TP de Technologies de I'Information

Restauration et filtrage de Wiener

Prof. Jean-Philippe THIRAN
JP.Thiran@epfl.ch

@ Signal Processing Laboratory (LTS5) .(Pﬂ.

Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland oL OO




Image Restoration 2

e Restoration : invert non-wanted effects

* Typical application: deconvolution

— Let us consider the ideal image f;, that has been
degraded by an undesired (low pass) filtering effect

— Let f, be the observed image
— Moreover, there is an additive noise n,

fo(xay) =fl.(x,y)**hD(x,y)+n(x,y)

* (Goal : try to restore the initial image, using a model for
the original image and for the noise
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Image restoration: inverse filtering 3

* Inverse filtering: let us find a filter h that will best
restore the image f,

* The restored image will thus be

N

fi(6,¥) = 1,06, ) **hy (x, )

* By substitution in the previous equation, we get

£, ) =L£,(x, ) * ¥,y (x, ) + 1(x, )] #hy (x, )
By FT:

F,\;(wxﬂwy) = [E(wxﬂa)y)HD(wxﬂwy) +N(wx9wy)]HR(a)x9a)y)
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Image restoration: inverse filtering 4

* Thus, the solution consists in taking a filter h; with a
frequency response inverse of that of hy

1
H —
) @)
* The spectrum of the restored image is thus
N(w,,w,)
Hy(o,,0,)
* And by inverse FT, the restored image will be

F(w,0,)=F(0,0,)+

N(w,,w,)
Hy(w,, y)

j(wxX+wyy)
fi(x,y) = f(xy)+42ff dxdy
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Image restoration: inverse filtering 5

* Without noise, the
restoration is perfect

* With noise, the error |
can be important: 4 "y

— Often hy will be a low-
pass filter (blur, ...)  [Ho(@.0)

— Noise will thus be | / Wy

amplified '
H(@,.0) _//

F;' (a)x ’0)
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Image restoration: inverse filtering 6

* Example

Original Blured image

Noisy and blured
(filtered)
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Image restoration: inverse filtering 7

* Example (cont.)

Restoration of the blured image Restoration of the noisy blured image
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Image restoration: Wiener filtering 8

* The previous problem comes from the fact that the filter
ignores the presence of noise in the signal

— solution : Wiener filtering, that considers both a model of the
image and of the noise

* Wiener filtering: hypotheses :

— Images are 2D random variables, with zero mean (can be
obtained by subtracting the mean to the images)

* Goal: find a filter hg that will minimize the quadratic
error

8=E“f,-(x»)’)_ﬁ(x»y)]z}
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Image restoration: Wiener filtering 9

* Calculating the 1st derivative, the error is minimal when

Ef =S| £, )=
* By replacing f}, by its value, we get

ELLGaNS &) = [ [EULGDLGL ) (=i, y = j)did]

* The expectations of this products are the
intercorrelation and the autocorrelation of the variables:

Kfl_fo(x—x',y—y')=ffo0(i—x',j—y') hy(x—i,y— j)didj
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Image restoration: Wiener filtering 10

K, (x=xy-y" =ffo0(i—x',j—y') h(x—1i,y - j)didj

* By FT, we obtain

Pfifo (wxﬁa)y)
Pfo (wx’wy)

HR(wxﬁa)y) =

P . (w,,,) 1s the power interspectrum

P (w,,w,) 1s the power spectrum of f,
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Image restoration: Wiener filtering 11

* When the noise is additive, we can write, by the Wiener-Kintchine
theorems :

2
P, (w,,0,) = ‘HD(aJx,a)y)‘ P, (w,,0,)+ P (0, 0,)
and
P, (o,0)=H,(o,0,)P (0, 0,)

* And we finally obtain the Wiener filter, with frequency response:

H,(w,,o
HR(wx’a)y)= zx Py(a) w
* N X277y
‘HD (wx > Cl)y )‘ +
P (w,o,
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Image restoration: Wiener filtering 12

e Conclusions:

_ The Wiener filterisa  [7@.0) \

adaptive band-pass o,
filter 1Py (w,.,0)

— |t behaves like the
inverse filter at low

frequencies and like a H,(@,.0)
low-pass filter for high =~ N

frequencies W,
‘H R (@, ’O)‘ /\

Wy
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Image restoration: Wiener filtering 13

* Examples :

s 8E

\

Motion blur Restored Image

A
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Image restoration: Wiener filtering 14

* Examples (cont.):

Out-of-focus blur Restored image

A
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