

Fundamentals of Analog & Mixed Signal VLSI Design

Introduction

Christian Enz

Institute of Electrical and Microengineering (IEM), School of Engineering (STI)

Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland

EPFL

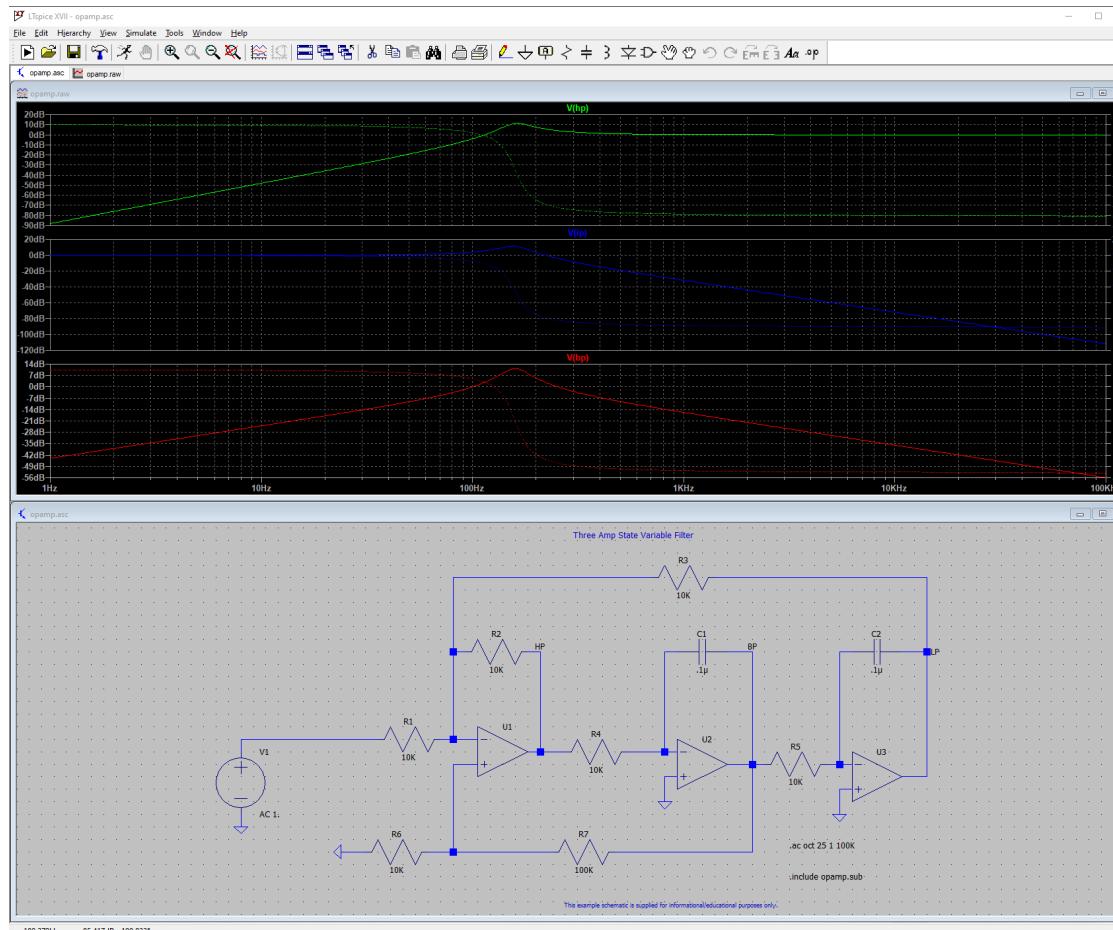
Summary, Aims and Objectives

- Summary
 - ▶ This course presents the design of low-power analog CMOS integrated circuits. The techniques are based on the concept of inversion coefficient that can be used as the main design parameter for the optimization of figures-of-merit applied to circuits including amplifiers, filters and oscillators
- Course aims
 - ▶ To understand what conditions the power consumption of analog circuits
 - ▶ To present a methodology for the design of low-power analog CMOS ICs
 - ▶ To explain the concept of inversion coefficient and how it can be applied for the design of low-power analog circuits
- Learning objectives
 - ▶ To learn how to design basic analog CMOS integrated circuits
 - ▶ To design simple analog building blocks according to specs
 - ▶ To verify by circuit simulations that the specs have been achieved

Syllabus

- 1) Introduction
- 2) Technology roadmap
- 3) Modeling of the MOS transistor for low-power design
- 4) The concept of inversion coefficient and G_m/I_D design methodology
- 5) Optimization of basic figures-of-merit
- 6) Amplifiers (OTAs and OPAMPs)
- 7) Offset and 1/f noise reduction techniques
- 8) Continuous-time (CT) filters design
- 9) Switched-capacitors (SC) filters design
- 10) Oscillators

Program


Lecture #	Date	Topic
1	11.09.2024	Introduction Technology roadmap
2	18.09.2024	Modeling of the MOS transistor for low-power design (long-channel)
3	25.09.2024	Modeling of the MOS transistor for low-power design (short-channel)
4	02.10.2024	Noise in circuits and systems
5	09.10.2024	The concept of inversion coefficient and G_m/ID design methodology
6	16.10.2024	Basic building blocks
	23.10.2024	Fall break
7	30.10.2024	Amplifiers (OTAs and OPAMPs) Part 1
8	06.11.2024	Amplifiers (OTAs and OPAMPs) Part 2
9	13.11.2024	Offset and 1/f noise reduction techniques
10	20.11.2024	Continuous-time filters (CTFs)
11	27.11.2024	Switched-capacitors circuits and filters (SCF)
12	04.12.2024	Reference circuits
13	11.12.2024	Oscillators
14	18.12.2024	Comparators

Teaching Methods

- Two hours **lectures** based on the slides accessible from the corresponding moodle site
- The lecture will be given in person
- Computer tools will be used for the **analysis** and the **design** (Juypyter Notebooks) and **verification** will be done with a circuit **simulator** (Ltspice or Smash)
- **Homework** to prepare and validate the work done during the exercise and simulation sessions

Tools

- **Analysis** and **design** will be carried out with **Jupyter Notebooks**
- Circuit **simulation** will be carried out with **LTSpice** or **Smash**

Moodle Site

- Information on the course, slides, exercises, homework can be found on the moodle site

General

Welcome to the course on Low-power Analog IC Design

Summary

This course presents the design of low-power analog CMOS integrated circuits. The techniques are based on the concept of inversion coefficient that can be used as the main design parameter for the optimization of figures-of-merit applied to circuits including amplifiers, filters and oscillators.

Course book

You can find more information about this course by looking at the [course book](#).

Contents

1. Introduction
2. Technology Roadmap
3. Modeling of the MOS Transistor for Low-power Design
4. The Concept of Inversion Coefficient and Gm/ID Design Methodology
5. Optimization of Basic Figures-of-merit
6. Amplifiers (OTAs and OPAMPS)
7. Offset and 1/f Noise Reduction Techniques
8. Continuous-time (CT) Filters Design
9. Switched-capacitors (SC) Filters Design
10. Oscillators

Program

Lecture #	Date	Topic
1	17.09.2020	Introduction, Technology roadmap
2	24.09.2020	Technology roadmap
3	01.10.2020	Modeling of the MOS transistor for low-power design
4	08.10.2020	Modeling of the MOS transistor for low-power design
5	15.10.2020	The concept of inversion coefficient and Gm/ID design methodology
6	22.10.2020	Optimization of basic figures-of-merit
7	29.10.2020	Amplifiers (OTAs and OPAMPS)
8	05.11.2020	Amplifiers (OTAs and OPAMPS)
9	12.11.2020	Offset and 1/f noise reduction techniques
10	19.11.2020	Offset and 1/f noise reduction techniques
11	26.11.2020	Continuous-time (CT) filters design
12	03.12.2020	Switched-capacitors (SC) filters design
13	10.12.2020	Switched-capacitors (SC) circuits design
14	17.12.2020	Oscillators

Evaluation

- Final open book exam will be a MCQ done in Moodle