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e 2éme partie - Prof. Pascal Frossard
4.1 cours Structure des systémes linéaires (vidéo)
10.11 Q&A Structure des systémes linéaires (ELD020 + zoom)
11.11 labo 4 Structure des systemes linéaires (CO260 + zoom)
17.11 cours Filtres RIF (vidéo)
18.11 Q&A Filtres RIF (ELD020 + zoom)
2411 labo 5 Filtres RIF (CO260 + zoom)
2511 cours Filtres RII (video)
1.12 Q&A Filtres RIl (ELD020 + zoom)
212 labo 6 Filtres RII (CO260 + zoom)
8.12 cours Estimation et prédiction linéaire (vidéo)
9.12 Q&A Estimation et prédiction linéaire (ELD020 + zoom)
15.12 labo 7 Estimation et prédiction linéaire (CO260 + zoom)
16.12 Q&A Revision (zoom)
2212
23.12 Examen final Examen sur les parties 1 et 2 du cours (ELD020)
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Support de cours

e Support du cours
- Vos notes manuscrites
- Vidéos / transparents disponibles sur le moodle
- livre de référence conseillé : John G. Proakis and Dimitris G. Manolakis, «Digital
Signal Processing», Prentice All, 2007 N
Chapitres 10 et 12 - | DIGITAL

SIGNAL
PROCESSING

Principles, Algorithms,
and Applications

Fourth Edition

John G. Proakis
Dimitris G. Manolakis

// /-\ Traitement des signaux, automne 2021 |
| Prof. Jean-Philippe Thiran E P ==
\_/ Prof. Pascal Frossard i

Quelques transformées fréquentes

TABLE 3.3 Some Common z-Transform Pairs

Signal, x(n) z-Transform, X(z) ROC
1 8(n) 1 All z
2 u(n) l—_lz—_—f IZI >1
3 a"u(n) B = 2l > jal
1-az
-1
4 n a z
na"u(n) u—_izfl)f 1z] > |al
5 —a"u(-n-1) i‘#f |zl < lal
-1
6 —na"u{(-n-1) (l——aazL"‘Tz Izt < |a|

1— 2" cosey

7 cos 1
(cos wom)u(n) 1-2z""coswy+ 22 Izl >
-1 .z
8 sin won)u(n L Stah 1
( on )i (1) 1_22_] COSwu+Z_2 lz| >
1-az'cos
9 " cos — g e, <
@ won)u(n) 1—-2az7 coswyg+a“z™" Izl > lal
-] -
10 (a" sinwon)u(n) gz _Sinay 3 Iz| > lal

1—2az ' coswy + a’z-
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Filtres numeériques
(Chapitre 6)

Prof. Pascal Frossard
Laboratoire de traitement de signal (LTS4)
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» A. Structures des filtres numériques
e B. Construction de filtres RIF
e C. Construction de filtres RII
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A. Structure de filtres numeériques

» Types de filtres (RIF, RIl)
* Reéalisations transversales et récursives
* Implémentation par approximation de filtres idéaux

@& 9« e EPFL
Filtres numériques <&
Entrée g Sortie
x[n] > Syslf_?lme > y[n]

» Les filtres forment une sous-classe des systémes, les systémes
linéaires et invariants dans le temps (LTI)

Linéaire: Slaz1(k) + bxa(k)] = aS[z1(k)] + bS[z2(k)]

Invariant (TI): y(k) = S[x(k)] & y(k — ko) = S[x(k — ko)), Vko € Z

e Comme pour tout LTI, la réponse impulsionnelle h(k) caractérise
de fagon univoque le systéme

=00

y(k) = > w(Oh(k —1) = (k) * h(k)

[=—o00
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Réponse a une sinusoide

* Considérons un systéme LTI excité par le signal

z(n) = Ae?“", —oco<n < oo

* Par convolution, la réponse du systeme LTI devient

k=—00
H(w)
y(n) = AH(w)e’"
* La réponse du systéme est un signal avec la méme fréquence, mais
dont 'amplitude est changée par le systéme LTI de fonction de transfert H (w)

* Par linéarité, ceci s’étend a des signaux x(n) qui sont des sommes de
sinusoides simples
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Exemple 1a: fonction de transfert

Determine the magnitude and phase of H (w) for the three-point moving average (MA) system

and plot these two functions for 0 < w < .

Solution.  Since

it follows that

Hence

y(n) = %[x(n + 1) +x(n) +x(n—1)]

IH(@)!

1 g
h(n) = {5, ,5}

S =

1 . 1
H(w) = E(e’“’+1+€_’"’)= 5(1‘*'2305“))

Z T2
1 E
|H(w)| = |1 + 2cos o € 9
2 )
& _
o < [0 0sws2m3 2
T \m 2t3<w<m -1 . . :
- —m/2 0 /2 b4

(0]

Figure 5.1.1 Magnitude and phase responses for the MA system in
Example 5.1.2.

Figure de [1].
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Exemple 1b: sinusoide simple

» Considérons le signal d’entrée x(n) = Aexp (‘%)

» Considérons le systéme LTI caractérisé par

) = (3) (o HW) - 1=

* On peut écrire la sortie du systéme

E) I 2 o —26.6°
2

TT
A w=— ona H( — —
2 1+j5 5

. o , 2 . .
Donc y(n)=A (16_326-6 ) e/™/2 ou y(n) = EAGJ(WH/2—26.6 )

V5
Pl'L
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Exemple 1c: somme de sinusoides

e Considérons le signal d’entrée  z(n) = 10 — 5sin gn + 20 cos Tn

. . e 1
» Considérons le systéme LTI caractérisé par H(w) = T
J— _6_ w
* On peut écrire la sortie du systeme 2
1
A w=0 ona H(0) = T =2
2
s 1 2 o @O
A w=—- ona H(—>: — = —J26.6
2 14 ]% V5
2
A w=m ona H(7r):§
10 40
Donc  y(n) =20 — E sin (gn — 26.6°> + 3 cosmn

N
:U
I
r
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Filtrage

[H(w)| |l [H(w)| | l H(w)| .

 Le filtrage consiste a modifier le contenu fréquentiel du signal par
I'action multiplicative de la transformée de Fourier de la réponse
impulsionnelle

y(k) =x(k)*xh(k) © Y(w) = X(w)H(w)
Y (w)] = | X (w)[|[H(w)]
arg(Y (w)) = arg(X (w)) + arg(H (w))

Syy(w) = |H(w)|25m(w)
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Signal bruité £ ‘ |
(bruit impulsionnel) | 1
0 2 4 B 8 10 12 14 16 18
Sample Number ant
1
o 05F -
Signal filtré é 0 —_—
(fitrage médian) £ gl ]
-1

1 1 1 1 1 1 1 1
0 2 4 5 g 10 12 14 16 18
Sample Number vt

Amplitude

Signal original

] 2 4 B 8 10 12 14 16 18
Sample Number % 10" Demo from [3].
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lllustration - débruitage d’image

Image bruitée Image filtrée

Traitement des signaux, automne 2021
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Types de filtres numériques <%

* Les filtres numériques sont groupés en 2 grandes familles, selon
les caractéristiques de la réponse impulsionnelle.

- les filtres a réponse impulsionnelle finie (RIF)
h(k) =0, Vk ¢ [ko,ko+ L —1]
\h(k)| < o0, VEk
- les filtres a réponse impulsionnelle infinie (RII)

3k > ko | (k) £ 0
> |h(k)| < oo

k=ko

8
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Fonction de transfert H(z) e

Les filtres numériques peuvent étre caractérisés par leur fonction
de transfert H(z) Y (2)

X(2)

H(z)=

oo

y(k) = > aDh(k—1) & Y (z) = X(2)H(2)

l=—00

* En général, la fonction de transfert est une fonction rationnelle en z
- en particulier, les systémes caractérisés par:

N M
y(n) == ary(n—k)+ > bra(n—k)
k=1 k=0
M
conduisent & H(z)=> bpz* Réalisations non-récursives
k=0

M _
H(z) = kol
N —k
14>, arz
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Réalisations récursives

m

Pl'L

Forme directe de filtres <%

Réalisations transversale ou non-récursive
- toujours réalisable pour les filtres RIF
- p. ex., pour un systéme causal

M
y(k) = Y bpi(k —m) y(k) = Y B(m)w(k —m)

» Reéalisation récursive (équations aux différences)
- utilisée pour les filtres Rl (et RIF)
N

Z any(k —n) = Z bmx(k —m)

- p.ex., pour un systeme causal, et ag # 0
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Structure non-récursive (directe)

x(n) —1 ~1 1 ~1
h(0) h(1) h(2) h(3) h(M - 2) h(M - 1)
O™
Figure 9.2.1 Direct-form realization of FIR system.
M-1 M-1 M-1
y(n) = h(k)x(n — k) = H(z) = bz * = g h(k)z="
k=0 k=0 k=0

e Structure non-récursive
- seérie d’éléments retard

- les coefficients correspondent aux valeurs de la réponse
impulsionnelle

- filtre avec zéros, sans pole

Figure de [1].
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Structure récursive (directe)

x(n)

Y(n)

CO—
Hyply
O—©

®7..._, N

a
[ 8. ]

Figure 9.3.2 Direct form Il realization (N = M).

(Structure canonique équivalente)

All-zero system All-pole system

Figure 9.3.1 Direct form | realization. Figure de [1].
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Exemple 2: filtres simples

M
: 1
« Le moyenneur (RIF, non-récursif): y(n) = > w(n—m)
M+1
m=0
) 1 -1 I I -1
e W
N N \_/ 1
M+1
Figure 2.5.5 Nonrecursive realization of an FIR moving average system.
Figure from [1].
» L’accumulateur (RII, récursif): y(n) =xz(n) + ay(n — 1)
1
—>( + > H )= -
z(n) l y(n) (=) 1 —az"1
a =
® & i e cPEL
\_/ Prof. Pascal Frossard B 8

VideoDSP2.2-start 2

Struct. des filtres numériques <=

* A partir de la fonction de transfert ou de la réponse impulsionnelle,
on peut construire un filtre numérique sous plusieurs formes

le choix dépend en particulier du type du filtre (RIl ou RIF)
le choix dépend aussi de contraintes d’implémentation (stabilité, etc)

e Filtres RIF

Forme directe (filtre ‘tout-zéro’, donné par la réponse impulsionnelle)
Forme en cascade (produits de filtres de 2éme ordre)

Forme a échantillonnage de fréquence (structure paralléle)

Forme en treillis

e Filtres RII

Forme directe (implémentation de la structure récursive, formes | ou )
Forme en cascade (produits de filtres de 2éme ordre)

Forme paralléle (somme de filtres de 2éme ordre)

Forme en treillis ou treillis-échelle
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Décomposition en filtres simples‘

* Les filtres numériques sont souvent réalisés par une
décomposition en filtres élémentaires

- structure en série (cascade)

H(z)

- structure en paralléle

=
N
N

I
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Modules: filtres du 2eme ordre

TABLE 9.1 Some Second-Order Modules for Discrete-Time Systems
Structure Implementation Equations System Function

2(n) = bos() b = 1) HE@) = bo+ by + bz

2N -1 -2
onagep = D=~ l+aiz7l +axz
by N
F
& w(n) = —ayw(n — 1) —aaw(n —2)
£ +x(n) H(z) =bo+ b1z™! + by
£ y(n) = bow(n) + bywin — 1) 1+aiz7l +az?
s +byw(n —2)
bZ
() by @ ¥m)
3 b . ¥(n) = box(n) + wy(n — 1)
a wi(n) = bix(n) — a1y (n) H(@) =by+ bz + b2
g Fwa(n —1) 1+az ! +az?
E wa(n) = byx(n) —azy(n)
by —a
Table from [1].
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Factorisation de H(z)

b+ i bmz "

N —
ap + ey 2"

* Par le théoréme fondamental de I'algebre on peut toujours
factoriser H(z) en produits de facteurs (zéros / péles)

H(z) = P Mo (=202 v 2o [l (2 = 2m)
Ao T (1= paz") do TIna 2 = p)

* Les pdles et zéros sont donnés respectivement par {Pn} et {zm}
* Le systéme a un péle ou zéro d'ordre |N-M| en z=0.
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Décomposition en série e

e Par factorisation, on obtient une décomposition de la forme:
H(z)=C Hi(z) Ha(2) ... Hk(2)

* C est une constante, et les autres termes représentent des
systemes qui ont des pbles ou zéros réels simples, ou en paires
complexes conjuguees

b; bi12 1 b; b; -1 b; —2
1 + a;1= 1 + Aio2 2

1 —a;z71
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Série de filtres de 2eme ordre

x(n) = xy(n) )= yaln) = Yg-10m) = yg(n) = y(n)

H(2) Hy(2) Hg(2)

xo(n) x3(n) xg(n)

(@)

x(n) =x,(n) x(n) xg(n)
—_— H(z) Hy(2) e Hy(2) e
yi(n) Yam) y(n)
) =41 @
1 b, (1) = X
x;(n) C\ X0 m i) = x5 4 ()
o/ o/
Figure 9.2.3  Cascade realization of an FIR system.
—a by,
\ Ak k1 f)
+ +
(J o
2 by
(b)

Figure 9.3.8 Cascade structure of second-order systems and a realization of
each second-order section.

Figures de [1].
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Exemple 3
» Considérons la fonction systéme suivante
Hiz) — 10(1 —1/227H(1 —2/3271)(1 +2271)
(2) = (1—3/4271)(1 = 1/82"1)[1 — (1/2 + j1/2)z71][1 — (1/2 — j1/2)271]
e On peut la décomposer en
B 1—-2/327" 143/2z71 272
(=) = 1—-7/82=1+3/32272 Ha(2) = 1—27141/2272
e Ce qui donne
(n) m /:\ /:\ m 10
L/ | \‘J -/ 1 AN
2 D 2 3
O+ OO
Hi(z) ; 7 : @ 4 Hy(z)
Figure de [1].
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H(z) en fractions partielles =

* On peut obtenir une décomposition en fractions partielles ou
P(z) Py(z)

Q(z) Qo(2)

- S(z) est un polynéme de degré M-N si M > N (ou C si M=N)
- le degré de Py est inférieur a celui de Qo

H(z) = = S(z) +

Po(x) S o N 16!
26 2o “=CErg )

- s’il y a des pdles multiples (p.ex. un péle d’ordre q)

Z=Di

=1,i#k Jj=1
o 1 097 B q PO(Z)}
B; (q— ) 9z1-3 [(Z Pr) Qo(2) |1z = py
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Décomposition en paralléle

» La décomposition en fractions partielles donne
H(z) =5(z)+ Hi(2) + Hy(2) + ... + Hx (2)
e S’il 'y a que des pbles simples (ou conjugués complexes)

bi b, + b, 271
H:(z) = ou H;(2) = v
Z(Z) 1+ aiz—l (2) l+a,z7 +a;,272
M—N K1 Ko
e« Onadonc  H(z)= Y ez "+> Hi(2)+> Hi(2)
k=1 k=1 k=1

- J
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Exemple 4

» Considérons un systeme causal avec
B 1
1 —3z"142272

e S(z) est nul. Les pdles de H(z) sont donnés par les zéros du
dénominateur: ;7! =1et 27! =1/2
1/2 o1 )

e Onadonc H(z) = CEIE TPy e +oo ~1/

H(z) 2| > 2

e En utilisant la relation pour déterminer les coefficients

1 1 2 1
H = — — _
e I R P Sl g
1
e Comme z(k) = afu(k) — X(z) = =1’ Pour |z| > |a|

1 —
» Sa réponse impulsionnelle est

h(k) = (2871 — Du(k)

// /\ Traitement des signaux, automne 2021
| Prof. Jean-Philippe Thiran
\/ Prof. Pascal Frossard

m

PI-L

Exemple 5 - équ. série/paralléle

e Donner les réalisations en série et paralléle pour le systéme

10(1 —1/227H(1 —2/3271) (1 +2271)
(1-3/4271)(1 —1/8271)(1 = (1/2+j/2)==")(1 = (1/2 = j/2)z71)

» La réalisation en série peut s’obtenir par groupement de termes

H(z) =

1—-2/3271
mG) =5 e 120
* La réalisation paralléle résulte de I'expansion en fractions partielles
B Ay Ay As A3
1-3/4271 * *

C143/2271 - 272
T 1l—2z7l41/2272

H(z) = 10H,(2)H2(2)

H{(z) 1 1/821 "1 (121 /21 1-(1j2-jj2)a1

- en groupant les termes, on obtient

. —14.75 1290271 L 2450 + 26.82z71
O 1—-7/82"143/32272 1 —z14+1/2272
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Exemple 5 - réalisations équivalentes

!

x(n) R C\ m R 10
( ) N N j ¥(n)
@

Figure 9.3.11 Cascade and parallel realizations for the system in Example 9.3.1. Figure de [1].
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Filtres en treillis (lattice) =

e Structure applicable a des filtres RIF et Rl

e Structure modulaire et stable, trés utilisée en pratique
traitement de la parole
traitement du signal en géophysique
filtrage adaptatif

» Construction de filtres en treillis
Structure RIF et équivalence avec la forme directe
Structure RIl tout-pble par inversion du filtre RIF (tout-zéro)
Filtre RIl générique par intégration des structures en échelle et treillis tout-pole
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Séquences de filtres RIF

» Considérons une séquence de filtres RIF (tout-zéro):
- chaque filtre est caractérisé par

An(z) =1+ i o (k)z™F
k=1

y(n) =x(n) + ) am(k)z(n — k)
k=1

x(n) I _] m
21 2-1 P e
1 a, (1) ‘ K a,,(m—1) a,,(m)

+ + R U +
yin)

- =
- -
R
o
]
- -

Figure de [1].
® T e A e 212 CPEL
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Filtre RIF en treillis e
* Filtre du premier ordre: y(n) =z(n) +a1(1)z(n —1)
o) m fin) =y(n)
x(n) Kl = 051(1)
— parametre de réflexion
pvg 20— 1) fm

Son) = go(n) =x(n)
fi(n) = fo(n) + Kigg(n — 1) =x(n) + Kyx(n—1)
g1(n) = K fo(n) + go(n — 1) = Kyx(n) + x(n — 1)

e 26émeordre:  y(n) =xz(n) + az()z(n — 1) + az(2)x(n — 2)

Q) R\ fim) @ foln) = y(n)
x(n) ><J K, K2 = 042(2)
’j‘ K, m ’?‘ Ky R K _ az ( 1 )
gom | g N 1 =
| » 1+ a2(2)
Figure 9.2.10 Two-stage lattice filter.

Figures de [1].
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Filtre RIF en treillis d’ordre M-1

Jo(m) filtm) faln) Su—2(m) Su— 1) =y(n)
X(m) First Second w-v
8o(n) stage 81(n) stage | &2(1) 8m—-2(n) | stage gum—1(n)
(a)
Jin—1(m) m Ju(m)
K/"
Bn ™[] B Y &
[ N
(b)
fO(n) — gO(n) — LC(TZ) Figure 9.2.11 (M — 1)-stage lattice filter.
fm() = fom1(n) + Knngm—1(n—1), m=1,..,. M — 1
gm(n) = Ky fm—1(n) + gm-1(n—1), m=1,.., M — 1
M—1
—_— ()= i) = 3 an (R — k), ana(0) =1
k=0
. Fry_q1(z
Equivalence avec RIF d’ordre M-1 Hy_1(z) = =2 1(2)
X (Z) Figure de [1].
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Et I'autre sortie du filtre en treillis?

* Filtre du premier ordre: ¢g;(n) = Kiz(n) + x(n — 1) avec K; = a;y(1)

e Filtre du 2éme ordre:

g2(n) = Kzfi(n)+g1(n—1)
= Kox(n)+ Ki(1+ Ky)x(n—1) 4+ z(n — 2)
= 2(2)z(n) + ax(Vz(n —1) + z(n - 2)

* On remarque que les coefficients sont les mémes que pour le
filtre A,,,(z), mais dans l'ordre inverse:

= Zﬁm(k:)m(n — k)
k=0

avec |G (k) = am(m — k), k:_: 0,1,....m et Bn(m)=1
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Fonctions de transfert du treillis

* Premiere sortie:  A,,(z) =
- : R L ] G (2)
* Deuxieme sortie (polyn6me réciproque):  B,,(z) = X(2)
Z
Bn(z) = Z (M — k)2 ™"
k=0
= Zam(l)zl_m = z_mZozm(l)zl
1=0 =0
= 2 "MA,(z7Y)
@ /@@\ S S B CP-L
\_/ Prof. Pascal Frossard 8
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Forme récursive en z

* On peut écrire les équations récursives du treillis dans le domaine z:

Fo(z) = Go(z) =X (2)

Frn(2) = Fn1(2)+Knz 'Gpr_1(2), m=1,2,...,M —1

Gm(2) = KnFpn_1(2)+2'Gpn1(2), m=1,2,...,.M —1
e En divisant par X(z):

Ao(Z) = Bo(Z) =1

An(2) = Ap 1(2)+ Kpz 'Bp_1(2), m=1,2,...,M —1

Bn(2) = KpApm_1(2)+ 2 'Bn_1(2), m=1,2,...,M —1
 Ou alors: An) | | 1 Ky Ap—1(2)

Bn(2) | | Km 1 2 1B, 1(2)
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Filtre treillis tout-pole a partir de RIF

z-1 .. Z-1 z-1
—ay(N) —ay(N—1) —ay(2) —ay(1)
(Forme directe)
RO OSSN OS  OSEs
%

Figure 9.3.12 Direct-form realization of an all-pole system.

1 1
» Systéme tout-plle: H(z) = =
1+ an(k)zF An(2)

N
y(n) == an(k)y(n —k) +z(n)
k=1 N
 Sion inverse entrée et sortie,ona y(n) = xz(n) + Z an(k)x(n —k)
- c'estlaréponse d'un filtre RIF H(z) = An(z) k=1

- le systeme tout-péle peut étre obtenu a partir du systéme RIF en inter-changeant
entrée et sortie

Figure de [1].
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n u u N
Filtre treillis tout-pole
Forward
x(n) O Jo(n) y(n)
Siln) N—
K,
X, Feedback y(n) — iU(TL) _ K1y(n _ 1)
a =
g1(n) U l_] go(n)
Reverse
(a)
Forward
x(n) m fin) m Jom) y(n)
fan)
B K B K .
h ) y(n) =—-Ki(1+ Kz2)y(n—1)
2 1
I~ = . —Kay(n — 2) + x(n)
8(n) C/ o 21(n) § L go(n)
“Reverse
(b)
Figure de [1]. Figure 9.3.14  Single-pole and two-pole lattice system.

* Stable si tous les pdles sont dans le cercle unité: |K,,| <1, Vm
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Filtres avec péles et zéros <

D (+) (+) e ()
o/ / o/ _/
w(n) ’——ll w(n—1) ’——ll w(n—2) m win—-M+ 1) m wn—M)
-] -] f -]
cy(0) (1) cy(2) cy(M—1) (M)
D D (D L
N N N N

Figure 9.3.15 Direct form Il realization of IIR system.
Figure de [1].

 Slgem(k)zF Cr(z
Hiz) = 1+ 5 an(k)z=k  An(2)

N M
w(n) ==Y an(k)w(n— k) + z(n) y(n) =Y en(k)w(n — k)
k=1

k=0
// /-\ Traitement des signaux, automne 2021 -
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| ] u r
Structure en treillis-échelle
* Filtre RIl avec a la fois des péles et des zéros (lattice-ladder)
- transposition de la forme canonique
X N J-1m) 0N Al N Jom)
- + + +
e N < /x, — /x,
) Ky oy 1(1)  gy(n) = ¢\(n) i
O O PO e
VN VN-1 V2 Vi Yo
N AN @ @l(ﬁ) Figure de [1].

Figure 9.3.16 Lattice-ladder structure for the realization of a pole-zero system.
M M
y(n) = E UmGm (1) e Crr(2) = E Vi Bm (2)
k=0 m=0

// /\ Traitement des signaux, automne 2021 -
| Prof. Jean-Philippe Thiran E P =1 L
\/ Prof. Pascal Frossard |




VideoDSP2.3-end 45
Struct. a échantillonnage de fréq. <=

e Construction par échantillonnage de - N o
la réponse fréquentielle H(w)a wi = M(k +a)

—2(k+)/M Q ()
H(k+a):H<Mk+a) Zh J k=01, M—1 i

M _ 1 2701 +Q)IM

..y

H (k + o) e??rlktem/M y — o

/+
. H2+a) )
H (k‘ + a) eg27r(k+a)n/MZ—n

(6_727r(k+a /M —1) 1

M—-1

n=0

* Forme générale:

1 — z~Meg2ma (7] H (k+ «)

M 1 — eizn(k+a)/M ,—1
k=0

H(z) =

Figure de [1]. Figure 9.2.5 Frequency-sampling realization of FIR filter.
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Analyse de H(z) e

* Laréponse d’un filtre dépend du placement des pdles et zéros
dans le cercle unité

H(Z) = by Hrj\r/{zl(l — Zmz_l)

Hr]:[:1(1 —pnzt)

* Interprétation géométrique /

pass

D
J
N

CIN s 1

NI
AN AN

AN [
NN

/

Figure 5.4.2  Pole—zero patterns for several lowpass and highpass filters.

Highpass

Figure de [1].
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Exemples de filtres a pole simple

|H(w)|

=
[SIERY
B

O(w)
e © NI

(o

S

O(w)
[SIE RS ST

n n
T - T

2

[STEN

N

Figure 5.4.3 Magnitude and phase response of (1) a single-pole filter and (2) a  Figure 5.4.4  Magnitude and phase response of a simple highpass filter;
one-pole, one-zero filter; H;(z) = (1 —a)/(1 —az™), H() =[(1—a)/2[(1 —z7")/(1 + az™")] with a = 0.9.
Hy(z) =[(1 —a)/2][A +z71)/(1 —azH] and a = 0.9.

Figure de [1].

| Prof. Jean-Philippe Thiran
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Exemples de filtres simples

Im(z)

1.2 T T : ,
1.0 b
\wo Re(z)
0.8+ . \&
= »
S o6t 8
£
0.41 1 @
0.2 ] 12
10 T T
0 . . L 08 i HiE
- 4 0 z T 3 i Al
2 2 £ 0.6 :. |
0.4 eer
[ T T T ] 02 -
b g e
-z |
z 2 _\
k= ‘ F
3
£ 0 x|
o 2 )
3 ’ 3 )\
£ _7m| ) > | =03
2 g o
2 r=095
-7t ) ) , ] s . . .
— I T T - -z 0 z 3
2 2 © -

Figure 5.4.5 Magnitude and phase response of a simple bandpass filterin ~ Figure 5.4.6 (a) Pole-zero pattern and (b) the corresponding magnitude and
Example 5.4.2; H(z) = 0.15[(1 — z72)/(1 + 0.7z72)]. phase response of a digital resonator with (1) r = 0.8 and (2) r = 0.95.
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®00 igital Filters Applet v1.2 o
eq ™ Sound On
__! Stop Display
! Shift Spectrum
! Input = arabian.mp3 |4 ]
[ Filter = Triangle s ]
Il Sampling Rate = 22050 =
Spectrum
Cutoff Frequency
(&)
mhlll ! ‘
& /
_ " // u./\
| . /
\‘\//_/ \\\/_ 7 \‘_,//
Impulse Response
.ﬂmh.
4 www.falstad.com/dfilter/index.html
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Constr. de filtres numériques <=

» Obijectif: trouver les coefficients qui donnent une bonne approximation
de la réponse désirée, sous une contrainte de causalité

- Méthodes spécifiques aux filtres numériques
- Méthodes d’approximation de filtres analogiques

* En général, on préfére les filtres RII
- Oscillations plus petites dans la bande coupée
- Implémentation avec moins de paramétres que RIF

* Filtres RIF si la réponse de phase doit étre linéaire:
arg (H(w)) = 4 + ow
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Classification des filtres idéaux

H
(f) Passe-bas
1
-12 . f. 12 f
H(f) Passe-haut
T1
‘12 foo12 f
H (f ) Passe-bande
T1
120 S Sy fo Ja 12 f
H (f ) Coupe-bande
1
-172 foo S Ju fa 1/2 f
// /-\ Traitement des signaux, automne 2021 E P | L
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Idéal n’est pas causal... <%

e En traitement de signal temps réel, on ne peut réaliser que des
filtres causals

» Considérons le filtre passe-bas idéal:
1, our |w| < w =, pour n =
H(w) = { p | | c h(n) = { we sinwen

0, pourw.<|w| <7
h(n)

0.25¢

Jo% o?? d h bAK) oo, .,

B S T

Figure 10.1.1  Unit sample response of an ideal lowpass filter.

e Ce filtre est clairement non-causal, donc non réalisable

Figure de [1].

// /-\ Traitement des signaux, automne 2021 -
| Prof. Jean-Philippe Thiran E P =1 L
\/ Prof. Pascal Frossard |




53

Conditions de causalité

e Théoréme de Paley-Wiener
- Si h(k) a une énergie finie, et h(k) = 0 pour k < 0, alors

/ n [ H ()] [dw < o0

- ATinverse, si |[H(w)|? est intégrable et si I'intégrale ci-dessus est
finie, alors H(w) = |H (w)|e? & () représente un filtre causal

* La magnitude d’'un filtre causal ne peut donc étre identiquement
nulle sur une bande de fréquence finie.

- Un filtre idéal ne peut étre causal

m

Pl'L
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Relation entre comp. réelles et imag.

* On peut décomposer la réponse impulsionnelle en parties paire et
impaire

h(k) = he(k) + ho(k)
* Si h(k) est causal
h(k) = 2he(k)u(k) — he(0)d(k),
h(k) = 2ho(k)u(k) + h(0)d(k),
he(k) = ho(k), k>1

» Par Fourier, h.(k) < Hgr(w) et hy(k) < Hr(w)
* Donc les parties réelle et imaginaire sont inter-dépendantes, pour
un systéme causal g \
w —_—

- transf. de Hilbert discrete H;(w) = 5 Hpg()\) cot
™ —Tr

d\
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Contraintes due a la causalité

» La condition de causalité pour les systémes pratiques, implique:

- la réponse fréquentielle du filtre ne peut étre nulle qu’en un certain nombre fini de
points

- les transitions entre bandes passante et coupée ne peuvent pas étre
arbitrairement abruptes

- les parties imaginaires et réelles de la réponse fréquentielle sont liées par la
transformée de Hilbert discréte

- l'amplitude et la phase de la réponse fréquentielle ne peuvent étre choisies
arbitrairement

* On se limite ici aux systémes décrits par I'équation aux différences
- et en particulier aux systémes causals et physiquement réalisables

N M
y(n) ==Y ary(n—k)+ Y bpz(n—k)
k=0

k=1
/ /\ Traitement des signaux, automne 2021
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Approximation de la réponse idéale

» Caractéristiques spécifiées dans le domaine fréquentiel
- Caractéristiques données par un gabarit
- Réponses d’amplitude et de phase (inter-dépendantes en pratique)

1H(f)]
+ 1+51 g
W \/\ I 5 /\/ v
1-01 g
bande bande
coupée passante
02
f

-172 _fp _fs fs fp 172
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Filtres numeériques
(Chapitre 6)

Prof. Pascal Frossard

Laboratoire de traitement de signal (LTS4)
EPFL
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* A. Structures des filtres numériques
e B. Construction de filtres RIF
e C. Construction de filtres RII

/ /\ Traitement des signaux, automne 2021
/ | Prof. Jean-Philippe Thiran : P : L
\/ Prof. Pascal Frossard - i
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B. Filtres RIF

e Caractéristiques de filtres RIF
* Synthése par fenétrage
» Synthése par échantillonnage fréquentiel

m

Pl'L
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Caractéristiques des filtres RIF s

Les filtres RIF sont toujours stables

- Siles valeurs de la réponse impulsionnelle sont bornées

lls sont définis par les éléments de leur réponse impulsionnelle

lls peuvent étre représentés par un polynébme de degré M-1 en z- (ou en z)
- A partir de la réponse impulsionnelle

lls sont causals si leur réponse impulsionnelle h(k) est nulle pour k<0

- Sinon, il suffit de décaler cette réponse.

lls peuvent étre a phase linéaire

arg (H(w)) =4+ aw, —-t<w<7
B=0or £w/20r—m

o = const
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Filtres RIF a réponse de phase nulle

* |déalement, une phase nulle permet d’éviter la distorsion de phase
* Pour avoir une phase nulle, il faut que la partie imaginaire soit nulle

ko+M—1
H(f)y= > h(k)e7*m/*
k=kog
ko+M—1 ko+M—1
H(f)= Y  h(k)cos2nfk—j| Y  h(k)sin2rfk
k=ko k=ko

- il faut que la réponse impulsionnelle soit paire

M-—-1
h(k) = h(~F), pour [k| <

- un tel filtre n'est par contre pas causal, donc pas réalisable

m

P

"I
=
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Filtres RIF a phase linéaire e

* On peut rendre causal le filtre a réponse de phase nulle, par
décalage de la réponse impulsionnelle

H'(f) = H(f)e 70
- la phase devient alors linéaire: arg(H'(f)) = —n(M —1)f = —

- la condition de symétrie devient h(k) = h(M — 1 — k)

h(k) L h(k) :
M impair M pair

|k BRI
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RIF causal: symeétrie/asymetrie

M—-1
Un filtre RIF causal peut étre caractérisé par: H(z) = Z h(k)z~k
k=0

M-—1 M-—1
y(k) =Y bpa(k—m) =Y h(m)z(k —m)
m=0 m=0

* [Si le filtre est a phase linéaire

hk)=+h(M —1—k), k=0,1,..,M —1

En utilisant ces propriétés de symétrie, on peut écrire

MUV = +£H(2)

Les zéros de H(z~') sont aussi les zéros de H(z)
- si zestun zéro, 1/z est aussi un zéro, de méme que z* et 1/z* si h(n) est réelle

/ /-\ Traitement des signaux, automne 2021
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RIF causal a ph. linéaire: zéros

1
o 7]
1 1
23 G
1
2
1 .o’
3 N
Unit v
circle AN
2

Figure 10.2.1 Symmetry of zero locations for a linear-phase FIR filter.

Figure de [1].
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Construction de filtres RIF =

M-—1
* Filtres RIF donnés par: y(n) = > bpz(n— k)
k=0

M—-1 M—1
y(n) =Y h(k)z(n — k) H(z)= > h(k)z"*
k=0 k=0

» Construction a partir de I'objectif Hg(w)
- Syntheése par séries de Fourier

oo
- Approximation analytique de h(k —jwn
P prave de o Hy(w) =) ha(n)e™
- Un fenétrage est généralement nécessaire 5

n—

- Echantillonnage fréquentiel

» Reéalisation a partir de la réponse impulsionnelle h(k)
- Convolution directe / TFD
- Reéalisation non-récursive ou récursive

N
:U
I
r
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Synthése par fenétrage <

Construction par approximation de la réponse impulsionnelle
La réponse impulsionnelle désirée est généralement infinie

1 [T ,
ha(n) = o | Hy(w)e?“"dw
* On peut la limiter en multipliant par une fenétre rectangulaire
1, pourn=0,1,... M —1
w(n) = { 0 Sinon. h(n) = hq(n)w(n)

Cela équivaut a une convolution dans le domaine fréquentiel
Hw) =5 [ Hiw)W(w—v)dv

W(w) =Yl w(n)eien

N
:U
I
r
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Fenétre rectangulaire: choix naturel

Hy(e/®)
® Transition
-7 -0, 0 [oN n bandwidth
W(el®)
* ,
| VA ®
Max side-lobe Periodic = T
height A\ convolution Minimum
| Y A\ Ao topband
S \ N0 VNIain lobe B ¢ aitgnuation
"width
FIGURE 7.8 Windowing operation in the frequency domain
_ sinwM/2 _ju(M—1)/2
W<w) T sinw/2 ¢
‘W(M:M —a<w<nm
| sin (w/2)[ 7 - =
—wi=L pour sin(wM/2) >0
arg(W(w)) = M1 .
—w=5—= +m, pour sin(wM/2) <0
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: 7N I
sk /',/’ ’ \\\:\Rectangular
2 o6l ,4"/// \\\“‘v\\ Hamming | 3
2 ,;7" /__— Hannin \ :;1“/ 3|
0af e Blackman \‘\‘f‘\;\,\ -
0 _."’,// I \;2;.
0 M-1
Figure 10.2.3  Shapes of several window functions.
* Le type de fenétre influence la largeur du lobe principal, et la
décroissance des lobes latéraux, dans la réponse fréquentielle
* Choix de la fenétre
- Compromis entre effets de Gibbs et lissage
e Choix de la taille de la fenétre
- On peut se baser sur la réponse impulsionnelle si elle est connue
- On peut prendre en compte la résolution spectrale Figure o [1].
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Fenétre triangulaire (Bartlett)

_ 20K

0, sinon
2 (sinmwM/2\"
W =
r(w) M( sin Tw )

angulaire _x;

| ol
— Bartlett —;

~. 714%5
M=16
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Hanning et Hamming

(1-—a)+acos 22 0<k<M-1

0, sinon

wi (k) = {

a=0.5 Hanning
a=0.46 Hamming

e But; atténuer les lobes secondaires

- Superposition linéaire de trois répliques de la méme fenétre
spectrale, avec un décalage de 1/M

. 2(1 — .
wi(k) = % (6327rk/M i ( - @) +€—327rk/M>
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TABLE 10.1 Window Functions for FIR Filter Design

Name of Time-domain sequence,
window hn),0<n=M-—1
[ M—1
2 in -5
Bartlett (tri 1 11— — =
artlett (triangular) 1
27 47
Blackman 0.42 — 0.5cos Mi’ll + 0.08 cos MT_”
X 271n
Hamming 0.54 — 0.46 cos i
Hanni 1 (1 2mn
' g —(1—=cos
anning > 08
. (M -1\’ M -1\
0 0(\/ D n
Kaiser i

M—1 L
sin |:27r (n — T)/ (M — l)ji
Lanczos ., L>0

(=557 (%57)

1.71—M71§ M-l D<a<1
2
1 n—{0+a)(M-1)/2 )}
4 -1 S| ——————————
Tukey 2{ +cos( T—oM=12 T
M —1 M -1
a(/\/[—l)/ZngA 2 !5 2
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Exemple: Filtre RIF passe-bas
* En tenant compte de la condition de causalité
—jw(M-1)/2 < <
Hy(w) = { le , pour O‘_ lw| < we
0, sinon.
mmwe(n—(M-—1)/2

ha(n) = =5 EGEn Y n (M= 1)/2
* Apres application d’'une fenétre rectangulaire

inwe.(n—(M-—-1)/2

h(n) = Sneet M2 0 <n<M—1, n# (M—1)/2
Figure 10.2.7 Lowpass filter daerf(ijg:k;dﬂ\//]vi: 1aorle'ctangular window: (a) M = 61 o do (]
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Méme filtre avec d’autres fenétres

Magnitude (dB)
Magnitude (dB)

—100 1

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
Normalized frequency Normalized frequency

L — 100 L

Figure 10.2.8 Lowpass FIR filter designed with rectangular window (M = 61). Figure 10.2.9 Lowpass FIR filter designed with Hamming window (M = 61).

0 4 0
% —-20 4 _g —-20
S —40 8 —40
= 1 E
= ‘g
S —60 i 5 —60
§ =
~80 ) —80
— 100 o 02 03 5 o —1007 0.1 0.2 0.3 0.4 0.5

. Normalized frequency
Normalized frequency

Figure 10.2.11  Lowpass FIR filter designed with o = 4 Kaiser window
Figure 10.2.10  Lowpass FIR filter designed with Blackman window (M = 61). (M =61).
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Figures de [1].

VideoDSP2.5-end 7

Exemple: Filtre RIF passe-bande

1.4
Rectangular
Hanning
Ideal

1.2 I

—

A in

0.6 4

0.4 T

M=64
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Prof. Pascal Frossard i

0.2F
0
-0.5
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Synth. par échantillonnage fréq. <=

» La réponse fréquentielle désirée H (w) est spécifiée a plusieurs
valeurs de fréquence
2T

w = M(k:—ka) k=0,1,...(M —1)/2, M odd
k=0,1,...M/2—1, M even
a=0o0r1/2

* On peut obtenir la réponse impulsionnelle a partir de ses
échantillons

— 2m —'27r(k+a)n/M _
H(k+a):H(Mk+a) Zh J Ck=0,1,.,.M—1

M-—1
1 .
h(n) = 5= D H (k+a)er®+amAM = 0,1, M 1
k=0
// /\ Traitement des signaux, automne 2021
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Filtre RIF par échantillonnage freéq.

» A partir de h(n) on peut écrire: e = Y % ™ H (s + @) 2 ram/
n=0 k=0
H(s) — 1 — z~Mei2ma (7] H (k+ «)
(Z) o M e~ 1 — ej2n(k+a)/M ,—1

Pour réduire les lobes latéraux, il est important d’optimiser le
comportement dans la bande de transition

Réduction de complexité en utilisant les symétries

- h(n) a des propriétés de symétrie si le filtre a une phase linéaire

- comme h(n) estréel,ona H(k+a)=H*"(M — k — «a)

Un échantillonnage efficace présente un grand avantage

- La plupart des échantillons H(k+Q) sont nuls, ou unitaires
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$ | Prof. Jean-Philippe Thiran
\/ Prof. Pascal Frossard

N
:U
I
r



79

Structure du filtre RIF par éch. fréq.

H(z) = 1 — 2~ Mes2me H(k+a)
M 1 — ei2n(k+a)/M -1
k=0
x(n) CHG) YO o) y(n)

Hy(z) \ﬁ

x(n) Ml H,(2) | H\(2) f y(n)

Hy, ,(2)
// /-\ Traitement des signaux, automne 2021 |
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Réalisation du filtre RIF par éch. fréq.

1 — Z—M€j27ra M—1 H(k+0{)

M 1 — ei2n(k+a)/M -1
k=0

 Mise en cascade de deux filtres

H(2) = — H, () Hy ()

M
* Un filtre tout-zéro Y
Hy(z)=1—-2"M w(n) = z(n) - :;;n - M)
* Un filtre tout-pdble
M—-1
Hy(z)= Y H(k); _emk irge Z Hy(z

k
yi(n) — ™My, (n —1) = H(k)w(n)

// /-\ Traitement des signaux, automne 2021 -
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Combinaison tout-pole / tout-zéro

N H(a)
() C)
o/ HO+a)
(v
H2+a) \>
/+j y(n)
J HM~1+a)

Figure de [1]. Figure 9.2.5 Frequency-sampling realization of FIR filter.
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Exemple 6: filtre passe-bande RIF

» Reéalisation récursive de filtre passe-bande
- Durée finie, M = 16
- Phase linéaire si décalage de M/2 =8

|Hq(f)]
17 T T
oo o Eo—o—?—o—o E oo : !
a2 EA fi Loan
~1.662 (1 — 27 1) ~1112(1— 271
H3(2) = 1076521 4+ 2 Hs(2) = 1+0.7652—1 4+ 22
1.414 (1 - 271)
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Exemple 6: filtre passe-bande RIF (2)

e Le filtre tout-zéro donne
w(n) =1/16 (x(n) — z(n — 16))

e Les filtres récursifs donnent
y3(n) = —1.662 (w(n) —w(n — 1)) + 0.765y3(n — 1) — y3(n — 2)
ys(n) = 1.414 (w(n) —w(n — 1)) — ya(n — 2)

ys(n) = —1.112 (w(n) —w(n — 1)) — 0.765y5(n — 1) — y5(n — 2)

* Finalement

// /\ Traitement des signaux, automne 2021 —
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Robustesse aux imprécisions

* |déalement, les zéros et les pbles s’annulent dans la méthode par
échantillonnage de fréquence
- ils sont tous sur le cercle unité
- en cas d’'imprécision, le comportement du filtre change

* On peut ramener les pbles et zéros sur un cercle légerement
inférieur a I'unité, pour plus de robustesse

- Le bruit dG aux imprécisions devient borné
- Le filtre devient stable

_ ; M-1
1 — TMZ M€j27'l'04

H(z) H(k+ «)

M 1 — rei2n(k+a)/M ,—1
k=0

r=1—c¢
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Comparaisons des meéthodes

» Historiquement, le fenétrage est la premiére méthode utilisée pour
des filtres RIF a phase linéaire

- Manque de contrdle précis des fréquences critiques

* Les méthodes d’échantillonnage fréquentiel sont ensuite devenues
trés populaires
- Attractif quand le filtre est réalisé par DFT

- Laréponse fréquentielle est généralement 0 ou 1, sauf dans la bande de transition
(multiples de 211/M)

* Méthodes d'optimisation numérique (Chebyshev) donne un contréle
total sur les spécifications

- Diluer I'erreur d’approximation dans les bandes passante et coupée pour minimiser
le lobe latéral maximal

- Plusieurs softwares permettent de résoudre ce probléme
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Let’s play again...

®e0o0 Digital Filters Applet v1.2 >y
ponse ™ Sound On
! Stop Display
[ Shift Spectrum
! Input = arabian.mp3 | 3]
[ Filter = Triangle } 3]

\ .
p . \
I8 Sampling Rate = 22050 %

Cutoff Frequency
(&) <>

Wz

www.falstad.com/dfilter/index.html
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Filtres numeériques
(Chapitre 6)

Prof. Pascal Frossard
Laboratoire de traitement de signal (LTS4)
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* A. Structures des filtres numériques
e B. Construction de filtres RIF
e C. Construction de filtres Rl

/ /\ Traitement des signaux, automne 2021
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C. Filtres RII

Caractéristiques de filtres Rl

Conversion de filtres analogiques
Réalisation de filtres Rl

Réponse de phase des filtres numériques

N
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Caracteristiques de filtres RII

* Plus flexibles que les filtres RIF, mais stabilité pas garantie

» Construction de filtres RIl par conversion de filtres analogiques en
filtres numériques

» La construction de filtres analogiques est trés bien maitrisée:

B(s) ij:w:o Brs"*

Fonction de transfert: Ha(s) = A(s) = Z]kv_o st
0
Réponse impulsionnelle: H,(s) :/ h(t)e *'dt
— o0
N dky()
Equations différentielles: Zak dtk Zﬁk dtk
k=0

Ces trois relations conduisent a différentes méthodes pour la conversion du
filtre dans le domaine numérique

/ /\ Traitement des signaux, automne 2021
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Conversion s & z

93

<%

* Un systeme analogique invariant est stable si tous ses péles ont
une partie réelle négative (partie gauche du plan des s)

* La conversion doit avoir les propriétés suivantes:

L’axe imaginaire en s devrait correspondre au cercle unité en z
- Ceci conduirait a une relation directe entre la fréequence dans les 2 domaines

Re[s] < 0 devrait correspondre a |z| < 1

- Un filtre analogique stable devient ainsi un filtre numérique stable

La fréquence d’échantillonnage 1/T va apparaitre explic

itement

* On ne peut pas réaliser un filtre causal RIl avec une phase linéaire
La symétrie introduit des pdles hors du cercle unité: il ne peut pas étre stable
h(k) = £h(—k) < H(z) =+ M-"YVH(z71)
Le filtre RIl est essentiellement caractérisé par sa réponse d’amplitude

Si la phase doit étre linéaire, on construit un filtre RIF

/ /\ Traitement des signaux, automne 2021
() P EPFL
Equivalence de la dérivation .-

» Approximation par équation aux différences

dy(t) _yT) —yT =T) _yn) -y —1)
' dt |_,r T T
dy(t)
t = —
y(t) H(s) =s -
1-271 y(n) —y(n —1)
n = —]
y(n) H(z) T 7
-1
» Equivalence finalement donnée par: s = 1 _TZ
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Relation entre les plans s et z

1 — 2zt 1

e Equivalence donnée par - ou S ———
a par s T S P

* Sion se concentre sur I'axe imaginaire du plandes s: s = 5{)
1 1 QT
1+ Q2712

z + 7

T 10T 1+ 0277
» Cela correspond a un cercle Unitfrele
de rayon 1/2 centré en z=1/2.

s-plane

Figure 10.3.2 The mapping s = (1 — z~')/T takes LHP in the s-plane into

points inside the circle of radius % and center z = % in the z-plane. Figure de [1].
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Equiv. de la dérivation: propriétés

* Les points de la partie gauche du plan de s correspondent a
I'intérieur du cercle unité en z
- Stabilité préservée

» Les péles potentiels sont par contre confinés dans les basses
fréquences

- Méthode utilisable seulement pour la construction de filtres passe-bas ou
passe-bande avec basse fréquence de coupure

e La diminution de T (= augmentation de la fréquence
d’échantillonnage) entraine une concentration de la transformée
de Fourier autour de z=1

N
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Exemple 7: filtre passe-bas

: . 1 1
* Filtre passe-bas donné par: = H,(f)= ——
P P Hals) = 77 =157,
* En appliquant la transformation:
1
H(Z) — Ha(8)|3:(1—z_1)/T - 14+7 — 21

« Sion prend une période principale, pour  z = /*™/T

/ /\ Traitement des signaux, automne 2021
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Exemple 8: filtre passe-bande

Convertir le filtre analogique passe-bande H,(s) =

1
(s+0.1)2+9

1
(== +0.1)2+9

 En utilisant I'équivalence de la dérivation H(z) =

T2/(1 + 0.2T + 9.0172)

—_ 2(140.17T) 1 1 _
| — 559700172 % + T702T19.0172 %

H(z) = 2

* T doit étre choisi suffisamment petit pour que les pdles soient
proches du cercle unité, pour que leur effet soit important

- pex,si T'=0.1
p1,2 = 0.91 £ 50.27 = 0.9491716:5°
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Equiv. de la rép. impulsionnelle <

» Echantillonnage de la réponse
impulsionnelle du filtre analogique

h(n) = ha(nT) i

e L'échantillonnage introduit une
périodicité dans le domaine fréquentiel

1 > k =25 0 25 @
H(f) — ? Z Ha (f — T) Har)

k=—oc0

» La fréquence d’échantillonnage doit
étre suffisamment grande pour éviter
|eS recouvre m e ntS (al iaS i ng ) Figure 10.3.;25|:Trequency responsoe H,(2) of the a::lig filter and frequency

response of the corresponding digital filter with aliasing.

Qr

m

Pl'L
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Equivalence Laplace -z

* On ne peut travailler avec h(n) directement (RIl), mais plutdt H(z)

H,(s) = /OO he(t)exp(—st)dt

— 00

he(t) = ha(t) f: 5(t — kT)

k=—0oc0
Ho(s) = / TS ha(0)8(t - KT)exp(—st)dt
T k=—00
S / T ha(B)0(t — KT)ewp(—st)dt
b — oo ¥ — 00
= i h,a(kT)GZCp(—kST) D H(2)|z:ea¢p(sT) = H€<S)
k=—00

» La transformée de Laplace du signal échantillonné est la
transformée en z du signal numérique évaluée en z = e*7

// /\ Traitement des signaux, automne 2021
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Conversion s & z

« Sionécrit s =0+ jQ et z=re’*, I'équivalence z = ¢* donne

'r:eUT et w =T

*Donc o<0=0<r<l1
c>0=r>1 77 T
c=0=r=1

» La partie négative du plan des s

devient l'intérieur du cercle unité en z

\ Unit

D

Figure 10.3.4 The mapping of z = ¢*7 maps strips of width 277/ T (for o < 0)
in the s-plane into points in the unit circle in the z-plane.

Figure de [1].
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Fonction avec poles distincts

* Prenons un systéme caractérisé par des péles simples

N N
Ck
H,(s) = g p— ha(t) = g cpePrt >0
k=1 k=1

» Par échantillonnage de la réponse impulsionnelle analogique

n=0 \k=1 k=1 n:O
N C
k
H(z) =)
1 —eprTz=1
k=1

* Les pdles sontdonnés par:  z, = eP T k=1,2,...N
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Echantillonnage h(t): propriétées

* Méthode par échantillonnage de la réponse impulsionnelle
Un péle sjen s correspond a un péle zj = exp(s; T) en z
Si Re[sj] < 0, alors |z| < 1: le filtre numérique est stable

* Par la conversion z = exp(sT)

Une infinité de bandes horizontales (de largeur dépendante de 71/T) du plan des s
est ‘projetée’ sur le cercle unité dans le plan des z

Recouvrements possibles, selon la valeur de T

Les filtres analogiques ne sont en pratique pas limités en fréquence, les
recouvrements ne peuvent étre totalement évités.

* La méthode s’applique essentiellement pour les filtres a basse
fréquence de coupure

L'influence du recouvrement est moindre a basse fréquence

// /\ Traitement des signaux, automne 2021
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Exemple 9: filtre passe-bas

1
s+1/RC

« Filtre passe-bas de type RC:  H,(s) = he(t) = e Y/ EC
e Un péle en -1/RC donne un pdle enzp = ¢ RO
» Le filtrage peut étre
réalisé par
y(n) = z(n) + e "oy(n — 1)
* Les fonctions de transfert
sont:
1

Ha(f) = 1+j27r1ROf
H(f) =

1 — e~ o e—327fT

T=0.125 T=0.0875

/ 7 NS Traitement des signaux, automne 2021
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Exemple 10: passe-bande

s+ 0.1
(s+0.1)2+9

Convertissons le filtre analogique H,(s) =

Le filtre aun zéroen s = —0.1 et deux pbles pr = —0.1 £33
On peut décomposer en fractions partielles
1/2 1/2
H(s)= — M2 12
s+01—-33 s+0.1+753
Par I'équivalence de la réponse impulsionnelle

1/2 1/2
] — 01T 3T ,—1 ' 1 _ o—01T p—33T ,—1

H(z) =

H(2) 1— (e7%1 T cos3T) 27t
zZ)] =
1 — (27017 cos3T)z=1 + 02T 32

/ /\ Traitement des signaux, automne 2021
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Exemple 10: passe-bande (2)

* Réponses fréquentielles du filtre passe-bande (résonateur)

20

10}
) o
) 2 0
L L5
3 2 -0t
.E E
o & —20Ff
b b
-30H
—-50 1 I 1 s —40 I 1 1 1
0 0.1 0.2 0.3 0.4 0.: 0 2 4 6 8 10
Normalized frequency Frequency
Filtre numérique Filtre analogique

e Le choix de T influence la fréquence de résonance
* Le recouvrement (aliasing) est plus faible pour T petit

Figures de [1].
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Equivalence de I'intégration =

» Considérons l'intégration

t x,(1) x(n)
ya(t):/ xo(u)du

z(1 = 1) [ y(n)

L'équivalent numérique est
la régle trapézoidale d'intégration !

y(n) = y(n — 1) + = [a(n) + x(n — 1)) T

2
—1
La transformée en z est H(z) = % 1 Tz -
—_ Z_

Comme dans le plan des s, l'intégration correspond a la division par

S, on a I'équivalence 1 T14 21 L 1+ sT/2
s 21—z71 1—sT/2
 La relation d’équivalence s’appelle la transformation bilinéaire.
Trait td i , aut 2021
® & e A, s CPEL
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Transformation bilinéaire: s — z

e« Enposant z=re!Y et s=o+j0
On obtient 2z-1 2 ( r2—1 ' 27 sin w )

SZTZ—Fl T 1+r2+2rcosw+‘71+r2+2rcosw

e Donc 2 r2 —1 of 2 2r sin w
0_T1+7“2—|—2frcosw T 14+7242rcosw
e Ona r>1=0c>0 2 Im[z]
r<l=0c<0 cercle
e Deplus,si r=1=0=0 i unte -
2 sinw 2 w 0 o
=22 Ztane
T 1+ cosw T 2

w = 2arctan —
2

// /\ Traitement des signaux, automne 2021
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Correspondance des fréquences

» Transformée de Fourier du signal numérique en évaluant H(z)
pour

y = ej27‘rfT

QT
e Avec w = 2arctan - et Q=2n7f,

S
s
1 e
f=—arctan (rf,T) [ |7
) 3 f,
1 H(f) 1 0 0
fo = — tan (7 f) ney

7T

* La construction doit tenir compte de la distorsion!
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Exemple 11: résonateur

s+ 0.1
(s +0.1)2 + 16

» Convertissons le filtre analogique Hy(s) =

Le filtre analogique a une fréquence de résonance a (1, =4

Si on veut une fréquence de résonance numérique a w, = 7/2 on
doit choisir 7" = 1/2 selon la transformation des fréquences

On a donc 1 1
s=4
1421

) 0.128 + 0.006z~1 — 0.1222—2
Z) =
1+ 0.0006z=1 +0.9752—2

En négligeant le terme en 27! au dénominategr, on obtient la
bonne fréquence de résonance pi2 = 0.987e im/2
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Exemple 12: passe-bas

Construisons un filtre passe-bas avec une fréquence de coupure

de 0.27 a partir du filtre analogique Q.
H(s) =
s+ Q.
* Par la transformation des fréquences Q. =2/T tan0.17 = 0.65/T
. . . 0.65/T
o Lefilt I t H(s) = —————
e filtre analogique devien (s) S 0.65/T
-1
* Par la transformation bilinéaire H(z) = 0245(1 + 27 ) (Plus de T!)
1 —0.509z"1
—jw
* Lareponse fréquentielle est  H(w) = 0.245(1 + e , )
1 —0.509¢—Iv

- on a effectivement H (0) = 1
|H(0.2m)| = 0.707
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Construction de filtres pb RII <

Spécifications du filtre numérique

Transformations des spécifications dans le domaine analogique
- distorsion de fréquence si usage de la transformation bilinéaire

Construction du filtre analogique correspondant
En général transformation bilinéaire
Implémentation du filtre numérique résultant

On travaille en général avec des filtres passe-bas analogiques
bien connus

- On effectue des transformations de fréquences pour obtenir passe-haut, passe-
bande ou coupe-bande
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Filtres analogiques p-b classiques

* La construction de filtres numériques RIl s’effectue par conversion

d’un filtre analogique (s <« z)

* |l reste a définir le filtre analogique qui remplit les spécifications

8; ~ Passband ripple
8, ~ Stopband ripple
@, ~ Passband edge frequency
w, ~ Stopband edge frequency

Stopband

w

désirées
 Le filtrage analogique est un domaine trés étudié
Filtres de Butterworth H()!
Filtres de Chebyshev
Filtres elliptiques s, A
Filtres de Bessel Passband ripple
;

Figure 10.1.2  Magnitude characteristics of physically realizable filters.

Figure de [1].
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Filtre de Butterworth
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1

1

e Filtre tout-pdle  |H(Q)|?

 Filtre monotone dans les ut
bandes passante et coupée
e ’ordre du filtre est donné par

1
14 €2(:/0p)?N

_ log(d/€)
log(£2s/52p)

:53

T 1+ (2/Q0)2N

T L+ e(Q/Q,)N

52:1/\/1+52

Figure 10.3.10 Frequency response of Butterworth filters.

Figure de [1].
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Filtres de Chebyshev

e 2 types de filtres
- filtre tout-pdle avec des oscillations dans la bande passante (Type |)
1
H(Q))? =
O = e,
- filtre avec péles et zéros, oscillations dans la bande coupée (Type II)
1

MO = g 0.0, /1309
cos(N cos™1(x)), our |z| <1
Tn(w) = { cosh(N cosh ™! (z)), ’ sinon.

cosh™1(6/€)
cosh™(Q,/Q,)

* L'ordre des filtres est donné par N =

» Spécifications atteintes avec moins de péles que Butterworth
Bande de transition plus petite pour le méme nombre de péles
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Filtres de Chebysheyv, illustration

|HQ)? |H(S)1? )2 |H()I?

1 s

19 1}
‘ 2

—r

_
1+e?

83 t 83+

A1l L 1 Q 1 n
Q, Q @ 2, 9 @ Q, Q,
N odd N even N odd N even
Figure 10.3.13  Type Il Chebyshev filters. Figure 10.3.11 Type | Chebyshev filter characteristic.
Figures de [1].
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Filtres elliptiques

» Les filtres elliptiques (Cauer) ont un comportement ‘equiripple’ dans
les bandes passante et coupée

1
14+ e2Un(Q2/Q2)
Un(x) est la fonction elliptique (Jacobian) d’ordre N

* L'erreur d’'approximation est répartie dans les deux bandes
- Filtre d’ordre le plus petit pour des spécifications données
- Pour un ordre donné, bande de transition la plus petite

K(9,/Q)K (T= (/7)) B i
K(e/d)K (\/1— Q,/Qs) ) K(x)_/o V1 —22sin®6

* Laréponse de phase est trés non-linéaire dans la bande passante
Trait td i , aut 2021
® & e s g CPEL
\_/ Prof. Pascal Frossard [ f
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[H(Q)]* =

Filtres elliptiques, illustration

IH(Q)I2 IH(Q)12

1
11/\A #:\/\/
1+ 1+¢€2

2 2
82t 821
2 .\f\ o 2 b

N even N odd

Figure 10.3.14 Magnitude-squared frequency characteristics of elliptic filters.

Figure de [1].

/ /\ Traitement des signaux, automne 2021
/ | Prof. Jean-Philippe Thiran : P : L
\/ Prof. Pascal Frossard B |




119

Filtres de Bessel

, 1
o F|Itre tOUt-p6|e H S) = Magnitude
( ) BN<S) 1.0
donné par les polyndmes de Bessel 0j6_

By(s) = (2N = 1)By_1(s) + s*By-a(s) "

 Butterworth

avec By(s)=1 et Bi(s)=s+1

e Large bande de transition ] \S

* Phase linéaire dans la bande passante o : —_— 0
détruite par la conversion numérique
135} Bessel
NN

I Butterworth

Figure 10.3.15 Magnitude and phase responses of Bessel and Butterworth
filters of order N = 4.

Figure de [1].
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lllustrations: filtre passe-bas

» Construction par transformation bilinéaire d’un filtre passe-bas avec
les spécifications suivantes

01 = 60dB wg = 0.307 wp = 0.257

jButterworth, N=$7

Magnitude (dB)

"100 Trrr I TTrT1TT ] TTrTT | LRI I TTrrrrTryaTT ] LA L ] LELER L I LRI f
A 2 3 4 S
Normalized frequency

<

Figure de [1].
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lllustrations: filtre passe-bas (2)

10
0 iy
B (1 T P P
=209 : : : : : :
304 ...... R R ........ o P P P P
40 ~ - ... Chebyshev (l), N=13
50 - o N i G
1 T P O
~704
-801-
-90--
’lOGI]lI.II II|Il;llllillll;llflillll;llilillll{llllf
0 .1 2 3 4 5
. 10
Normalized frequency :
0+ et
-10] . P
-204 - T el
@ =304 i X R SN _
3 Elliptic, N=7 :
3 T | T R . . . AN H . . '
2 .
2 _s04 : L
) :
S 60 i FRRTN
270 N AT
-804 o
-90- :
—100 TIrrrrrrrr ' lllllllll ] IIIIIIIII l IIIIIIIII , lllllllll f
Fi de [1]. 1 2 3 4 5
igures de [1] 0 Normalized frequency
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Réal. de filtres non passe-bas <=

Réalisation de filtres passe-haut, passe-bande et coupe-bande
prototype passe-bas
transformation de fréquence

Transformation de fréquence
analogique, puis conversion s < z

conversion s «» z pour le filtre passe-bas, puis transformation de fréquence
numerique

Les deux méthodes ne sont pas équivalentes en général

Si la transformation bilinéaire est utilisée, elles sont équivalentes
dans ce cas, il n’y a pas de probléme d{ au recouvrement

Pour les méthodes d’échantillonnage de h(n) et d’équivalence de la
dérivation

filtre passe-bas numérique, puis conversion de fréquence numérique

// /\ Traitement des signaux, automne 2021
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Transformation de fréq. analogique

TABLE 10.7 Frequency Transformations for Analog Filters (Pro-
totype Lowpass Filter Has Band Edge Frequency )

Band edge
Type of frequencies of
transformation Transformation new filter
Q
Lowpass s —> —Lg Q
QY P
P
, 2,Q, ,
Highpass S S Q)
s 2,
Bandpass 5 —> QDL Q,Q
8 (Qu - Qf)
S(Qu - QZ)
Bandsto s — Q,— Q2
P P24+ 0,0 S
Table de [1].
// /-\ Traitement des signaux, automne 2021 |
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Transformation de fréq. numeérique

TABLE 10.8 Frequency Transformation for Digital Filters (Prototype Lowpass

e Conversion de z7 en g(z- 1) Filter Has Band Edge Frequency w,)
Type of
° Le ce rcl e un |té e St ‘lnv a rl a ble’ transformation Transformation Parameters
S, @, = band edge frequency new filter
| (w) | _ 1 vw Lowpass 71— 1Z—az—1 ye sin[(w, — w},)/2]
g - " sinf(w, + w,)/2]
- w, = band edge frequency new filter
Highpass — *12_._ g ue _cos[(wp + @) /2]

cos[(w, — @) /2]

- ak w; = lower band edge frequency
g ( :l: | | 1 w, = upper band edge frequency
1 — arpz 5 a =2aK/(K+1)

il
Bandpass 7t — uf—;zi# a =(K-1/K+1)
@zt —aiz 41 _ cos[(oy, + wp)/2]

" cos[(wy —wn/Z}
|CL]<;‘ < 1 K:cotw"2 tn%

= lower band edge frequency
w, = upper band edge frequency

) -1y =2a/(K+1)
Bandstop 7! — X TR 4= (1-K)/(1+K)
!t —mz +1 _ cos[(w, +@)/2]
— cos(@y — w)/2]

W, — @, w
K:tan"Titan—p
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Exemple 13: Conv. de fréquence

e Convertissons le filtre Butterworth passe-bas (w, = 0.27) en un
filtre passe-bande entre w; et w,,

_0.245(1 4271

H(z) =
() = T 0509
* On utilise la transformation de fréquence suivante
1 272 —a1z7 4+ a9
A

asz 2 —a1z7 1 +1
H(z) 0.245(1 — az)(1 — 272)
Z) =
(1 +0.509a3) — 1.509a1 271 + (az + 0.509) 22

e Si w,=3n/5et w=2n/5

0.245(1 — 272) .
H = = 4+10.713 Résonancea w = m/2
() = 50500 be== /

/ /\ Traitement des signaux, automne 2021
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Conception typique d’un filtre RIl <=

1.Choix du filtre analogique (par transformation des contraintes
numeériques)

2.Détermination de I'ordre du filtre a partir des spécifications (gabarit)

3.Détermination du filtre passe-bas analogique avec une fréquence de
coupure (). =1

4.Transformation de fréquence (fréquence de coupure + type de filtre)

5. Transformation bilinéaire

N
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I
r
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Et la phase?... =

Dans le design des filtres numériques, on s’est concentreé sur les
caractéristiques du module de la réponse fréquentielle

La réponse de phase est généralement donnée par les contraintes de
stabilité, et de causalité

Pour avoir un systéme a phase linéaire, on doit avoir un filtre RIF
- causalité et phase linéaire implique H(z) = +2z "V H(z71)

- on ne peut avoir un filtre RIl a phase linéaire stable, puisque les pbles seraient
présents hors du cercle unité

On peut par contre influencer la réponse de phase d’un filtre RII
- la réponse de phase reste liée a la réponse d’amplitude pour un systéme causal

m

Pl'L
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Systémes a phase minimum

* |l y a beaucoup de systémes qui sont équivalents dans I'amplitude de la
réponse fréquentielle, et qui different dans la phase

[H(w)[* = H(2)H(™")

z=el%w
- si on remplace un zéro zx par son inverse 1/zx, la réponse d’amplitude ne change pas
- on peut donc inter-changer des zéros a l'intérieur ou a I'extérieur du cercle unité

» Lorsque tous les zéros sont a l'intérieur du cercle unité: phase minimum
- son inverse est alors aussi stable

N
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Exemple de phases difféerentes (RIF)

91(01) 02((0)
| @ . (b) ) )
Hi(z)=1+-2zt=2z"12+2) Hy(z) =~ +z1=2"Yzz2+1)
2 2 2 2
5
[Hi(w)] = [Ha(w)| =4[ + cosw
sin w sin w
0,(w)=-w+tan t— " Oy(w) = —w+tan I ————
1( ) %—i—cosw 2( ) 2 + cosw
Figure de [1].
() T o CPEL
\_/ Prof. Pascal Frossard
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Phase minimale (RIF)

 Filtre RIF simple a phase minimale (zéro dans le cercle unité)

O1(m1) —01(0) =0
 Filtre RIF simple a phase maximale (zéro hors du cercle unité)
Oz(m) — O2(0) =7
e Par extension, pour un systéme RIF d’ordre M
H(w) = bo(1 — z1e77)(1 — 20e77%)...(1 — zpre77%)

- phase minimale: tous les zéros dans le cercle unité
- phase maximale: tous les zéros hors du cercle unité

* Par extension, un systeme RIl stable a une phase minimale si
tous les zéros et tous les pdles sont a I'intérieur du cercle unité

/ /\ Traitement des signaux, automne 2021
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Systémes a phase minimale = =

* Tout systéeme a phase non minimale peut mener a un systéme a
phase minimale par un filtre passe-tout

H(z) = Hmin(z)Hpt(Z)

» Le filtre passe-tout transfert les zéros hors du cercle unité, sans
modifier la réponse fréquentielle d’amplitude

(o) = BB

(z) ne contient que des zéros dans le cercle unité

Bi(z)
- Bz(z) ne contient que des zéros hors du cercle unité
—1 . . L
- By (Z’ ) ne contient que des zéros dans le cercle unité

B1(2)By (271 Bo(z
Hmin — 1( ) 2( ) Hpt(z) = —(_)1
® & T e cp=|
\/ Prof. Pascal Frossard = |
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Exemple 14

* Considérons le systéme suivant
Hpin(z) =1 —1.38627" 4 0.6402 2

- 2zérosen z1 = 0.8exp(jm/6) et zo = 0.8 exp(—j7/6)
Comme les zéros sont a I'intérieur du cercle unité: phase minimum

* On peut le transformer en un autre systéme a phase non-
minimum par un filtre passe-tout

o
e i
VA g
pt 1 —212711 — 29271 \
2, Az
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Exemple: systeme a phase min.

gmin(k)

14

T

2

// /.A\ Traitement des signaux, automne 2021 -
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Exemple: systeme a phase non-min.

8(k) )

// /:\ Traitement des signaux, automne 2021 -
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Inverse d’un filtre

Systeme identité

z(n) 7 P w(n) = x(n)

Systeme direct Systeme inverse

wn) =T [y(n)] =T {Tlz(n)]} = z(n)

* Un systeme a un inverse s’il y a une correspondance entre les
signaux d’entrée et de sortie

* Pour les systemes linéaires et invariants

H()Hi(2) =1 & Hy(z) = —

* Les filtres numériques a phase minimum ont un inverse stable, qui
est aussi a phase minimum
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Let’s play a last time...

®0o0 al Filters Applet v1.2 >y
™ Sound On
! Stop Display
[ Shift Spectrum
! Input = arabian.mp3 | 3]
Y [ Filter = Triangle } 3]

Sampling Rate = 22050 | &

Cutoff Frequency
(&) <>

/ .\_\ //“\\ / /\
/ ‘/\_‘\ / \./_/ \\f \_
\'\\V/_)J /\.\_ /__/ \_/

Impulse Response

Al
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Résumé - filtrage =

Stabilité et causalité sont les conditions nécessaires pour un
design pratique

RIF utilisés dans les applications qui ont besoin d’'une phase
linéaire

- échantillonnage de fréquence et méthodes optimales sont les meilleurs choix
RIl utilisés quand la distorsion de phase est tolérée

- filtres elliptiques sont préférés (ordre plus faible), ou méthodes optimales

- RIl pas idéal pour filtre a phase linéaire: méme mis en cascade avec un passe-
tout pour corriger la phase, le nombre de coefficients est plus grand qu’un RIF

Les transformations de fréquence sont utilisées seulement pour
les filtres RII
- le résultat d’'une transformation de fréquence est un filtre RII
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Références

1. Digital Signal Processing (Proakis): chapitres 5, 9-10
2. Traitement numérique des signaux (Kunt): chapitre 5
3. Digital Signal Processing (Mitra): chapitres 8-10
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Estimation et
prédiction linéaire
(Chapitre 7)

Prof. Pascal Frossard
Laboratoire de traitement de signal (LTS4)
EPFL
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Estimation de signal

* Observation et interprétation de signaux perturbés par du bruit
- Antennes, astrophysique, recherche biomédicale, compression par prédiction

s(t) s(t) + b(t)

b(1)

) p
AT

Observation:
y(t) = s(t) +b(t)
I

* Avec un modele statistique du signal observé
Méthodes du maximum de vraisemblance, ou de risque minimum, etc.
» Sans modeéle a priori, on peut faire de I'estimation linéaire
besoin seulement de connaitre ou mesurer I'auto/inter-corrélation

- sil'observation est a statistique gaussienne, I'estimateur linéaire optimum
donne la plus faible erreur quadratique moyenne (vs méthodes non-linéaires)
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Plan

Rappel - signaux aléatoires, stationnarité, ergodicité
Processus aléatoires AR, MA, ARMA

Filtrage linéaire de signaux aléatoires

Estimation et prédiction par filtrage linéaire

Filtres optimaux: filtres de Wiener
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Signaux aléatoires

» Un processus stochastique (ou aléatoire) est représenté par un
signal aléatoire a temps continu x(1).

* Un signal aléatoire a temps discret x/n] peut se voir comme un
vecteur de variables aléatoires, de dimension infinie

- Enprenant T'— 0, (...,z[(n —1)T],z[nT],z[(n+ 1)T],...) devient un signal a
temps continu

» Ces signaux sont caractérisés par une densité de probabilité, et
un opérateur d’espérance. Pour pouvoir travailler avec ces
signaux, on fait des hypothéses d’ergodicité, et de stationnarité.

* Les signaux déterministes sont parfois considérés comme des
signaux aléatoires en I'absence d’information sur leur génération.
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Signaux aléatoires

A< |
i WW\/\
Al

2k

Xt s,)

-3

I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Time, t
3
o
1L
o
=
A+
-2
-3 L L L L L L 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time, t

* Les phénoménes physiques naturels sont souvent caractérisés en
termes statistiques

- Les réalisations possibles forment un ensemble de fonctions aléatoires {:I?(t, S)}
- Une réalisation x(t) est une série de variables aléatoires :I:(ti), 1=1,2,...n

- Elle est caractérisée par une densité de probabilité jointe P(Tty, Tty ooy Tt
// /\ Traitement des signaux, automne 2021 — |
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Stationnarité <%

* Un processus caractérisé par p(z,, x4, ..., ¢, ) (densité de
probabilité jointe), est dit stationnaire au sens strict si Vr, Vn

p<33t17$t27 ---,fﬁtn) :p($t1+r,$t2+n ---,l’tn+r)

» Dans ce cas, les propriétés statistiques du signal sont invariantes
par rapport a une translation dans le temps. Elles ne dépendent
pas des instants auxquels les n échantillons successifs sont
considérés.
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Moyennes statistiques <

* Les moyennes statistiques sont calculées sur différentes
réalisations du processus aléatoire

* Par exemple, I'échantillon a l'instant ¢;, X (¢;)est une variable
aléatoire avec un densité de probabilité p(x¢,)

* Le moment d’ordre / de la variable aléatoire est donné par

B(X!) = / 2h play,)da,

— 0

 Sile processus est stationnaire (p(x:,) = p(x¢,+-), V7), le
moment d’ordre / est constant (indépendant du temps)

m

Pl'L
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Autocorrélation <%

* Considerons 2 variables aléatoires X, = X (¢;), i = 1,2 qui
correspondent a des échantillons pris a des instants différents

* Le moment joint est défini comme

E[tith] = / / Tty Tty p(xt17xt2)dxt1dxt2

» Sile processus est stationnaire, la fonction d’autocorrélation est

Wm:c(T) - E[th—l-T? th] - E[Xt’l—ra Xt’l] - /Yxac(_T)

- Lavaleur en 0 est la puissance moyenne du signal ;. (0) = E[XtQJ

e Stationnarité au sens large si

E[Xy,| = const et Yoz (t1,t2) = You(t1 — t2) = Vau (T)
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Autocovariance "

e |La fonction d’autocovariance est liée a I'autocorrélation

C:c:c(t17t2) - E{[th - E(th)][th - E(Xt2>]}
= Yao(ty t2) — B(Xy, ) E(Xy,)

» Sile processus est stationnaire, on a

C:E:C(t17 t2> = Cxx (tl — t2) = CCC:E(T) - 733:0(7_) - mi

avec m, = E[X;,| =const et T=11 — 19
e On peut alors définir la variance comme

Ui = Cz2(0) = Y22(0) — mi
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Processus aléatoires joints

e 2 processus aléatoires X(t) et Y(t) sont caractérisés statistiquement
par une fonction de densité de probabilité jointe

p($t1,$t2, s Lt s Yt Yth s 7yt'm)

¢ On définit alors l'intercorrélation et I'intercovariance comme

’ny(tlatz) = E[tiYtQ] = / / Lty Yty p(iUtlaytg)dItldytg

ny(tth) - /ywy(tth) - E(th)E(YiQ)
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Caractérisation de processus joints

» Siles processus sont conjointement et individuellement stationnaires

Yy (tla t2) = Vay (T) = ’)/xy(_T) et Cay (tla t2) = Cxy (T)
Vn,Vm, Vt;, Vi,

» Si les processus sont statistiquement indépendants,

p(xh s Ltgy ooy Lty ytll ) yté: Y ytén) - p(xtl 3 Ltgy +ey xtn) p(ytll ) yt’27 ) yt;n)
* Finalement, deux processus sont non-corrélés si

Vay(t1,t2) = E(Xy, ) E(Ye,) ou  coy(ty t2) =0
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Densité spectrale de puissance s

» La transformée de Fourier n’est pas directement exploitable pour
un signal aléatoire, généralement de durée et énergie infinies

* On peut obtenir la transformée X 4 (w) d’une réalisation donnee
par fenétrage x4 (t) = rect(t/A) x(t)
* La densité spectrale de puissance (DSP) est alors donnée par

Cra(w) = Jim — B[ Xa@)]

* Interprétation

A/2
- Iénergie moyenne du signal par unité de temps est donnée par P = lim — / |lz(t)|*dt
A—o0 A 7A/2

- Par Parseval

. 1 > 9 1 [~ ‘
P—AIEnOO%_A/_Oo | X 4(w)]?dw = 271_/_Ooljm(w)czlcu

w2
- Cela montre que / I'yo(w)/(2m)dw est la contribution des fréquences [w1,ws] & la puissance
moyenne du signal w1 — densité spectrale de puissance

m

P

"I
=
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Théoréme de Wiener-Khintchine <-

e Un calcul direct de la DSP est trés laborieux !

* Pour les signaux aléatoires stationnaires au sens large, on peut
heureusement utiliser le théoréme de Wiener-Khintchine:

Iy (w) = / e (£)e It dt

- |la DSP s’obtient en calculant la transformée de Fourier de la fonction
d’autocorrelation

Norbert Wiener Aleksandr Khinchin
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Preuve...
e Théoréme de Wiener-Khintchine:

m .

Lyo(w) = / (eIt

— 00

* Preuve %E[|XA(w)|2] = %E {//:c(t)rect(t/A)e_j‘*’tx(t')*rect(t'/A)ej‘*’t/dtdt'

= %//I‘eCt(t/A)I'eCt(t//A)E[x(t)x(t/)*}e—jw(t_t’)dtdt,

= /Wm(u)e_j“’“du/rect(u/A + u)rect(u/)du’  (chgt variables: u =t —t',u' =t'/A)

= / tri(u/A)yae (u)e 7 du

: : . 1 : »
Comme Ahm tri(u/A) =1 on a effectivement ZEHXA(W)‘Q] = / Voo (u)e 34 duy
— 00
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Propriéetés de la DSP

* On a les relations suivantes pour la distribution de puissance

oo

I‘m(w):/ fym(t)e—jwtdt(:)fym(t):/ Tyo(w)e?tdw

La DSP est toujours réelle. Si le processus aléatoire prend des valeurs réelles,
elle est aussi paire.

* Par extension, on obtient la densité inter-spectrale de puissance
pour deux processus aléatoires X(t) et Y(1)

Fpy(w) = / ’yxy(t)e_j“’tdt

— OO

Onal}, (w) =Ty (—w), et I'yy(w) = I'yu(—w) pour les processus réels

// /\ Traitement des signaux, automne 2021
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Signaux aléatoires a temps discret

* On peut étendre les définitions précédentes aux signaux discrets
Généralement par échantillonnage uniforme des processus continus
L’échantillonnage d’un processus stationnaire forme un signal stationnaire

* On a les relations suivantes pour le processus discret X(n) et les
échantillons x(n)

Yoz (N, k) = E[ X5, Xi] = / / LTk P(Tn, Tk)de,dy

Cez(N, k) = Yoz (n, k) — E(X,) E(Xy)

N
:U
I
r
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Processus discrets stationnaires"

» Sile processus discret est stationnaire
- m=n-k

Vaa (1, k) = Yoz (m)

Caa (N, k) = Con(M) = Yau(m) — B(X,)?
0% = €2 (0) = 722 (0) — E(X5)

E(X3) = 722(0)

e Par Wiener-Khintchine

> , 1/2 _
me(f) - Z Vox (m)e_ﬂﬁfm & Voa (m) - / F:cx(f)eﬂwfmdf

~1/2

m=—0oo

m

Pl'L
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Moyennes temp. et ergodiciteé <&s

* En pratique, une seule réalisation est disponible en général

Cependant, nous avons caractérisé les processus aléatoires en termes de
moyennes statistiques

 Comment obtenir les moyennes du processus avec une seule
réalisation?
Condition: le processus doit étre ergodique

» Définition: X(n) est ergodique si les moyennes statistiques sont
égales aux moyennes temporelles (obtenues a partir d’'une seule
réalisation du processus)

Dans ce cas, on peut estimer les moyennes d’ensemble a I'aide des moyennes
temporelles calculées sur une seule réalisation

Un signal ergodique est toujours stationnaire au sens strict (I'inverse n’est pas
vrai!)

// /\ Traitement des signaux, automne 2021
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Ergodicité de la moyenne

* Pour un processus stationnaire X(n), les moyennes statistiques et
temporelles sont données resp. par

1

* 1, estune estimation statistique calculée sur une seule réalisation

- Son espérance calculée sur toutes les réalisations du processus devient
N

. 1 1
E[mx]: ON + 1 Z E[x(n)] = 2N+1n;wa:mm

- C’est un estimateur non biaisé.
» La variance de I'estimateur est donnée par
var(ig) = E([ing|*) — [mq|*

- sila variance tend vers 0 quand N devient trés grand, I'estimation 7, converge
avec une probabilité 1 vers la moyenne statistique m,

// /\ Traitement des signaux, automne 2021
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Var. de I'’estimation de la moyenne

N N

S 2
E(mg|") = 2N+1 (ON L 1)2 Z Z E 2N+ 2 Z Z Ve (k
—N k=— —N k=—
S QEN: oY m)
2N +1 2N +1
m=—2N
var(my) = ! QXN: 1- ﬂ wr(m) — |mg|?
’ 2N +1 2N +1 !
- e 2 ()
2N +1 2N +1
m=—2N

* Les moyennes statistiques et temporelles sont égales si
2N >

. 1 Im| _
NN ZQN(l 2N+1) M) =0 ou Y Jess(m)] <o
m=— N m=—o0
1
- on a alors _
Mme = JW SN 2N +1 2_: z(n)

m

P

"I
=
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Ergodicité de la corrélation

e On peut aussi calculer une estimation de la corrélation
N

1 >k
» |’estimateur est a nouveau non biaisé, puisque
R 1 O
Blree(m)] = gy 2 Bl (matntm] = g 32 Aealm) = yec(m)

e La variance de I'estimation est donnée par

vat (e (m) = B(|rae (m)]?) = [ (m)

Si la variance tend vers 0 pour N trés grand, I'estimation converge avec une
probabilité 1 vers I'autocorrélation statistique

m

Pl'L
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Var. de Pestimation de corrélation

E(|ras(m)?) = (2N1+1)2 ;NkZNE[x*(n)x(mm)x(k)x*(k:+m)]

1 N N
ANETE O 2L An—k)  avec un(n) =" (n)a(n+ m)
n=—Nk=—N
2N

1 n|
1 _ m
2N+1HZ2N< 2N+1)%”(”)

V(1 () = 55— > (1 g ) 00 = bes(m)P

n=-—2

» La condition pour que le processus soit ergodique en terme de
corrélation est donc var(r,,(m)) — 0 as N — oc . On a alors
N

n=-—

li !
11m
.N—%d)2DJ%—1

N
:U
I
r
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lllustrations: stationnarité, ergodiciteé

e Stationnarité

|

bruit coloré
stationnaire

signal non stationnaire

statistiques différentes

* Ergodicité

2(t) = a zo(t) e DRy oy
- H E MNWWW e i ‘
xo(t) est un processus ergodique . WMM'“"'W ‘ |
- @: variable aléatoire (indép. de xo(t)) 2| ]
- X(t): signal stationnaire non ergodique 3 g
Al
iyl Yl

temps
/ /-\ Traitement des signaux, automne 2021
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Réponse de systemes linéaires

signal aléatoire Systéme LTI

h(k)

x(k) y(k)

y(k) = Y h(Q)a(k =)

l=—0c0

e Signal aléatoire x, donné par m,, V.. €t T,
* La moyenne du signal de sortie est donnée par

my = Ely(k) = > h(OEa(k— )] =m, > h()

l=— o0 l=—0
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Rép. de systémes linéaires B

* Fonction d’autocorrélation du signal de sortie:

(k) = E[y(l)y<Z+k>]=E[ > h(wa(l—u) Y h<v>x<Z+k—v>]

U=—00 V=—00

= > h(u) Y hEx(l-uwzl+k-v)

stationnarité de x(k) oo 0 oo

S ) S bt o m) = S ek —m) S A(u)h(ut m)
= Z 'sz(k_m>7hh<m>

 Densité spectrale de puissance I'y,(z) = H(2)H(1/2)l'14(2)

// /\ Traitement des signaux, automne 2021
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Signal intéressant: bruit blanc

* Un bruit blanc est I'idéalisation mathématique d’un signal
stationnaire a moyenne nulle dont la DSP est constante

Tyo(w) = No © vau(t) = No 8(t)

- Un tel signal a une puissance moyenne finie, et ses échantillons sont décorrélés.
- On peut générer toutes sortes de bruits colorés par filtrage de bruit blanc

* Dans le cas discret, un bruit blanc b(n) est un signal a moyenne
nulle, stationnaire et caractérisé par I'indépendance des

échantillons
0 n#0
/Ybb(n)_{ NO n:O

- La DSP reste constante:

be (w) = NO

// /\ Traitement des signaux, automne 2021
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Syst. linéaires et bruit blanc e

bruit blanc Systeme LTI y(k)

h(k)

* La fonction d’autocorrélation de y dépend de la variance du bruit blanc

Tyy(k) = Z Yoo (k —m) ypn(m) = Z a36(k —m) yun(m)
= oiyn(k) = o} Z h(m) h(m + k)

* La densité spectrale de puissance est alors simplement donnée par
Lyy(f) = |H(f)|2 o

// /\ Traitement des signaux, automne 2021 —
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Représentation de I’'innovation

* Un processus stationnaire au sens large {z(n)} peut étre
représenté comme la sortie d’'un systéme linéaire causal et
invertible excité par un bruit blanc.

° Preuve série de Laurent
o0 (fonction analytique) o
Tpw(z) = Z Ve (m)z™™ logTy.(2) = Z v(m)z™™"
Ipo(2) = exp l ’"] H(z™h
avec o2 = exp[v(0)]
z(n) = Z h(k)w(n — k) ot [Z_l v ] 2] > 11
wL Filtre linéaire —13:0 l fonction analytique
causal H(z) Too(f) = 02 |H ()2 systéme causal

o

H(z)= Z h(n)z~

bruit blanc: processus d’innovation

// /\ Traitement des signaux, automne 2021
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Processus stationnaires par filtrage

* On considére les processus stationnaires {z(k)} ayant une DSP
rationnelle _1
2 B(z)B(z77)

R e TE)

* Par la représentation de lI'innovation, ces processus peuvent étre
geénérés par un bruit blanc {w(k)}, filtré par H(z)

B(z) 1o bkz_k

H(z) = A(z)  1+XP_ arz™
/ /\ Traitement des signaux, automne 2021
(0> & o dear s T =PrL
Processus particuliers .-

* Processus AR (auto-régressif)

* Processus MA (moyenne glissante)

i bkw
=0

H(z) = B(Z)
* Processus ARMA (AR + MA)
p q ' -
xln + arx(in — k — b wln — k_\ All-zero system All-pole system
) ; * ( ) kzzo * ( ) Réalisation ARMA
H(Z) = B(Z)/A(Z) Figure de [1].
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Calcul de 'autocorrélation

* On peut obtenir 'autocorrélation a partir des parameétres du filtre
qui génére le signal aléatoire a partir d'un bruit blanc

* Pour un processus ARMA (quand I',...(z) est rationnelle):

p q
Elz(n)z*(n Z ay (n—m)] + Z b E[w(n — k)z*(n — m))
k=1 =
p
’7:c:c Z ak'yzac m — k‘ + Z bk'Ywac m— k)
k=1 k=0
bruit blanc
Yua(m) = Ela*(n)w(n+m)] = E | > h(k <n+m>] o2 -m)
k=0
- 2221 ak’Yxx(m - k) m > q
’Ymr( ) = - Zizl ak%cx(m - k) + (7121) ZZ;E” bk+mh(k) 0<m<gq
’Y;z(_m) m <0

/ /\ Traitement des signaux, automne 2021
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Equations de Yule-Walker <

ARMA: »
=D k=1 OkYzz(m — k) m > q
,yg:ac(_m) m <0

* On peut aussi obtenir la fonction d’autocorrélation pour un
processus AR

L Qg Yaz(m — k) m >0
Ve (m) = — I];:l Ak Ve (m — k) + O'?U m =20 équations de Yule-Walker
me(_m) m <0

e . etMA

0 m > q
’Ym:v(m) = O'%U ZZ::O bk+mbk 0<m<q
V;m(_m) m <0

Prof. Pascal Frossard
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Prédiction linéaire et filtrage @ <=

x(n + Jp(n) , g

- ) « On veut prédire la valeur du

) processus aléatoire x(n) a partir de
ses valeurs passées

Forward i) p
i
predictor 2(n)=—>_ap(k)z(n — k)
Figure 12.3.1 Forward linear prediction. k=1 \ Coefficients de prédiction
R e S e S e S Erreur: e(n) = fp(n) = z(n) — 2(n)
p
" Fo(n) = x(n) + ) ay(k)a(n —k)
k=1

* Cela correspond a un filtre RIF

Ci )

p
Figure 12.3.2  Prediction-error filter. Ap (Z) = E ap (k) z —k avec ap (0) — 1
k=0
Figures de [1].
/ /-\ Traitement des signaux, automne 2021
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Erreur de prédiction minimale <
* L'erreur quadratique moyenne s’écrit comme:

& = EBlfp()]

p
= %a(0) + 2R | D ap (DD | + DY ap(Dap(k)yaa(l — k)
=1 k=11=1
* La minimisation de cette fonction quadratique des coefficients donne
p
Yoall) = =Y ap(k)yaa(l— k), 1=1,2,....p
k=1

Equations normales
e ’erreur minimale est donc:
D

min[gg] = E;J)c = Yaz (0) + Z ap(k)Vze(—FK)
k=1

/ /\ Traitement des signaux, automne 2021
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Processus AR vs prédiction linéaire

Zzl ak’)/ma:(m - k?) m > 0
Yoz (M) = — 2:1 Yoz (m — k) + 03, m =0  Equations de Yule-Walker
Equations normales Yoz (1) = — Z ap(k)Vea(l — k), 1=1,2,..,p

* Iy a une correspondance entre les coefficients des 2 systemes
si x(n) est un processus AR, les coefficients de prédiction sont les {ak}

I'erreur minimale du prédicteur est equivalente a la variance 0, du bruit blanc
(séquence d’innovation)

le filtre de prédiction est en fait 'équivalent du filtre qui génére le bruit blanc a
partir d’'un processus stationnaire AR

// /\ Traitement des signaux, automne 2021
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Solutions des équations normales

p

p
Ef 1=0
— — p?
: S aet-H={ 5" |20, ,
—’Yxa: Z 79696( k k=0

avec a,(0) =1

* Les équations normales augmentées prennent la forme I',a, =e,
avec

[ 72(0) (1) e ()]
Yz (1) Yz (0) o Yaz(p—1)
L, = : Matrice Toeplitz!
| Yax (p) Vxx (p - 1) VYzz (0) ]

» Solution par des méthodes récursives, comme l'algorithme de
Levinson-Durbin (ou l'algorithme de Schur)

LD: am(k) = am-1(k) +amn(m)a;,, _(m—k), k=1,2,..m—1 m=1,2,..,p

/ /\ Traitement des signaux, automne 2021
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Levinson-Durbin

» Algorithme efficace pour résoudre les équations normales, en
utilisant les propriétés de la matrice I';, qui est Toeplitz

* En combinant les équations normales, on peut écrire

[ Y20(0)  Yaa(1) Yeulp) 1T 1 ] [ ES]
’}/a:gc(l) ’Yx:c(o) Yz (p - 1) _ap(l) 0
_'ym'(p) vmm(b—l) %;(0) 1L —a;;(p) 1L 0 ]

| ap €p

* On établit une relation de récurrence, en calculant la solution pour
un filtre d’ordre i, a partir de celle pour un filtre d’ordre (i-1)

@

Signes de coefficients inversés par rapport aux relations précédentes - sans perte de généralité

=PrL

Traitement des signaux, automne 2021
Prof. Jean-Philippe Thiran
Prof. Pascal Frossard
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Récurrence dans Levinson-Durbin

e Solution pour le filtre d’ordre (i-1)

,YIZJS(O) ’wa(l) ’Y:UIJC(Z - 1) 11 1 | [ Ez'f—l |
Yer (1) Yz (0) Veu (i — 2) —a;-1(1) 0
| eali= 1) Yaali—2) A1) N I (R I B
* On peut augmenter le systeme
[ ’Y:wc(o) %c:c(l) %cac(z) 171 1 | [ Eif—l ]
’Ym:c(l) ’Yac:c(o) 'Yacx(i - 1) _ai—l(l) 0
. . . —ai_l'(i - 1) 0
i Yoz () Vax(i — 1) Yz (0) 1L 0 | | Aie1
1—1
- avec A1 = Vaz (1) Z a;—1(k)Yex (i — k)
k=1

Traitement des signaux, automne 2021
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Astuce...

 La derniere relation n'est pas sous la forme idéale I'pa, = ep
* Mais, grace aux propriétés Toeplitz, on peut écrire

[ 'Yw:v(o) 'Vfc:c(l) 'Vm:c(z) | 0‘ Ai—1
7xx(1> 'Yxx(o) Va:x(z - 1) _ai—l(Z - 1) 0
. . . —az_l(l) 0
| Vmw(l) ’Yxa:(z - 1) ’75630(0) 1 L 1 i L Eif—l i
* En combinant les 2 dernieres relations, on se rapproche de I'pa, = e
[ 1 ] [ 0 17 "Elf_1_ [ Aic1 | ]
—ai_l(l) —ai_l(i — 1) 0 0
Fl - kz ’ - - kz
—ai_l(i — 1) —ai_l(l) 0 0
L 0 ] i 1 11 LL A Bl ]
@ Tt s o, e o cEPEL
\/ Prof. Pascal Frossard Lo 8
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Finalement

* Pour obtenir une forme I'pap, = ep il ne faut qu’une seule valeur
non nulle dans le terme de droite, donc:

Nt Yaea(8) = oy @1 (k) yaa (i — k)

ki = El =Bl | —k\_1=EL (1-k})

- Ezf—l Ez’f—l
* Avec ce choix, le vecteur de coefficients pour le filtre d’ordre i
devient 1 1T 1 . - 0 17
—ai(l) —ai_l(l) —ai_l(i - 1)
— ' — k; '
—ai(i — 1) —ai_l(i — 1) —a,-_l(l)
L —ai(i) || L 0 | I 1 1]

¢ On obtient donc les relations de récurrence suivantes

az(]) :az—l(J)_klal—l(Z_j)a j:172777/_1 et al(ll’):k‘iZ

// /\ Traitement des signaux, automne 2021 -
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L’algorithme de Levinson-Durbin

E(J; = Y2z (0)

For +=1,2,..p

_ () = Sy i1 (B)Yaa (i — )
Ef

ki

if 4> 1then for j=1,2,..,7—1
a;(j) = a;i—1(j) — kia;—1(i — j)
end

Ezf = (1 - k?)Ezfq

end
a(j):ap(J) J :1727"7M
/ /-\ Traitement des signaux, automne 2021
/ g Prof. Jean-Philippe Thiran E P : L
\_/ Prof. Pascal Frossard H

VideoDSP2.16-start 1so

Filtrage de signaux bruités s

d(n)

L

Optimum )
s@) C\ x) linear yn) C\ e(n)
Signal U filter - U
w(n)
Noise

Figure 12.7.1 Model for linear estimation problem.
e But: retrouver le signal d dans le signal bruité: z(n) = s(n) + w(n)
* Méthode: construire un filtre linéaire h tel que sa sortie y soit aussi
proche que possible de d
Filtrage: d(n) = s(n)
- Prédiction: d(n) =s(n+ D), D >0
Erreur: e(n) =d(n) —y(n)
* Hypothéses: s, w et d sont stationnaires au sens large et a
moyenne nulle. Figure de [1].
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Estimation linéaire

— | Systéme linéaire ———

* |'estimation linéaire a partir de x peut étre représentée par un
filtre linéaire qui agit sur le signal x

N
y(n) =Y h(k)x(n —k)
k=0

les échantillons de la réponse impulsionnelle représentent les coefficients de
I'estimateur linéaire

* L’erreur d’estimation est donnée par
e(n) = d(n) —y(n)
on cherche généralement a minimiser I'erreur quadratique moyenne E||e(n)|
- filtrage optimal obtenu par les filtres de Wiener (RIF, RIl)

/ /\ Traitement des signaux, automne 2021
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Principe d’orthogonalité

e Estimation linéaire de y en fonctionde x: y = Ax+ B
« Lerreur quadratique est: e = E[(d — (Ax + B))’]
e L’erreur est minimale quand principe d'orthogonalité

9 = Bl2(d — (Ax + B))(—x)] = 0 >(B[(d — (Ax + B))x] = 0

E[(d - y)x] = 0= E[dx] = Elyx]

e L'interprétation géometrique

* L'erreur e(n) est minimale lorsque le
vecteur est perpendiculaire au plan
des données x(n)

MMSE = E[e*(n)]
Ele(n

)(d*(n) —y"(n))]
Ele(n)d"(n)]

// /\ Traitement des signaux, automne 2021 -
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Equations de Wiener-Hopf =

» Sila longueur du filtre linéaire est limitée a M, la sortie du filtre est

yn) = 3 h(k)x(n - k)
k=0

* L’erreur minimale (au sens de l'erreur quadratique moyenne
minimale) est orthogonale au signal, E[(d — y)x] =0

* La minimisation de I'’erreur quadratique conduit a un systeme
d’équations

e ’erreur quadratique moyenne s’écrit alors

M-—1
£ =Elle()P] =E ||dn) - Y _ h(k)z(n — k)
k=0

M-—1
> (k) Yea(l = k) = vae(l), 1=0,1,..., M —1.
k=0

- Ce sont les équations de Wiener-Hopf, ou équations normales
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Filtres de Wiener RIF <%

» Lorsque le filtre a une longueur M, on peut ré-écrire les équations
comme

I'aphy =74

- avec I'j); une matrice Toeplitz ot I'iy = Vo (I — k)
* Le filtre (de Wiener) optimum est donc donné par

hopt - I‘]T41’Yd
e L’erreur minimale est donnée par MMSE = Ele(n)d*(n)]

M-1
MMSE)y = min&y = 05 — Z hopt ()Y, (k) = 03 — yétI‘;j’yd
B k=0

» Solutions par méthodes exploitant les propriétés de symétrie de la
matrice (Toeplitz) de corrélation (Levinson-Durbin)
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Filtrage et prédiction par Wiener

* En pratique, le bruit et le signal sont généralement non corrélés
'wa(k) = Vss (k) + wa(k)
e Filtrage: d(n)=s(n)

- sile signal et le bruit sont non corrélés:  Vaz(k) = Vss(k)

- les équations normales deviennent alors

S 0 el = K) + 1= B = 3ua(D), 1= 0,1, M~ 1
k=0

e Prédiction: d(n) =s(n+ D), D >0
- sile signal et le bruit sont non corrélés: Yiz(k) = vss(k + D)

- on adonc
M-—1
ST (k) (ss (L = k) + Yww(l — k) = 755l + D), 1=0,1,..,M —1.
k=0
® & e bt o =pEL
\_/ Prof. Pascal Frossard = |
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Exemple 10: filtrage RIF

* Considérons un signal z(n) = s(n) + w(n)ou s(n) = 0.6s(n — 1) + v(n) et {v(n)} et{w(n)}sont
des bruits blancs de variance o2 = 0.64 et o2 = 1 respectivement. On veut un filtre de Wiener de
longueur M = 2 pour estimer fs(n)}.

Comme {s(n)} est en fait la sortie d’un filtre & un pole, excité par un bruit blanc, on a la DSP

0.64 0.64
- ; = = ~v4s(m) = (0.6)™
1= 0.6e 927> ~ 1.36 — 1.2cos2nf ' (m) =(06)

Las(f) = onlH(f)?

On a donc les équations de Wiener-Hopf

2 h(0) + 0.6 h(1) =1
0.6 h(0) +2 h(1) = 0.6

Les coefficients du filtre sont donc h(0) = 0.451 et h(1) = 0.165

L'erreur quadratique (minimum) est donc

N
:U
I
r
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Filtres de Wiener RII =

* On peut avoir un filtre de Wiener a réponse impulsionnelle infinie

= h(k)z(n -
k=0

* || faut trouver les coefficients qui minimisent I'erreur quadratique

7

Eso = Ele(n)[?] [ d(n) — Z h(k)z(n — k)
- Ce qui donne les équations de Wlener-Hopf
S (k) Yaw (I = k) = 7a(1), 1>0.

- EtI'erreur minimale suivante

MMSE = mmé’oo =02 — Z Popt (k)5 (k)
k=0

e Par contre, on ne peut pas résoudre les équations directement par
la transformée en z (les égquations ne sont définies que pour [ > 0)
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Calcul du filtre de Wiener RII

e On peut utiliser un processus d’innovation {i(n)}
[uo(2) = 0?G(2)G(z71)

» Le filtre de Wiener peut alors étre représenté par la mise en
cascade d’'un filire 17/G(z), et d’un filtre Q(z)

Filtre de Wiener, H(z)

=" q(k)i(n — k) =) | Heg ™ rag 14

k=0

* Les équations de Wiener-Hopf deviennent

Z(J(k)%z‘(l — k) ="a4(l), 1>0.

k=0
e Puisque {i(n)} est un bruit blanc, on a (1 —k) =0 saufsi =&

= vai(D) vai(l)
a0 = 74i(0) a Uz'z ’
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Calcul du filtre de Wiener RII (2)

= 1 o 1
Q(z) =) ak)z™" = 5> (k)" = 5 [Tai(2)]4
k=0 i =0 i
e On pose 1/G(2) =V (z) =) v(k)z"*
« On adonc k=0
Tui(z) = Z vai(k)z7F = Z Eld(n)i*(n — k)]z*
k=—o0 k=—o00
= Z [Z v(m)E[d(n)x*(n —m — /4:)]] 27k = Z Z v(m)yaz(k +m)| 27"
k=—o00 Lm=0 k=— m=0
= v(m) Z Y (k +m)z"F = Zv(m)zm Z Yau (k)2 7*
_ -1 Fdw('z)
Lyi(2) = V(27 )laz(2) G )

* Et finalement: Hopt(z):Q(Z)_ 1 [Fdx(Z)]
+

G(z)  02G(2) |G(z™Y)
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Exemple 11: filtrage RII

* Considérons un signal z(n) = s(n) +w(n)oU s(n) = 0.6s(n — 1) +v(n) et {v(n)} et{w(n)} sont
des bruits blancs de variance o2 = 0.64 et o2 = 1 respectivement. On veut un filtre de Wiener RII
pour estimer {s(n)}.

- On factorise d’abord la DSP
B C1.8(1—1/3271)(1—1/3z))
Feol2) =Tws(2) + 1 = =56 50 062)

‘ 1-1/3:"
- Dou o2 =18 et G(z) =
Eneuit ' (2) = T—56.1
- nsuite 0.64

Laz(2) = Tss(2) = (1-0.62"1)(1—-0.62)

- Et
Pas(2) | 0.64 B 08 0266z | _ 08
Gz"1)], [(1-06z"1(1-1/32)], [1-06z"1 1-1/3z], 1-0.6z"1
- Finalement L1061 08 4/9 4 /1\"
— 0.0z .
HO = — = = — — >
i) = RT3 1061 1-131 4 hemlW=g3 <3) » n20

|
I
r
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Résumé .-

e Estimation et prédiction linéaires peuvent étre réalisées par
filtrage

* Processus stationnaires particuliers: AR, MA, ARMA
- Génération par filtrage de bruit blanc

* Prédiction linéaire optimale en résolvant les équations normales

» Les filtres de Wiener RIF ou RIl sont optimaux pour I'estimation
au sens de 'erreur quadratique moyenne
- neécessitent la connaissance de fonctions d’auto/inter-corrélation
- généralisation aux systemes dynamiques: filtres de Kalman
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