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Image Restoration 

•  Restoration : invert non-wanted effects 
•  Typical application: deconvolution 

–  Let us consider the ideal image fi that has been 
degraded by an undesired (low pass) filtering effect 

–  Let fo be the observed image 
–  Moreover, there is an additive noise n,  

•  Goal : try to restore the initial image, using a model for 
the original image and for the noise 
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Image restoration: inverse filtering 

•  Inverse filtering: let us find a filter hR that will best 
restore the image fi  

•  The restored image will thus be 

•  By substitution in the previous equation, we get 

•  By FT: 
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Image restoration: inverse filtering 

•  Thus, the solution consists in taking a filter hR with a 
frequency response inverse of that of hD : 

•  The spectrum of the restored image is thus 

•  And by inverse FT, the restored image will be  
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Image restoration: inverse filtering 

•  Without noise, the 
restoration is perfect 

•  With noise, the error 
can be important: 
–  Often hD will be a low-

pass filter (blur, …) 
–  Noise will thus be 

amplified 
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Image restoration: inverse filtering 

• Example 

Original Blured image 
(filtered) 

Noisy and blured 
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Image restoration: inverse filtering 

• Example (cont.) 

Restoration of the blured image Restoration of the noisy blured image 
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Image restoration: Wiener filtering 

•  The previous problem comes from the fact that the filter 
ignores the presence of noise in the signal 
–  solution : Wiener filtering, that considers both a model of the 

image and of the noise 

•  Wiener filtering: hypotheses :  
–  Images are 2D random variables, with zero mean (can be 

obtained by subtracting the mean to the images)  

•  Goal: find a filter hR that will minimize the quadratic 
error 



9 

Signal Processing Laboratory (LTS5) 
Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland 

Image restoration: Wiener filtering 

•  Calculating the 1st derivative, the error is minimal when 

•  By replacing        by its value, we get 

•  The expectations of this products are the 
intercorrelation and the autocorrelation of the variables:  
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Image restoration: Wiener filtering 

•  By FT, we obtain 
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Image restoration: Wiener filtering 

•  When the noise is additive, we can write, by the Wiener-Kintchine 
theorems : 

•  And we finally obtain the Wiener filter, with frequency response:  
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Image restoration: Wiener filtering 

•  Conclusions : 
–  The Wiener filter is a 

adaptive band-pass 
filter 

–  It behaves like the 
inverse filter at low 
frequencies and like a 
low-pass filter for high 
frequencies 
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Image restoration: Wiener filtering 

• Examples :  

Motion blur Restored Image 
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Image restoration: Wiener filtering 

• Examples (cont.):  

Out-of-focus blur Restored image 


