108.00 482.40 122.40 |
[hotspot] | M2 (H) | 0.00 | 0.00 | (none) |
[hotspot] | M3 (V) | 0.00 | 0.00 | (none) |
[hotspot] | M4 (H) | 3.11 | 4.44 | 331.20 79.20 345.60 93.60 |
[hotspot] | M5 (V) | 0.00 | 0.00 | (none) |
[hotspot] +-------—----- tommm o Fommm e i inininiet +
[hotspot] | worst | (M1) 4.00 | (M1) 13.33 | |
[hotspot] +---------—-- tommm e tommm e oo +
[hotspot] | all layers | 0.00 | 0.00 | |
[hotspot] +------------ tommm e tommm e oo +
Local HotSpot Analysis (3d): normalized congestion max/total hotspot area = 0.00/0.00 (area is in unit of 4

std-cell row bins)

QUESTION 4-16 : explain with your own words what does the report congestion reports. describe the
difference between “max hotspot™ and “total hotspot” from the TCR documentation page 2545 onwards.

However, while this command gives you the place where the main congestion hotspots happen
(bbox), it is not really easy to read and take actions from this report.

Click on Route>NanoRoute>analyze Congestion

This will open a small colored square on the top left of the innovus window, click on it

91/112

| Innovus(TM) Implementation System 20.14 - /hon

File View Edit Partition Floorplan Power Place ECO

Layout 0
e & & & | |Rd v~ 54 WY |
B Hé#e-0 «-88 @B %@ LE

(I

Select the following options in the congestion analysis panel :

- eGR-2D

- Diamond

- Vertical and horizontal violations to 0

- Tick Set congestion set size

- Put Vert. and Horiz. width and length to 1

Right click on the white color on the scale for 7, and put it black = this will make the result
readable as white text on white squares is unreadable.

Click apply, and zoom in your design to identify congestion areas.
'ﬂ

U NR3D @ eGR-2D . eGR-3D

EarlyGlobalRoute

el Siz
Vert. Width: 1 Vert. Height: 1 |
Hori. Width: 1 Hori. Height: 1

The data visible in the diamonds shows the following “H: X/Y”

- H means horizontal (respectively V means vertical). The congestion is on the horizontal
layer

- X stands for the number of required metal tracks (a track means minimum width +
minimum spacing for a metal layer) to route your design

- Y stands for the number of available metal tracks.

When X is higher than Y in this configuration, the tool will highlight the cell.

92/112

Here is a list of things a designer could do with the congestion analyzer :

- Flag negative congestion, to identify zones that are under risks of getting congested.
- Consider larger or smaller congestion area to check for congestion risks at various scales.

Of course, at this point, considering 4.5ns clock period, your design is not too congested. However,
this tool will get extremely handy when experimenting a new floorplan, or check how things go
when increasing the clock frequency.

QUESTION 4-17 : at this point, where does the congestion happen in your design ? what could explain it
? you could add screenshots if useful for your explanation.

4.17. GENERATING REPORTS

Let’s now generate and save reports. It is recommended to group reports related to the same
constraints in a specific RPT subdirectory. In our case, it is the RPT/tutorial/ directory.

You can generally save them with the -out_file option or by using a “>” operator
4.17.1.DESIGN SUMMARY
A report on the entire design includes statistics for the following categories:

e General design information

e General library information

e Netlist information

e Timing information
e Floorplan/Placement information

innovus > report summary -out file RPT/tutorial/summary
Start to collect the design information.

Build netlist information for Cell top_ 32b.

Finished collecting the design information.
Generating macro cells used in the design report.
Generating standard cells used in the design report.
Analyze library

Analyze netlist

Analyze timing

Analyze floorplan/placement

Analysis Routing

Report saved in file RPT/tutorial/summary

The display of the HTML version of the report may take same time to happen.
4.17.2.DESIGN AREA

Use the report area command to report on the design area (output edited):

innovus > report area -verbose
Hinst Name Module Name Inst Count Total Area Buffer Inverter
Combinational Flop Latch Clock Gate Macro Physical

93/112

top_32b

8414.280 4157.640
I_ADDSUB addsub_32b

546.480 803.160
I_MULT mult 32b

7307.280 1084.320
I_TOP_SCHEDULER top_scheduler
104.400 82.800

3956 59193.330
0.000 0.000
364 1393.560
0.000 0.000
2686 8918.280
0.000 0.000
76 201.600
0.000 0.000

innovus > report area -verbose > RPT/tutorial/area

651.960
45542.490

2.880

0.000
276.840
0.000

1.440

0.000

426.960
0.000
41.040

0.000

249.840
0.000
12.960

0.000

4.17.3.CRITICAL PATH TIMING

Use the report timing command to report on the timing of the most critical path (output edited):

I_MULT/reg_op2_reg 15 /CK
I_MULT/reg_op2_reg_15_/Q
I_MULT/U425/X
I_MULT/U688/X
I_MULT/U390/X
I_MULT/U372/X
I_MULT/U699/X

I_MULT/U173/X
I_MULT/U150/X
I_MULT/U484/X
I_MULT/U1548/X
I_MULT/U2331/X
I_MULT/U2369/X
I_MULT/U2370/X
I_MULT/U479/X
I _MULT/res_reg_ 47 /D

Path 1: MET (0.001 ns)
View:
Group: clk
Startpoint: (R)
Clock: (R) clk
Endpoint: (R)
Clock: (R) clk
Capture
Clock Edge:+ 4.500
Src Latency:+ -0.129
Net Latency:+ 0.121
Arrival:= 4.492
Setup: - 0.083
Cppr Adjust:+ 0.000
Required Time:= 4.409
Launch Clock:= -0.001
Data Path:+ 4.409
Slack:= 0.001
Timing Point F
#

Path 10: MET (0.013
View:
Group: clk
Startpoint: (R)
Clock: (R) clk
Endpoint: (R)
Clock: (R) clk
Capture
Clock Edge:+ 4.500
Src Latency:+ -0.129
Net Latency:+ 0.119
Arrival:= 4.490
Setup: - 0.083
Cppr Adjust:+ 0.000

(P)

Launch
0.000
-0.129
0.128
-0.001

Launch
0.000
-0.129
0.128
-0.001

innovus> report timing -late -max paths 10

I_MULT/reg_op2_reg_15_/CK

I_MULT/res_reg 47_/D

(P)

R (arrival)

R SEN_FDPRBQ D 4
F SEN_NR2_G_2

R SEN_NR2 G_1

F SEN_ND2_1

R SEN_NR2_G_1

F SEN_AOI21 G 2

F SEN_ND2_1

R SEN_OAI21 G_1
F SEN_AOI21 G_1
F SEN_OA21_2

F SEN_OA21_8

R SEN_OAI21 G_1
R SEN_EN2_S_1

R SEN_A022_1

R SEN_FDPRBQ D_1

I_MULT/reg_op2_reg_15_/CK

I_MULT/res_reg 45 /D

(P)

Setup Check with Pin I_MULT/res_reg_47_/CK->D
analysis_setup_wc

ns) Setup Check with Pin I_MULT/res_reg_45_/CK->D
analysis_setup_wc

oo oooo

[eNeNoNeNoNoNoNoNa)

(ns)

94/112

Required Time:

(ns)

Launch Clock:= -0.001
Data Path:+ 4.395
Slack:= 0.013

Timing Point Flags Arc Edge Cell
#

I MULT/reg op2 reg 15 /CK Cclc2 CK R (arrival)
I MULT/reg op2_reg 15 /Q ClC2 CK->Q R SEN_FDPRBQ D 4
I_MULT/U425/X clc2 A2->X F SEN_NR2_G 2
I_MULT/U688/X clcz2 A2->X R SEN_NR2 G 1
I_MULT/U390/X CclC2 A2->X F SEN_ND2_1
I_MULT/U372/X clc2 A2->X R SEN_NR2 G 1
I_MULT/U699/X clc2 A2->X F SEN_AOI21 G 2
I_MULT/U2331/X C1C2 B->X F SEN_OA21 8
I_MULT/U2344/X cic2 Al->X R SEN OAI21 G 1
I_MULT/U2345/X cic2 A2->X R SEN EN2 S 1
I_MULT/U461/X cic2 Al->X R SEN_A022 1
I_MULT/res_reg_45_/D cicz2 D R SEN_FDPRBQ D 1

innovus> report_ timing -late -max paths 10 > RPT/tutorial/timing_setup

4.17.4.HOLD CHECK

Same as for the setup, you can save the 10 fastest paths

innovus> report timing -early -max paths 10 > RPT/tutorial/timing hold

4.17.5.NETLIST STATISTICS

innovus > report netlist_ statistics
*** Statistics for net list top 32b **x*

Number of cells = 15932

Number of nets = 4534

Number of tri-nets =0

Number of degen nets = 0

Number of pins = 15330

Number of i/os = 266

Number of nets with 2 terms = 3242 (71.5%)
Number of nets with 3 terms = 802 (17.7%)
Number of nets with 4 terms = 214 (4.7%)
Number of nets with 5 terms = 44 (1.0%)
Number of nets with 6 terms = 16 (0.4%)
Number of nets with 7 terms = 17 (0.4%)
Number of nets with 8 terms = 12 (0.3%)
Number of nets with 9 terms = 10 (0.2%)
Number of nets with >=10 terms = 177 (3.9%)

*** 164 Primitives used:

Primitive
Primitive
Primitive
Primitive
Primitive
Primitive

sramHD 64x64 (3 insts)
SEN _TIEO 1 (1 insts)

SEN OR2 DG 1 (32 insts)
SEN OR2 2 (1 insts)

SEN OR2 1 (12 insts)

SEN OAOI211 OP5 (2 insts)

95/112

Primitive SEN OAI31 G OP5 (1 insts)
Primitive SEN OAI22 OP5 (1 insts)
Primitive SEN OAI21B 3 (1 insts)
Primitive SEN OAI21B 2 (4 insts)
Primitive SEN OAI21B 1 (1 insts)
Primitive SEN OAI21 G 2 (8 insts)
Primitive SEN OAI21 G 1 (122 insts)
Primitive SEN OAI21 T 3 (1 insts)

innovus > report netlist statistics > RPT/tutorials/netlist stats

4.17.6. VISUALLY CHECK THE TIMING

As in design compiler, you can generate histograms. This allows you to track signals and identify
why something is wrong in your timing analysis

In the main innovus window, Timing>Debug Timing
Then make sure it is on “setup” and press OK.

From there you can analyse the timing in your circuit.

Iy Check Pegasus Tc || Display/Generate Timing Rep
Extract RC... Timing Report File: top.mtarpt i_J
Report Timing... ,4: ¥ Generate Check Type setup b
| Debug Timing... . _ Retime: aocy -
Create Black Box... — Append to Current Report
Display Timing Map... — Path Category File =y
Display Noise Met...

96/112

L Timing Debug — edasrvl L& o =23
Report File(s) top.mtarpt =/ File » Analysis » Category b
Path Histogram Category Summary
9 Name: all
a Total Path: 82
= Passing Path: 82
- Failing Path: 0
: WNS: 0.0000
TMS: 0.0000
4
3
2
1
0
0 009 018 027 036 045 055 064 073 0.82 .
Path Category
Cate| H | Category Name Correction WHNS TNS #Failing Path
------ 1 all 0.000 0.000]
Path List
Category: all, Slack Range: all
Page: () (4 R~
H | Path | Clock | ReqTime | Slack | Startpoint Pin Endpoint Pin |
| 1 clk(leading)-=clk(leading) 4.409 0.001 I_MULT/reg op2_reg 1.. I_MULT/res_reg 47 /D e
] 2 clk{leading)-=clk{leading) 4,432 0.003 I_MULT/reg_op2_reg_ 1.. I_MULT/res_reg 61_/D
| 3 clk{leading)-=clk{leading) 4,410 0.004 |_MULT/reg op2_reg 1.. I_MULT/res_reg 56_/D
| 4 clk{leading)-=clk(leading) 4411 0.004 I_MULT/reg_op2_reg_1... I_MULT/res_reg_52_/D
| 5 clk{leading)-=clk(leading) 4.409 0.005 I_MULT/reg_op2_reg 1... I_MULT/res_reg 48 /D
] 6 clk{leading)-=clk{leading) 4,413 0.005 I_MULT/reg _op2_reg_ 1.. I_MULT/res_reg 60_/D =

4.17.7.GENERATE THE SNAPSHOTS OUTPUTS AND ANALYZE THEM

run the following commands

>report_metric -format vivid -file RPT/tutorial/top_32b_snapshots.html

Open the top 32b_snapshots.html file and explore the results. It allows you to track visually many
reports and identify bottlenecks in your design.

QUESTION 4-18 : report the CPU runtime of your design for the different steps. Which part took the most

time ? does the computation time make sense ? which parts would you expect take the most time in a more
complex design ?

97/112

4.18. EXPORTING THE DESIGN

This steps generates all the data that is required for post-place+route gate-level simulation and the
design import in Virtuoso.

4.18.1.GENERATE THE VERILOG NETLIST

At the end of the place and route flow, you want to generate a new verilog netlist, which you will
use for LVS verification, but also for logic simulation.

We create two netlists, one with all the cells and pg pins (VDD and VSS) in the standard cells,
which will be used for LVS. And one without fillers and without pg pins, used for logic simulation.

Removing the fillers for simulation is not mandatory, but could sometimes simplify your life.

innovus> write netlist -include_pg_ports
. ./HDL/PLACED/tutorial/top_32b_placed lvs.v

Writing Netlist "../HDL/PLACED/tutorial/top 32b placed lvs.v"
Pwr name (VDD) .

Gnd name (VSS).

1 Pwr names and 1 Gnd names.

innovus > write netlist -exclude_leaf cells -
exclude_insts_of_cells {SEN_FILL1 SEN_FILL2 SEN_FILL4
SEN FILLS SEN FILL16 SEN_FILL32 SEN_FILL64}

.. /EDL/PLACED/tutoroal/top_32b_placed_sim .V

Writing Netlist "../HDL/PLACED/tutorial/top 32b placed sim.v"

4.18.2.GENERATING THE SDF TIMING FILE

As for synthesis, we now want to generate sdf file that will be used during post PnR simulation.

@innovus 65> set_db timing enable_simultaneous_setup_hold mode true
1 true

@innovus 66> set_db timing recompute_sdf in_setuphold mode true

1 true

@innovus 69> write_sdf TIM/tutorial/top_32b_placed.sdf -precision 3
-min_period_edges posedge -recompute_ parallel arcs -
adjust_setup_hold for_ zero_hold_slack -version 2.1 -min_view
analysis_hold_bc -max_view analysis_setup_wc

**WARN: (TCLCMD-1465) : The write sdf option -
recompute parallel arcs has been deprecated and replaced by the -
recompute delay calc option. It will continue to function in this
release, but you should update your scripts to use the new option.
Refer to the command reference for additional information on the new
option.

98/112

Starting SI iteration 1 using Infinite Timing Windows

SRR R R R EEE R R R R R R R R R R R R
SRS EEEEEEEEE

Design Stage: PostRoute

Design Name: top_ 32b

Design Mode: 65nm

Analysis Mode: MMMC OCV

Parasitics Mode: SPEF/RCDB

Signoff Settings: SI On

iZiias A EAEEAE SRS EARE SRR EER SRS REEEEEREEREE SRS EEEEEE
iEEEEEEEEEEEES

AAE INFO: 1 threads acquired from CTE.

Start delay calculation (fullDC) (1 T). (MEM=2555.4)

Total number of fetched objects 4534

AAE INFO: Total number of nets for which stage creation was skipped
for all views O

AAE INFO-618: Total number of nets 1in the design 1is 4536, 100.0
percent of the nets selected for SI analysis

Total number of fetched objects 4534

AAE INFO: Total number of nets for which stage creation was skipped
for all views O

AAE INFO-618: Total number of nets in the design 1is 4536, 100.0
percent of the nets selected for SI analysis

End delay calculation. (MEM=2567.2 CPU=0:00:07.0 REAL=0:00:07.0)

H o S S o =

End delay calculation (fullDC) . (MEM=2567.2 CPU=0:00:07.2
REAL=0:00:07.0)
Loading CTE timing window with TwFlowType O0...(CPU = 0:00:00.0, REAL

= 0:00:00.0, MEM = 2567.2M)

Add other clocks and setupCteToAAEClockMapping during iter 1
Loading CTE timing window 1s completed (CPU = 0:00:00.0, REAL =
0:00:00.0, MEM = 2567.2M)

Starting SI iteration 2

Start delay calculation (fullDC) (1 T). (MEM=2538.41)

Glitch Analysis: View analysis setup wc -- Total Number of Nets
Skipped = 0.

Glitch Analysis: View analysis setup wc -- Total Number of Nets

Analyzed = 0.

Total number of fetched objects 4534

AAE INFO: Total number of nets for which stage creation was skipped
for all views O

AAE INFO-618: Total number of nets in the design 1is 4536, 17.2
percent of the nets selected for SI analysis

Glitch Analysis: View analysis hold bc -- Total Number of Nets
Skipped = 380.
Glitch Analysis: View analysis hold bc =-- Total Number of Nets

Analyzed = 4534.

Total number of fetched objects 4534

AAE INFO: Total number of nets for which stage creation was skipped
for all views O

AAE INFO-618: Total number of nets in the design is 4536, 4.5 percent
of the nets selected for SI analysis

End delay calculation. (MEM=2586.62 CPU=0:00:01.3 REAL=0:00:02.0)
End delay calculation (fullDC) . (MEM=2586.62 CPU=0:00:01.4
REAL=0:00:02.0)

The generated SDF file is different from the one generated after synthesis. It now includes the
proper interconnect wiring delays.

99/112

(CELL
(CELLTYPE "top 32b")
(INSTANCE)
(DELAY

(ABSOLUTE

(INTERCONNECT FE PHC447 wr mem start/X FE PHC375 wr mem start/A
(0.000::0.000) (0.000::0.000))

(INTERCONNECT FE PHC446 rd mem start/X FE PHC376 rd mem start/A
(0.000::0.000) (0.000::0.000))

(INTERCONNECT cmd top[l] reg cmd top reg 1 /D (0.000::0.001)
(0.000::0.001))

(INTERCONNECT cmd top[0] FE PHC443 cmd top 0/A (-0.000::0.001) (-
0.000::0.001))

(INTERCONNECT clk CTS ccl a buf 00018/A (0.010::0.008)
(0.010::0.008))

(INTERCONNECT clk CTS ccl a buf 00016/A (0.003::0.003)
(0.003::0.003))

(INTERCONNECT clk CTS ccl a buf 00014/A (0.008::0.007)
(0.008::0.007))

(INTERCONNECT clk CTS ccl a buf 00012/A (0.002::0.002)
(0.002::0.002))

(INTERCONNECT clk CTS ccl a buf 00010/A (0.005::0.005)
(0.005::0.005))

(INTERCONNECT clk CTS ccl a buf 00008/A (0.001::0.002)
(0.001::0.002))

(INTERCONNECT data _in top[63] FE PHC377 data in top 63/A (-
0.000::0.000) (-0.000::0.000))

(CELL
(CELLTYPE "SEN FDPRBQ D 1")
(INSTANCE I MULT/res reg 11)
(DELAY
(ABSOLUTE
(IOPATH (posedge CK) Q (0.102::0.281) (0.098::0.265))
(COND CK (IOPATH RD Q () (0.152::0.454)))
(COND (~(CK)&D) (IOPATH RD Q () (0.153::0.458)))
(COND (~(CK) &~ (D)) (IOPATH RD Q () (0.153::0.450)))
)
)
(TIMINGCHECK
(SETUPHOLD (posedge D) (COND RD (posedge CK)) (0.032::0.086) (-
0.007::-0.0006))
(SETUPHOLD (negedge D) (COND RD (posedge CK)) (0.010::0.017)
(0.025::0.080))

(WIDTH (COND cond2 (posedge CK)) (0.140::0.310))
(WIDTH (COND cond2 (negedge CK)) (0.122::0.301))
(WIDTH (COND cond3 (posedge CK)) (0.140::0.310))
(WIDTH (COND cond3 (negedge CK)) (0.122::0.301))

@ Note that all the three-value sets min:typ:max have an empty typ field. It will then be
important to select the proper delay type in simulation.

100/112

4.18.3. GENERATING THE GDS2 FILE

The GDS2 (or GDSII) format is a binary file format commonly used for representing and
exchanging geometrical layout data.

The gds is extracted with the following inputs :

- The map file which contains a list of layers and maps each layer used in innovus to its
actual layer from the technology PDK. If the map file is not defined properly, the foundry
will not be able to use the GDS. A good mapping of the layers can be checked by importing
the layout inside a virtuoso library attached to the technology and check that the layers
match. The map file is not always provided by the foundry. Though generally IP providers
give it with the lef files.

- The unit which should generally match with the smallest unit provided by the IPs
(generally in the lef). Here 2000.

- The gds files to be merged. Here the memory macro gds from the compiler and the gds of
the standard cells.

innovus > write_ stream -map file streamout.map -unit 2000
STREAM/tutorial/top_32b placed.gds -merge
{../IPS/MEMORIES/sramHD 64x64/sramHD 64x64.gds
../IPS/STDCELLS/hd/base/svt/latest/gds/cp65npksdst2well.gds}

Merge file: ../IPS/MEMORIES/sramHD 64x64/sramHD 64x64.gds has version
number: 600
Merge file: ../IPS/STDCELLS/hd/base/svt/latest/gds/cp65npksdst2well.gds has

version number: 600

Parse flat map file...

**WARN: (EMS-27): Message (IMPOGDS-387) has exceeded the current
message display limit of 20.

To increase the message display limit, refer to the product command
reference manual.

** NOTE: Created directory path 'STREAM/tutorial' for file
'STREAM/tutorial/top 32b placed.gds'.

Writing GDSII file

*xxxxx db unit per micron = 2000 *****x*
*HAxFxx output gds2 file unit per micron = 2000 ***x*x*x*
*HkAx** ynit scaling factor = 1 ****xxx*

Output for instance

Output for bump

Output for physical terminals

Output for logical terminals

Output for regular nets

Output for special nets and metal fills

Output for via structure generation total number 46
Statistics for GDS generated (version 600)

Stream Out Layer Mapping Information:

GDS Layer Number GDS Layer Name
62 COMP
69 LB

101/112

https://en.wikipedia.org/wiki/GDSII

111 EA

70 \AY
31 M5
174 NT
21 M4
18 v2
15 M1
17 M2
22 V4
19 M3
20 V3
16 V1

Stream Out Information Processed for GDS version 600:
Units: 2000 DBU

Object Count
Instances 15932
Ports/Pins 266
metal layer M2 266
Nets 63801
metal layer M2 33260
metal layer M3 21056
metal layer M4 8979
metal layer M5 506
Via Instances 33839
Special Nets 194
metal layer M1 96
metal layer M3 63
metal layer M4 29
metal layer M5 6
Via Instances 714
Metal Fills 0
Via Instances 0
Metal FillOPCs 0
Via Instances 0
Metal FillDRCs 0
Via Instances 0
Text 268
metal layer M2 266
metal layer M5 2
Blockages 0

102/112

Custom Text 0

Custom Box 0
Trim Metal 0

Scanning GDS file ../IPS/MEMORIES/sramHD 64x64/sramHD 64x64.gds to register
cell name

Scanning GDS file
../IPS/STDCELLS/hd/base/svt/latest/gds/cp65npksdst2well.gds to register
cell name

Merging GDS file ../IPS/MEMORIES/sramHD 64x64/sramHD 64x64.gds

x*xx%* Merge file: ../IPS/MEMORIES/sramHD 64x64/sramHD 64x64.gds has
version number: 600.

*x*x%*% Merge file: ../IPS/MEMORIES/sramHD 64x64/sramHD 64x64.gds has
units: 1000 per micron.

*AkAx** ynit scaling factor = 2 **x*xxxx

Merging GDS file
../IPS/STDCELLS/hd/base/svt/latest/gds/cp65npksdst2well.gds

*xxxxx Merge file:
../IPS/STDCELLS/hd/base/svt/latest/gds/cp65npksdst2well.gds has version
number: 600.

*AAx*x Merge file:
../IPS/STDCELLS/hd/base/svt/latest/gds/cp65npksdst2well.gds has units: 1000
per micron.

*x&*x** ynit scaling factor = 2 ***xxx%

#H##HH#Streamout is finished!

4.18.4.GENERATING THE SPEF FILE

The SPEF!¢ file is used to store the metal parasitic resistance and capacitance values of all the
wires. It will be needed to perform a precise power analysis on primetime.

First, we generate the parasitics on innovus

innovus > extract_rc

#Start Inst Signature in MT (0)

#Start Net Signature in MT(21210294)

#Calculate SNet Signature in MT (55174126)

#Run time and memory report for RC extraction:

#RC extraction running on Xeon 3.00GHz 36608KB Cache 96CPU.

#Run Statistics for snet signature:

Cpu time = 00:00:00, elapsed time = 00:00:00

Increased memory = 0.00 (MB), total memory = 1687.09 (MB),
peak memory = 1860.69 (MB)

#Run Statistics for Net Final Signature:

Cpu time = 00:00:00, elapsed time = 00:00:00

Increased memory = 0.00 (MB), total memory = 1687.09 (MB),
peak memory = 1860.69 (MB)

#Run Statistics for Net launch:

Cpu time = 00:00:00, elapsed time = 00:00:00

Increased memory = 0.00 (MB), total memory = 1687.09 (MB),
peak memory = 1860.69 (MB)

16 https://en.wikipedia.org/wiki/Standard_Parasitic_Exchange Format
103/112

https://en.wikipedia.org/wiki/Standard_Parasitic_Exchange_Format

#Run Statistics for Net init dbsNet slist:

Cpu time = 00:00:00, elapsed time = 00:00:00

Increased memory = 0.00 (MB), total memory = 1687.09 (MB),
peak memory = 1860.69 (MB)

#Run Statistics for net signature:

Cpu time = 00:00:00, elapsed time = 00:00:00

Increased memory = 0.00 (MB), total memory = 1687.09 (MB),
peak memory = 1860.69 (MB)

#Run Statistics for inst signature:

Cpu time = 00:00:00, elapsed time = 00:00:00

Increased memory = -68.85 (MB), total memory = 1687.09 (MB),
peak memory = 1860.69 (MB)

The design is extracted. Skipping TQuantus.

Then we write the spef files for the rcbest and reworst corners

innovus> write parasitics -spef file
SPEF/tutorial/top_32b_rcworst.spef -rc_corner corner_rcworst

Reading RCDB with compressed RC data.
RC Out has the following PVT Info:
RC:corner rcworst
Dumping Spef file.....
Printing D _NET...
rcOut completed:: 100 %
RC Out from RCDB Completed (CPU Time= 0:00:00.4 MEM= 2538.6M)

innovus> write parasitics -spef file
SPEF/tutorial/top_32b_rcbest.spef -rc_corner corner_rcbest

Reading RCDB with compressed RC data.
RC Out has the following PVT Info:
RC:corner rcbest
Dumping Spef file.....
Printing D _NET...
rcOut completed:: 100 %
RC Out from RCDB Completed (CPU Time= 0:00:00.3 MEM= 2542.6M)

5. RUNNING A DRC FROM VIRTUOSO

5.1.IMPORTING THE DESIGN ON VIRTUOSO

Go in the VIRTUOSO folder
Source the sourceme.csh file >source sourceme.csh
Start virtuoso with >virtuoso &
In the Virtuoso window, select File > Import > Stream....
In the XStream In window:
o Define the Stream File field as
INNOVUS/STREAM/tutorial/top 32b placed.gds.
o Define the Library field as top 32b tutorial.
o Define the View field as 1ayout.
o Inthe Technology section, define the Attach Tech Library as cmos101pe.
6. Click the More Options button.

MRS

104/112

7. In the XStream In window, click Translate or Apply.

L] XStream In AT E S
Stream File alabs_phase2_2024/INMNOVUS/STREAM/tutorial/top_32b_placed.gds | -
Library top_3Zb_tutorial n

Top Cell |

View layout

Template File = E

_ Impaort to Virtual Memory

* Technology

Attach Tech Library |cmos10ipe n

Load ASCI Tech File FE

Tech Refs

» Generate Technology Infermation

F Layer Map llabs_phase2_2024/NVIRTUOSC/cmos10lpefcmos10lpe.layermap | @

. Translate | Apply | Cancel | ResetAll Felds | More Options Help |

S

@ The tool will issue some warning. You should have around 40-50 warnings or something
about layers in the map file.

Search for the top 32b tutorial library. Open the layout as read-only (right click on the layout >
open as read-only) from the newly created top 32b cellview.

The full imported layout is then as follows. You can use the shift+F/ctrl+F keys to shwow/hide
the details of the IPs (memories and standard cells).

105/112

5.2.RUNNING A DRC CHECK

From the layout viewer, select calibre>run nmDRC.
@ Note that here we use the latest version of calibre. i.e., new GUIL

In the Rules panel :

e First, set the Run Directory to the DRC_rundir inside the VIRTUOSO folder.
e Then, set the Rules Files to tge yidm00054.drc.cal file inside the DRC_rundir folder.

In the input panel,

e select Flat in front of Run.
e Keep recipe as “check selected in rule files”

Click on Run DRC
ol Calibre Interactive - nmDRC v2022.2 38.20 * o Bl g C Calibre Interactive - nmDRC v2022.2 38.20 * AT X
File Settings Configurations Help ~|Search | File Settings Configurations Help ~|Search J
Inputs Rules File D/DRC rundir/yidm00054.drc.cal[F] 2] | B (Flat .
Outputs — Outputs

Run Directory |s_phase2_2024/VIRTUOSO/DRC_rundir IE\ Layout Path

Options . Options i §
Check Selection
Run Control Run Control Layout Format GDSII l"
i . Recipe [Checks selected in the rules fi|~| [Edit| Preferences ~ Export from layout viewer (&)
Search L Derivati Search Layout File |top_32b.calibre.db |E\ oy
Transcript =L REEE Transcript Library Name _top_iZb_tutorial \
Files Files Top Cell [top 32b &
View Name |layout |
Waivers
Area DRC
[RunDRC | [RunDRC |
[ShowRVE | [ShowRVE |

If you get errors about environment variables, you may have forgotten to source the sourceme.csh
file. In that case, quit virtuoso, source the file and start again.

106/112

In the results viewer, to see errors, switch the filter to “show Unresolved”

) top_3zh dre.results X] | j_yidmﬂﬂﬂﬁdl_drc_cal_]

?Filter: Show Unresnlued" fftop_32b, 17662 Resul

System Defined Filters
Show all
Show Fixed
Show Waived
Show Mot Waived

* Show Unresolved

Check Mame |]
Cell Narme |]

Create Custom Filter...

You should still get some errors, though you can ignore/wave the GRA999a and GRCHIPEDGE
errors.

6. PLACE AND ROUTE THE MAPPED DESIGN USING TCL SCRIPTS
INSIDE INNOVUS

6.1.USING TCL SCRIPTS

As for the RTL synthesis, when the design complexity increases, or for speeding up the design
exploration, it becomes much more convenient to use scripts and to run the place+route tool from
the Linux command line. Scripts also conveniently capture the place+route flow and make it

reusable. Cadence Innovus supports the Tcl language for building scripts.

In the BIN folder, you will find a folder called tutorial. This folder contains the following :

BIN/

L—— tutorial

r— cts.tcl

r— default mmmc.view
r— fillers.tcl

r— floorplan.tcl

FH— fullflow.tcl

FH— dinit.tcl

r— io.tcl

rH—— place.tcl

F—— power.tcl

r—— reports.tcl

r—— route.tcl

-— top32 mmmc svt mem64 4pbSns.view

Open the fullflow.tcl script with a text editor

#this file can be used to run the whole innovus flow at once
#update the SCRIPT NAME variable to where all the steps of your flow
are

#by default a SCRIPT NAME tutorial is used

107/112

https://en.wikipedia.org/wiki/Tcl

set
set

set
set
set
set

#make a copy of this folder and change the SCRIPT NAME variable
accordingly

#these variables are used to create the proper folders in the results
hierarchy

fcreating the corresponding results folders

mkdir -p HDL/PLACED/${SCRIPT NAME}/${date}/${time}
mkdir -p RPT/S${SCRIPT NAME}/S${date}/S${time}

mkdir -p TIM/S${SCRIPT NAME}/${date}/${time}

mkdir -p STREAM/${SCRIPT NAME}/${date}/${time}
mkdir -p SPEF/${SCRIPT NAME}/S${date}/${time}

mkdir -p DB/S${SCRIPT NAME}/${date}/S${time}

source ${PATH TO SCRIPT}/init.tcl

source ${PATH TO SCRIPT}/floorplan.tcl
source ${PATH7T078CRIPT}/power.tcl

source ${PATH7T078CRIPT}/io.tCl

source ${PATH TO SCRIPT}/place.tcl

source ${PATH TO SCRIPT}/cts.tcl

source ${PATH TO SCRIPT}/route.tcl

source S{PATH7T075CRIPT}/fillers.tcl

source $S{PATH TO SCRIPT}/reports exports.tcl

SCRIPT NAME tutorial
PATH TO SCRIPT BIN/S${SCRIPT NAME}

systemTime [clock seconds]

time [clock format S$systemTime -forma
date [clock format $systemTime -forma
date [string map {"/" ""} Sdate]

o
]

hMmSs]

t SH
t %D]

6.2.SETTING UP A NEW SET OF SCRIPTS FOR A NEW DESIGN

With this proposed flow, in order to make a test with a new floorplan or a new configuration, you
should proceed as follows :

1.

9]

Copy the whole tutorial folder into a folder with a name that matches the new configuration
o In the BIN folder >cp -r tutorial my test name (replace my test name with your
naming convention)
In the fullflow.tcl, update the variable SCRIPT NAME with my test name as you defined
it before
Update the init.tcl and .view files according to the constraints and configurations you want
to explore
Make sure the io file is pointing toward an io file you matched with your floorplan
From a new innovus instance, source the fullflow.tcl script
o All the subfolders with the good names and places will be created accordingly

You could comment any line in the fullflow by adding a “#”. For e.g., to run the flow until the io
placement, you could do :

source S${PATH TO SCRIPT}/init.tcl
source S${PATH TO SCRIPT}/floorplan.tcl
source ${PATH TO SCRIPT}/power.tcl

108/112

#source S{PATH TO SCRIPT}/io.tcl

#source S${PATH TO SCRIPT}/place.tcl

#source ${PATH TO SCRIPT}/cts.tcl

#source $S{PATH TO SCRIPT}/route.tcl

#source S{PATH TO SCRIPT}/fillers.tcl

#source S{PATH TO SCRIPT}/reports exports.tcl

6.3.AUTOMATICALLY SAVING THE DATABASE
Each sub-file of the script does contain lines such as
write_db DB/${SCRIPT NAME}/${date}/${time}/top 32b CTS

At its end. Thereby, if you have a look at the DB folder, you will find a folder organization for
each run of you scripts.

QUESTION 6-1 : run the >du -sh DB command from the INNOVUS folder, and report the size of the
folder.

This should highlight the need for you to clean this folder once in a while, and not always save
everything you do.

7. RUN POST PNR SIMULATION

As for post synthesis simulation, you could at this point run a post place and route simulation
which allows you to check the functionality of your circuit considering the parasitics.

1. Take the same configuration as for post synthesis simulation.

2. Take as a reference the environment you did setup in section 6 of the first document. With the
following changes :
- Create a new project which you could call TOP32 PLACED 4.5 SVT
- Use the Verilog file from post PnR.
- Use the sdf file from post PnR

3. Create a VCD file which you save in the ACTIVITY folder and call it
activity PLACED 4.5ns SVT.ved
- A reference document for Post-PNR power estimation will soon be available.

8. DESIGN SPACE EXPLORATION

8.1.FIND THE MAXIMUM FREQUENCY FOR THE PROPOSED FLOORPLAN

Follow the methodology from section 6.2 on how to make new scripts for INNOVUS. Make a
copy of the tutorial folder in the BIN folder of INNOVUS, and call it top_32b_XXns. Where XX
is the maximum frequency you achieved during synthesis (it should be around 2 or 2.5ns).

In the new folder

1. update the mmmc file

a. change its name

b. in the file, update the path to the sdc file (line 55)
2. update accordingly the init.tcl :

a. the path to the post synthesis Verilog file

b. the name of the new mmmc file
3. update the fullflow.tcl

109/112

a. update the script name variable at the beginning of the file

to explore the design space you have 2 options :

1. Reuse the results from several synthesis runs and for each, use the corresponding sdc and
verilog
2. Use the fastest design, and edit the sdc to make the clock period slower and slower (slower
means more ns).
a. The second approach may seem simpler, though your designs will always be larger
than with the first approach as by definition more optimized.

QUESTION 8-1 : without changing the floorplan, can you achieve the same operating frequency as during
synthesis ? what fails first ? density ? timing ? metal routing congestion?

Hint : start from the max frequency you could achieve during synthesis. And then progressively
reduce it until PnR can pass.

QUESTION 8-2 : what solutions could you imagine to make the design work when it fails? Propose a list
of ideas and guidelines you would follow to make it work.

At this point, check the size of the DB folder (>du -sh DB) and clean it if needed

8.2.0PTIMIZE THE FLOORPLAN

The proposed floorplan is obviously bad. Let’s now explore how one could improve it.

QUESTION 8-3 : propose a new floorplan for the top_32b architecture. Make a drawing before proceeding
and report it here. Update accordingly the scripts and show, in the report how you handle the power supply
(stripes and/or rings) — share screenshots.

Hint : Start with a relaxed frequency at first (4.5ns for e.g. as in the tutorial). And then, see if this floorplan
makes your design go faster

QUESTION 8-4 : can you achieve a better frequency with this floorplan ? is it denser ? make sure your
designs are clear from the perspective of the check connectivity and check drc. No need to push it down
to virtuoso for the verification.

At this point, check the size of the DB folder (>du -sh DB) and clean it if needed

8.3.TAKE A SMALLER MEMORY

In this part, let’s explore the consequencies of using a smaller memory on the performances, area
-and power of the whole circuit. Read both questions 7-5 and 7-6 before starting.

Close innovus, open Embedit (cf. section 2.2) and let’s generate some memories. To restore the
state of the memories created before, on embedit, click on project>open and select EDALABS
(name of the project you created before).

110/112

QUESTION 8-5: make the same but with a 16x64 sramHD memory (this one should be already generated).
How does the area, timing and power changes post synthesis? And then post-layout ? can you come up
with a different floorplan ?

Hints :

1. make sure to properly update the vhdl code (alu_pkg and the top) — cf section 3

2. make sure you properly generate the db file from the lib file using library compiler — cf
section 3.2

3. make sure you properly update the path to the memory IP during synthesis (in the link
commands) and during PnR in the .view file and init.tcl

QUESTION 8-6 : this question is complementary to QUESTION 7-5. If you do this project with a friend,
try the following : one does 7-5 with a 16x64 sramHD while the other one uses a Single Port High Density
leakage Control Register File. Cf screenshot.

ﬂ Select Compiler Or Type e Bl
@ = memory Compiler Information
@ & Common Platform 4

@ < 65nm LPe LowK Periphery Mixed vt/Cell High vt
DesignWare Dual Port High Density Leakage Contrel SRAM 512K Sync

Component Type: memory
Foundry: Common Platform

DesignWare Dual Port High Speed Leakage Control SRAM 512K Sync i[| Process: 65nm LPe LowK Periphery Mixed Vt/Cell High Vt .
DesignWare Single Port High Density Leakage Control Register File 32K Sync ; Compl!er: DesignWare Single Port High Density Leakage Control Register
DesignWare Single Port High Density Leakage Control SRAM 512K Sync i[| Revision: A@4P3
DesignWare Single Port High Speed Leakage Control SRAM 512K Sync /|| Compiler Name: cp6Snpkylpllasdrl3zksa0dp3
DesignWare Two Port High Density Leakage Control Register File 32K Sync o||| Library Path: /dkits/synopsys/compilers
& & TsMC
& [rom

9. ADDITIONAL EXPLORATIONS

9.1.EXPLORING POST PNR POWER ON PRIMETIME

As we did in the first session, it is possible to extract the power from the circuit considering post
PnR parasitics.

Let’s start with the tutorial test-case. Svt cells, 4.5ns clock period, default floorplan.

Follow the same flow as what you did for primtime in the tuto 1

Make a copy of the ptime svt.tcl script and call the new file ptime svt pnr.tcl
Open the newly created file with a text editor (e.g., gedit)

If you did not do it before, make sure that the path to the memory is correct.

b=

The corrected line 14 as described on the moodle forum should be :
set target library "Starget library
IPS/MEMORIES/sramHD 64x64/sslp08v125c/sramHD 64x64.db"

5. Update line 29 to point to the netlist you extract post place and route

This could be fore.g. :

read verilog ../HDL/PLACED/tutorial/DATE/TIME/top 32b placed sim.v

6. Comment or delete lines 32 33 34 and 35
7. Save the file and close it.

Start pt_shell and source the file you just edited. At this point, the script will import the libs, the

design, and define the clock constraints.
[pt shell > source BIN/ptime svt pnr.tcl

111/112

Make sure that the tool does not return you errors. You should be comfortable enough
understanding the logs from pt_shell, as you did that in the first part of this tutorial.

run a update and report power of the design at this point
pt_shell> update_power
pt shell> report power

QUESTION 9-1 : how different is that from the report power you did with the same conditions post
synthesis ? and why should it be different ?

Let’s now add the RC parasitics you did generate during PnR (called SPEF file).
pt shell> read_parasitics -format spef
../../INNOVUS/SPEF/tutorial /DATE/TIME/top_32b_rcbest.spef

Make sure you properly update the DATE and TIME

At this point the tool may issue some warnings about some extrapolation issues. You can ignore

these warnings here. Though do not take this as a general rule.
pt shell> update_power
pt shell> report power

QUESTION 9-2 : how does it compare to the results of question 9-1? Why and what’s different now ?

112/112

	1. Setup the lab environment
	2. Tuning the size of an SRAM memory
	2.1. Generalities about SRAM memories
	2.2. Using the memory compiler Embedit from Synopsys
	QUESTION 2-1 : what’s the difference between a single port and a dual port memory ?
	QUESTION 2-2: What’s the difference between the SRAM and a register file ? From a physical standpoint. Check the available parameters in the compiler for a “High Density Leakage Control” SRAM and Register file. Then rephrase it with your own words the...

	2.3. Exploring the output files
	QUESTION 2-3: scroll through the netlist and find devices starting with MP and MN. What do these correspond to ?
	QUESTION 2-4: measure approximatively the size of the bitcell using the ruler. Units for the ruler are in um.
	QUESTION 2-5 : The view of the bitcell is layout, as we did in phase 1. From the layout of one bitcell, by only representing the layers as described in the next comment, infer the schematic of the bitcell and draw it in your report. Are there things y...
	QUESTION 2-6 : Now that you have played with a memory compiler. Comment on the memory size you have been using. Considering the area ratio inside the memories you generated. Does it make sense to use this family of SRAM memories for such a small memor...

	3. Make your design ready for a sramHD_16x64 memory
	3.1. Modify the top_32b
	3.2. Compile the lib into a db file

	4. Place and Route the Mapped Design with Innovus
	4.1. Before starting
	4.2. Starting Innovus
	4.3. Required Data
	4.4. defining your design environment
	4.4.1. defintion of the technology corners
	QUESTION 4-1 : what do these 3 corners correspond to ?

	4.4.2. definition of the IPS corners
	4.4.3. Definition of the constraints
	4.4.4. define the delay corners
	4.4.5. definition of the hold and setup views
	QUESTION 4-2: why is the BC corner (ff, 1.32V, -40C) being used in the hold view ?
	QUESTION 4-3 why is the WC corner (ss, 1.08V, -125C) being used in the setup view ?

	4.5. Import the MMMC and initialize the design environment
	4.5.1. import the MMMC
	QUESTION 4-4: Why do TIE and DCAP cells not have logic behaviour ? what are these cells doing ?

	4.5.2. Import the physical footprint of the IPs being used
	4.5.3. read the post synthesis netlist
	4.5.4. Initialize the design environment
	4.5.5. Initialize the metrics extraction
	4.5.6. automate the flow
	4.5.7. save and restore the design state

	4.6. Floorplanning the design
	4.6.1. Define the floorplan
	4.6.2. Report the floorplan utilization

	4.7. Placing IO pins
	4.7.1. Saving the I/O placement

	4.8. Placing the Macro Block
	QUESTION 4-5: Why is the horizontal_edge_separate the same for the 3 memories ?
	QUESTION 4-6: Why is the vertical edge separate of mem1 set as {0 330 0} and the one of mem2 as {3 0 3}?
	4.8.1. adding placement halo around the memories
	4.8.2. Add a placement Halo around the memories

	4.9. Adding TAP cells
	4.10. Creating the Power Structure
	4.10.1. Logically connect all power/ground Pins and Nets
	4.10.2. Creating Power and Ground Rings around the core
	4.10.3. Creating power and ground ring and stripes to connect VDD/VSS pins for the macro block
	QUESTION 4-7 : We could have drawn an horizontal stripe by using the add_rings command and place it above the macros. Try to come up with a command that does that. Hint 1: save your design before playing with it, so that you can always restore it’s st...

	4.10.4. Route power nets
	4.10.5. Learn how to deal with macro problems
	QUESTION 4-8 : explain with your own words what happens with the left side of the memory. You could open the gds from the memory on embedit and comment on the gds.
	QUESTION 4-9 : Explain the content of the route_special command used there. Inspire from the documentation p2915.
	QUESTION 4-10 : Check the state of your design again by running a connectivity check. What does it complain about now ?

	4.11. checking the DRC rules
	QUESTION 4-11 : explain the results of the drc_check. Can you fully trust this drc check based on the above explanation ? how different is that compared to the DRC from Calibre?

	4.12. Placing Core Cells
	4.12.1. Place the Core Cells
	4.12.2. Do the PreCTS timing optimization

	4.13. Synthesizing the Clock Tree
	4.13.1. Display the initial clock tree
	4.13.2. Synthesize the clock tree
	QUESTION 4-12 : explain in a few lines what these report tell you

	4.13.3. Display the optimized clock tree

	4.14. Routing the Design
	4.14.1. To route the Design
	QUESTION 4-13: Zoom in the design above MEM0, what do you see in M2 ? what kind of issues do you believe you will face there when (i) increasing the frequency, (ii) reducing the available place.
	QUESTION 4-14: run a report_timing -early and a report_timing -late. Comment the results.

	4.14.2. Do a Post-Route Timing Optimization
	QUESTION 4-15: run a report_timing -early and a report_timing -late. Why is it different compared to before ?

	4.15. Adding Filler Cells
	4.16. Verify the Design
	4.16.1. Connectivity check
	4.16.2. Geometry Verification (DRC)
	4.16.3. Perform a congestion analysis
	QUESTION 4-16 : explain with your own words what does the report_congestion reports. describe the difference between “max hotspot” and “total hotspot” from the TCR documentation page 2545 onwards.
	QUESTION 4-17 : at this point, where does the congestion happen in your design ? what could explain it ? you could add screenshots if useful for your explanation.

	4.17. Generating Reports
	4.17.1. Design Summary
	4.17.2. Design Area
	4.17.3. Critical Path Timing
	4.17.4. hold check
	4.17.5. netlist Statistics
	4.17.6. Visually check the timing
	4.17.7. generate the snapshots outputs and analyze them
	QUESTION 4-18 : report the CPU runtime of your design for the different steps. Which part took the most time ? does the computation time make sense ? which parts would you expect take the most time in a more complex design ?

	4.18. Exporting the Design
	4.18.1. Generate the verilog netlist
	4.18.2. Generating the SDF timing file
	4.18.3. Generating the GDS2 file
	4.18.4. generating the SPEF file

	5. Running a DRC from Virtuoso
	5.1. Importing the design on virtuoso
	5.2. Running a DRC check

	6. Place and Route the mapped design using TCL scripts inside Innovus
	6.1. using tcl scripts
	6.2. setting up a new set of scripts for a new design
	6.3. automatically saving the database
	QUESTION 6-1 : run the >du -sh DB command from the INNOVUS folder, and report the size of the folder.

	7. Run Post PnR Simulation
	8. Design Space exploration
	8.1. find the maximum frequency for the proposed floorplan
	QUESTION 8-1 : without changing the floorplan, can you achieve the same operating frequency as during synthesis ? what fails first ? density ? timing ? metal routing congestion?
	QUESTION 8-2 : what solutions could you imagine to make the design work when it fails? Propose a list of ideas and guidelines you would follow to make it work.

	8.2. optimize the floorplan
	QUESTION 8-3 : propose a new floorplan for the top_32b architecture. Make a drawing before proceeding and report it here. Update accordingly the scripts and show, in the report how you handle the power supply (stripes and/or rings) – share screenshots.
	Hint : Start with a relaxed frequency at first (4.5ns for e.g. as in the tutorial). And then, see if this floorplan makes your design go faster
	QUESTION 8-4 : can you achieve a better frequency with this floorplan ? is it denser ? make sure your designs are clear from the perspective of the check_connectivity and check_drc. No need to push it down to virtuoso for the verification.

	8.3. take a smaller memory
	QUESTION 8-5: make the same but with a 16x64 sramHD memory (this one should be already generated). How does the area, timing and power changes post synthesis? And then post-layout ? can you come up with a different floorplan ?
	QUESTION 8-6 : this question is complementary to QUESTION 7-5. If you do this project with a friend, try the following : one does 7-5 with a 16x64 sramHD while the other one uses a Single Port High Density leakage Control Register File. Cf screenshot.

	9. Additional explorations
	9.1. Exploring post PnR power on PrimeTime
	QUESTION 9-1 : how different is that from the report power you did with the same conditions post synthesis ? and why should it be different ?
	QUESTION 9-2 : how does it compare to the results of question 9-1? Why and what’s different now ?

