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l 2ème partie - Prof. Pascal Frossard

4.11 cours Structure des systèmes linéaires (vidéo)

10.11 Q&A Structure des systèmes linéaires (ELD020 + zoom)

11.11 labo 4 Structure des systèmes linéaires (CO260 + zoom)

17.11 cours Filtres RIF (vidéo)

18.11 Q&A Filtres RIF (ELD020 + zoom)

24.11 labo 5 Filtres RIF (CO260 + zoom)

25.11 cours Filtres RII (video)

1.12 Q&A Filtres RII (ELD020 + zoom)

2.12 labo 6 Filtres RII (CO260 + zoom)

8.12 cours Estimation et prédiction linéaire (vidéo)

9.12 Q&A Estimation et prédiction linéaire (ELD020 + zoom)

15.12 labo 7 Estimation et prédiction linéaire (CO260 + zoom)

16.12 Q&A Revision (zoom)

22.12

23.12 Examen final Examen sur les parties 1 et 2 du cours (ELD020)
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Support de cours
l Support du cours 
- Vos notes manuscrites 
- Vidéos / transparents disponibles sur le moodle 
- livre de référence conseillé : John G. Proakis and Dimitris G. Manolakis, «Digital 

Signal Processing», Prentice All, 2007 
• Chapitres 10 et 12
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Quelques transformées fréquentes
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Filtres numériques 
(Chapitre 6)

Prof. Pascal Frossard 
Laboratoire de traitement de signal (LTS4) 

EPFL 

VideoDSP2.1-start
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Plan
l A. Structures des filtres numériques 
l B. Construction de filtres RIF 
l C. Construction de filtres RII
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A. Structure de filtres numériques
l Types de filtres (RIF, RII) 
l Réalisations transversales et récursives 
l Implémentation par approximation de filtres idéaux
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Filtres numériques

l Les filtres forment une sous-classe des systèmes, les systèmes 
linéaires et invariants dans le temps (LTI) 

l Comme pour tout LTI, la réponse impulsionnelle h(k) caractérise 
de façon univoque le système

8

S
Système

LTI
x[n] y[n]

Entrée Sortie

Linéaire:

Invariant (TI):

S[ax1(k) + bx2(k)] = aS[x1(k)] + bS[x2(k)]

y(k) = S[x(k)] ⇥ y(k � k0) = S[x(k � k0)],⌅k0 ⇤ Z

y(k) =
l=1X

l=�1
x(l)h(k � l) = x(k) ⇤ h(k)
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Réponse à une sinusoïde
l Considérons un système LTI excité par le signal  

l Par convolution, la réponse du système LTI devient 

l La réponse du système est un signal avec la même fréquence, mais 
dont l’amplitude est changée par le système LTI de fonction de transfert            

l Par linéarité, ceci s’étend à des signaux          qui sont des sommes de 
sinusoïdes simples

9

x(n) = Aej!n, �1 < n <1

y(n) =
1X

k=�1
h(k)

h
Aej!(n�k)

i
= A

" 1X

k=�1
h(k)e�j!k

#
ej!n

H(!)
y(n) = AH(!)ej!n

H(!)

x(n)
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Exemple 1a: fonction de transfert
10

Figure de [1].
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l Considérons le signal d’entrée 

l Considérons le système LTI caractérisé par 

l On peut écrire la sortie du système

11

Exemple 1b: sinusoïde simple
x(n) = A exp (

j⇡n

2
)

h(n) =

✓
1

2

◆n

u(n) H(!) =
1

1� 1
2e

�j!

H

⇣
⇡

2

⌘
=

1

1 + j
1
2

=
2p
5
e
�j26.6�! =

⇡

2

y(n) =
2p
5
Aej(⇡n/2�26.6�)y(n) = A

✓
2p
5
e�j26.6�

◆
ej⇡n/2

A

ou

on a 

Donc
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l Considérons le signal d’entrée 

l Considérons le système LTI caractérisé par 
l On peut écrire la sortie du système
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Exemple 1c: somme de sinusoïdes

H(!) =
1

1� 1
2e

�j!

A on a 

Donc

x(n) = 10� 5 sin
⇡

2
n+ 20 cos⇡n

H

⇣
⇡

2

⌘
=

1

1 + j
1
2

=
2p
5
e
�j26.6�! =

⇡

2
A on a 

A on a 

! = 0 H(0) =
1

1� 1
2

= 2

! = ⇡ H(⇡) =
2

3

y(n) = 20� 10p
5
sin

⇣⇡
2
n� 26.6�

⌘
+

40

3
cos⇡n



Traitement des signaux, automne 2021 
Prof. Jean-Philippe Thiran  

Prof. Pascal Frossard

|H(!)|

y(k) = x(k) ⇤ h(k) , Y (!) = X(!)H(!)

arg(Y (!)) = arg(X(!)) + arg(H(!))

Syy(!) = |H(!)|2Sxx(!)

Filtrage

l Le filtrage consiste à modifier le contenu fréquentiel du signal par 
l’action multiplicative de la transformée de Fourier de la réponse 
impulsionnelle 
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|H(!)| |H(!)|

|Y (!)| = |X(!)||H(!)|
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Illustration - débruitage
14

Signal original

Signal filtré 
(fitrage médian)

Signal bruité 
(bruit impulsionnel)

Demo from [3].
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Illustration - débruitage d’image
15

Image bruitée Image filtrée
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Types de filtres numériques
l Les filtres numériques sont groupés en 2 grandes familles, selon 

les caractéristiques de la réponse impulsionnelle. 
- les filtres à réponse impulsionnelle finie (RIF) 

- les filtres à réponse impulsionnelle infinie (RII)
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h(k) = 0, 8k /2 [k0, k0 + L� 1]

|h(k)| <1, 8k

9k � k0 | h(k) 6= 0
1X

k=k0

|h(k)| <1
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Fonction de transfert H(z)
l Les filtres numériques peuvent être caractérisés par leur fonction 

de transfert H(z) 

l En général, la fonction de transfert est une fonction rationnelle en z 
- en particulier, les systèmes caractérisés par: 

conduisent à
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H(z) =
PM

k=0 bkz
�k

1 +
PN

k=1 akz�k

H(z) =
MX

k=0

bkz
�k

H(z) =
Y (z)
X(z)

y(k) =
1X

l=�1
x(l)h(k � l), Y (z) = X(z)H(z)

Réalisations non-récursives

Réalisations récursives

y(n) = �
NX

k=1

aky(n� k) +
MX

k=0

bkx(n� k)
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Forme directe de filtres
l Réalisations transversale ou non-récursive 

- toujours réalisable pour les filtres RIF 
- p. ex., pour un système causal 

l Réalisation récursive (équations aux différences) 
- utilisée pour les filtres RII (et RIF) 

- p.ex., pour un système causal, et 
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a0 �= 0

y(k) =
M�

m=0

bm

a0
x(k �m)�

N�

n=1

an

a0
y(k � n)

NX

n=0

any(k � n) =
MX

m=0

bmx(k �m)

y(k) =
MX

m=0

bmx(k �m) y(k) =
MX

m=0

h(m)x(k �m)
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y(n) =
M�1X

k=0

h(k)x(n� k) H(z) =
M�1X

k=0

bkz
�k =

M�1X

k=0

h(k)z�k

Structure non-récursive (directe)

l Structure non-récursive 
- série d’éléments retard 
- les coefficients correspondent aux valeurs de la réponse 

impulsionnelle 
- filtre avec zéros, sans pôle

19

Figure de [1].
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Structure récursive (directe)
20

Figure de [1].

(Structure canonique équivalente)

H(z) =
PM

k=0 bkz
�k

1 +
PN

k=1 akz�k
= H1(z)H2(z)

H1(z) H2(z)
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Exemple 2: filtres simples
l Le moyenneur (RIF, non-récursif): 

l L’accumulateur (RII, récursif):

21

y(n) =
1

M + 1

M�

m=0

x(n�m)

y(n) = x(n) + ay(n� 1)

Figure from [1].

+

z�1a

H(z) =
1

1� az�1y(n)x(n)

VideoDSP2.1-end
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Struct. des filtres numériques
l  A partir de la fonction de transfert ou de la réponse impulsionnelle, 

on peut construire un filtre numérique sous plusieurs formes 
- le choix dépend en particulier du type du filtre (RII ou RIF) 
- le choix dépend aussi de contraintes d’implémentation (stabilité, etc) 

l Filtres RIF 
- Forme directe (filtre ‘tout-zéro’, donné par la réponse impulsionnelle) 
- Forme en cascade (produits de filtres de 2ème ordre) 
- Forme à échantillonnage de fréquence (structure parallèle) 
- Forme en treillis 

l Filtres RII 
- Forme directe (implémentation de la structure récursive, formes I ou II) 
- Forme en cascade (produits de filtres de 2ème ordre) 
- Forme parallèle (somme de filtres de 2ème ordre) 
- Forme en treillis ou treillis-échelle

22VideoDSP2.2-start
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Décomposition en filtres simples
l Les filtres numériques sont souvent réalisés par une 

décomposition en filtres élémentaires 
- structure en série (cascade) 

- structure en parallèle

23

H2(z)H1(z)H(z) ≡

H2(z)

H1(z)

H(z) ≡
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Modules: filtres du 2ème ordre 
24

Table from [1].
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H(z) =
b0 +

PM
m=1 bmz

�m

a0 +
PN

n=1 anz�n

Factorisation de H(z)

l Par le théorème fondamental de l’algèbre on peut toujours 
factoriser H(z) en produits de facteurs (zéros / pôles) 

l Les pôles et zéros sont donnés respectivement par          et 
l Le système a un pôle ou zéro d’ordre |N-M| en z=0.

25

{pn} {zm}

H(z) =
p0

QM
m=1(1� zmz

�1)
d0

QN
n=1(1� pnz�1)

= z
N�M p0

QM
m=1(z � zm)

d0
QN

n=1(z � pn)
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Décomposition en série
l Par factorisation, on obtient une décomposition de la forme: 

l C est une constante, et les autres termes représentent des 
systèmes qui ont des pôles ou zéros réels simples, ou en paires 
complexes conjuguées

26

ou

H1(z)≡H(z) H2(z) HK(z)... C

H(z) = C H1(z) H2(z) ... HK(z)

Hi(z) =
bi0 + bi1z

�1

1� aiz
�1

Hi(z) =
bi0 + bi1z

�1 + bi2z
�2

1 + ai1z
�1 + ai2z

�2
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Série de filtres de 2ème ordre
27

Figures de [1].
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l Considérons la fonction système suivante 

l On peut la décomposer en  

l Ce qui donne

Exemple 3
28

Figure de [1].

H(z) =
10(1� 1/2z�1)(1� 2/3z�1)(1 + 2z�1)

(1� 3/4z�1)(1� 1/8z�1)[1� (1/2 + j1/2)z�1][1� (1/2� j1/2)z�1]

H1(z) =
1� 2/3z�1

1� 7/8z�1 + 3/32z�2

H1(z) H2(z)

H2(z) =
1 + 3/2z

�1 � z
�2

1� z�1 + 1/2z�2
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H(z) en fractions partielles
l On peut obtenir une décomposition en fractions partielles où 

- S(z) est un polynôme de degré M-N si M > N (ou C si M=N)  
- le degré de P0 est inférieur à celui de Q0  

- s’il y a des pôles multiples (p.ex. un pôle d’ordre q)

29

�i = (z � pi)
P0(z)
Q0(z) z = pi

�j =
1

(q � j)!
⇥q�j

⇥zq�j

�
(z � pk)q P0(z)

Q0(z)

⇥

z = pk

H(z) =
P (z)
Q(z)

= S(z) +
P0(z)
Q0(z)

P0(z)
Q0(z)

=
NX

i=1

↵i

z � pi

P0(z)
Q0(z)

=
NX

i=1,i 6=k

↵i

z � pi
+

qX

j=1

�j

(z � pk)j
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Décomposition en parallèle
l La décomposition en fractions partielles donne 

l S’il n’y a que des pôles simples (ou conjugués complexes) 

l On a donc

30

ou

H1(z)

≡H(z)

HK(z)

... +

Hi(z) =
bi

1 + aiz
�1

Hi(z) =
bi0 + bi1z

�1

1 + ai1z
�1 + ai2z

�2

H(z) =
M�NX

k=1

ckz
�k +

K1X

k=1

H
1
k(z) +

K2X

k=1

H
2
k(z)

H(z) = S(z) +H1(z) +H2(z) + ...+HK(z)
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l Considérons un système causal avec 

l S(z) est nul. Les pôles de H(z) sont donnés par les zéros du 
dénominateur:                et 

l On a donc 

l En utilisant la relation pour déterminer les coefficients  

l Comme 
l Sa réponse impulsionnelle est

Exemple 4

31

|z| > 2

z�1 = 1 z�1 = 1/2

x(k) = aku(k)⇥ X(z) =
1

1� az�1
, pour |z| > |a|

H(z) =
1

1� 3z�1 + 2z�2

H(z) =
1/2

(z�1 � 1)(z�1 � 1/2)
=

↵1

z�1 � 1
+

↵2

z�1 � 1/2

H(z) =
1

z�1 � 1
� 1

z�1 � 1/2
=

2
1� 2z�1

� 1
1� z�1

h(k) = (2k+1 � 1)u(k)
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l Donner les réalisations en série et parallèle pour le système 

l La réalisation en série peut s’obtenir par groupement de termes 

l La réalisation parallèle résulte de l’expansion en fractions partielles 

- en groupant les termes, on obtient

Exemple 5 - équ. série/parallèle
32

H(z) =
10(1� 1/2z

�1)(1� 2/3z
�1)(1 + 2z

�1)
(1� 3/4z�1)(1� 1/8z�1)(1� (1/2 + j/2)z�1)(1� (1/2� j/2)z�1)

H1(z) =
1� 2/3z

�1

1� 7/8z�1 + 3/32z�2
H2(z) =

1 + 3/2z
�1 � z

�2

1� z�1 + 1/2z�2

H(z) =
A1

1� 3/4z�1
+

A2

1� 1/8z�1
+

A3

1� (1/2 + j/2)z�1
+

A
⇤
3

1� (1/2� j/2)z�1

H(z) = 10H1(z)H2(z)

H(z) =
�14.75� 12.90z

�1

1� 7/8z�1 + 3/32z�2
+

24.50 + 26.82z
�1

1� z�1 + 1/2z�2
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Exemple 5 - réalisations équivalentes
33

Figure de [1].

VideoDSP2.2-end
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l Structure applicable à des filtres RIF et RII 
l Structure modulaire et stable, très utilisée en pratique 
- traitement de la parole 
- traitement du signal en géophysique 
- filtrage adaptatif 

l Construction de filtres en treillis 
- Structure RIF et équivalence avec la forme directe 
- Structure RII tout-pôle par inversion du filtre RIF (tout-zéro) 
- Filtre RII générique par intégration des structures en échelle et treillis tout-pôle

Filtres en treillis (lattice)
34VideoDSP2.3-start
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l Considérons une séquence de filtres RIF (tout-zéro): 
- chaque filtre est caractérisé par

Am(z) = 1 +
mX

k=1

↵m(k)z�k

Séquences de filtres RIF
35

y(n) = x(n) +
mX

k=1

↵m(k)x(n� k)

(Forme directe)

Figure de [1].
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K1 = ↵1(1)

y(n) = x(n) + ↵2(1)x(n� 1) + ↵2(2)x(n� 2)

K2 = ↵2(2)

K1 =
↵2(1)

1 + ↵2(2)

Filtre RIF en treillis
36

Figures de [1].

l Filtre du premier ordre: 

l 2ème ordre:

y(n) = x(n) + ↵1(1)x(n� 1)

paramètre de réflexion
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f0(n) = g0(n) = x(n)

fm(n) = fm�1(n) + Kmgm�1(n� 1), m = 1, ..,M � 1

gm(n) = Kmfm�1(n) + gm�1(n� 1), m = 1, ..,M � 1

y(n) = fM�1(n) =
M�1X

k=0

↵M�1(k)x(n� k), ↵M�1(0) = 1

HM�1(z) =
FM�1(z)

X(z)

Filtre RIF en treillis d’ordre M-1
37

Figure de [1].

Equivalence avec RIF d’ordre M-1

{
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g1(n) = K1x(n) + x(n� 1)

�m(k) = ↵m(m� k), k = 0, 1, . . . ,m �m(m) = 1

Et l’autre sortie du filtre en treillis?
38

K1 = ↵1(1)l Filtre du premier ordre: 

l Filtre du 2ème ordre: 

l On remarque que les coefficients sont les mêmes que pour le 
filtre           , mais dans l’ordre inverse: 

avec

g2(n) = K2f1(n) + g1(n� 1)
= K2x(n) + K1(1 + K2)x(n� 1) + x(n� 2)
= ↵2(2)x(n) + ↵2(1)x(n� 1) + x(n� 2)

Am(z)

gm(n) =
mX

k=0

�m(k)x(n� k)

avec et



Traitement des signaux, automne 2021 
Prof. Jean-Philippe Thiran  

Prof. Pascal Frossard

Fonctions de transfert du treillis

l Première sortie: 

l Deuxième sortie (polynôme réciproque):

39

Bm(z) =
mX

k=0

↵m(m� k)z�k

=
mX

l=0

↵m(l)zl�m = z�m
mX

l=0

↵m(l)zl

= z�mAm(z�1)

Bm(z) =
Gm(z)
X(z)

Am(z) =
Fm(z)
X(z)
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Forme récursive en z
l On peut écrire les équations récursives du treillis dans le domaine z: 

l En divisant par X(z): 

l Ou alors:

40

F0(z) = G0(z) = X(z)
Fm(z) = Fm�1(z) + Kmz�1Gm�1(z), m = 1, 2, . . . ,M � 1
Gm(z) = KmFm�1(z) + z�1Gm�1(z), m = 1, 2, . . . ,M � 1

A0(z) = B0(z) = 1
Am(z) = Am�1(z) + Kmz�1Bm�1(z), m = 1, 2, . . . ,M � 1
Bm(z) = KmAm�1(z) + z�1Bm�1(z), m = 1, 2, . . . ,M � 1


Am(z)
Bm(z)

�
=


1 Km

Km 1

� 
Am�1(z)

z�1Bm�1(z)

�
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Filtre treillis tout-pôle à partir de RIF 

l Système tout-pôle:  

l Si on inverse entrée et sortie, on a 
- c’est la réponse d’un filtre RIF 
- le système tout-pôle peut être obtenu à partir du système RIF en inter-changeant 

entrée et sortie 

41

(Forme directe)

H(z) =
1

1 +
PN

k=1 aN (k)z�k
=

1
AN (z)

y(n) = �
NX

k=1

aN (k)y(n� k) + x(n)

y(n) = x(n) +
NX

k=1

aN (k)x(n� k)
H(z) = AN (z)

Figure de [1].
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y(n) = x(n)�K1y(n� 1)

y(n) = �K1(1 + K2)y(n� 1)
�K2y(n� 2) + x(n)

Filtre treillis tout-pôle
42

Figure de [1].

l Stable si tous les pôles sont dans le cercle unité: |Km| < 1, 8m
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Filtres avec pôles et zéros
43

Figure de [1].

H(z) =
PM

k=0 cM (k)z�k

1 +
PN

k=1 aN (k)z�k
=

CM (z)
AN (z)

w(n) = �
NX

k=1

aN (k)w(n� k) + x(n) y(n) =
MX

k=0

cM (k)w(n� k)
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Structure en treillis-échelle 
l Filtre RII avec à la fois des pôles et des zéros (lattice-ladder) 

- transposition de la forme canonique

44

Figure de [1].

y(n) =
MX

k=0

vmgm(n) CM (z) =
MX

m=0

vmBm(z)
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Struct. à échantillonnage de fréq.
l Construction par échantillonnage de 

la réponse fréquentielle           à 

l Forme générale:

45

H(z) =
1� z�Mej2⇥�

M

M�1�

k=0

H (k + �)
1� ej2⇥(k+�)/Mz�1

H(!)

Figure de [1].

H(k + ↵) ⌘ H

✓
2⇡

M
(k + ↵)

◆
=

M�1X

n=0

h(n)e�j2⇡(k+↵)n/M
, k = 0, 1, ...,M � 1

h(n) =
1
M

M�1X

k=0

H (k + ↵) e
j2⇡(k+↵)n/M

, n = 0, 1, ...,M � 1

!k =
2⇡

M
(k + ↵)

H(z) =
M�1X

n=0

1
M

M�1X

k=0

H (k + ↵) e
j2⇡(k+↵)n/M

z
�n

H(z) =
M�1X

k=0

H (k + ↵)

"
1
M

M�1X

n=0

⇣
e
j2⇡(k+↵)/M

z
�1

⌘n
#

VideoDSP2.3-end
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Analyse de H(z)
l La réponse d’un filtre dépend du placement des pôles et zéros 

dans le cercle unité 

l Interprétation géométrique

46

Figure de [1].

H(z) = b0

QM
m=1(1� zmz

�1)
QN

n=1(1� pnz�1)

VideoDSP2.4-start
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Exemples de filtres à pôle simple
47

Figure de [1].
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Exemples de filtres simples
48



Traitement des signaux, automne 2021 
Prof. Jean-Philippe Thiran  

Prof. Pascal Frossard

Let’s play...
49

www.falstad.com/dfilter/index.html

Traitement des signaux, automne 2021 
Prof. Jean-Philippe Thiran  

Prof. Pascal Frossard

l Objectif: trouver les coefficients qui donnent une bonne approximation 
de la réponse désirée, sous une contrainte de causalité 
- Méthodes spécifiques aux filtres numériques 
- Méthodes d’approximation de filtres analogiques 

l En général, on préfère les filtres RII 
- Oscillations plus petites dans la bande coupée 
- Implémentation avec moins de paramètres que RIF  

l Filtres RIF si la réponse de phase doit être linéaire: 

Constr. de filtres numériques
50

arg (H(!)) = � + ↵!
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Classification des filtres idéaux
51

H(f)

H(f)

H(f)
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Idéal n’est pas causal…
l En traitement de signal temps réel, on ne peut réaliser que des 

filtres causals 
l Considérons le filtre passe-bas idéal: 

l Ce filtre est clairement non-causal, donc non réalisable

52

Figure de [1].

H(⇥) =
�

1, pour |⇥| � ⇥c

0, pour ⇥c < |⇥| � �
h(n) =

� ⇥c
� , pour n = 0

⇥c
�

sin ⇥cn
⇥cn , pour n �= 0
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Conditions de causalité
l Théorême de Paley-Wiener 
- Si h(k) a une énergie finie, et h(k) = 0 pour k < 0, alors 

- A l’inverse, si |H(ω)|2 est intégrable et si l’intégrale ci-dessus est 
finie, alors                                         représente un filtre causal 

l La magnitude d’un filtre causal ne peut donc être identiquement 
nulle sur une bande de fréquence finie. 
- Un filtre idéal ne peut être causal

53

Z ⇡

�⇡
| ln |H(!)||d! <1

H(!) = |H(!)|ej arg H(!)
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Relation entre comp. réelles et imag.
l On peut décomposer la réponse impulsionnelle en parties paire et 

impaire 

l Si h(k) est causal 

l Par Fourier,                             et  
l Donc les parties réelle et imaginaire sont inter-dépendantes, pour 

un système causal 
- transf. de Hilbert discrète

54

h(k) = he(k) + ho(k)

h(k) = 2he(k)u(k)� he(0)�(k), k � 0

h(k) = 2ho(k)u(k) + h(0)�(k), k � 1
he(k) = ho(k), k � 1

he(k)$ HR(!) ho(k)$ HI(!)

HI(!) = � 1
2⇡

Z ⇡

�⇡
HR(�) cot

! � �

2
d�
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Contraintes due à la causalité
l La condition de causalité pour les systèmes pratiques, implique: 
- la réponse fréquentielle du filtre ne peut être nulle qu’en un certain nombre fini de 

points 
- les transitions entre bandes passante et coupée ne peuvent pas être 

arbitrairement abruptes 
- les parties imaginaires et réelles de la réponse fréquentielle sont liées par la 

transformée de Hilbert discrète 
- l’amplitude et la phase de la réponse fréquentielle ne peuvent être choisies 

arbitrairement 

l On se limite ici aux systèmes décrits par l’équation aux différences 
- et en particulier aux systèmes causals et physiquement réalisables

55

y(n) = �
NX

k=1

aky(n� k) +
MX

k=0

bkx(n� k)
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l Caractéristiques spécifiées dans le domaine fréquentiel 
- Caractéristiques données par un gabarit 
- Réponses d’amplitude et de phase (inter-dépendantes en pratique)

|H(f)|

Approximation de la réponse idéale
56
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Filtres numériques 
(Chapitre 6)

Prof. Pascal Frossard 
Laboratoire de traitement de signal (LTS4) 

EPFL 
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Plan
l A. Structures des filtres numériques 
l B. Construction de filtres RIF 
l C. Construction de filtres RII

60
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B. Filtres RIF
l Caractéristiques de filtres RIF 
l Synthèse par fenêtrage 
l Synthèse par échantillonnage fréquentiel

61VideoDSP2.5-start
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� = 0 or ± ⇥/2 or � ⇥

Caractéristiques des filtres RIF
l Les filtres RIF sont toujours stables 

- Si les valeurs de la réponse impulsionnelle sont bornées 
l Ils sont définis par les éléments de leur réponse impulsionnelle  
l Ils peuvent être représentés par un polynôme de degré M-1 en z-1 (ou en z) 

- A partir de la réponse impulsionnelle  
l Ils sont causals si leur réponse impulsionnelle h(k) est nulle pour k<0  

- Sinon, il suffit de décaler cette réponse. 
l Ils peuvent être à phase linéaire

62

arg (H(⌅)) = ⇥ + �⌅, �⇤ ⇥ ⌅ ⇥ ⇤

� = const
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l Idéalement, une phase nulle permet d’éviter la distorsion de phase 
l Pour avoir une phase nulle, il faut que la partie imaginaire soit nulle 

- il faut que la réponse impulsionnelle soit paire 

- un tel filtre n’est par contre pas causal, donc pas réalisable

Filtres RIF à réponse de phase nulle
63

H(f) =
k0+M�1X

k=k0

h(k)e�j2⇡fk

H(f) =
k0+M�1X

k=k0

h(k) cos 2⇡fk � j

"
k0+M�1X

k=k0

h(k) sin 2⇡fk

#

h(k) = h(�k), pour |k|  M � 1

2
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l On peut rendre causal le filtre à réponse de phase nulle, par 
décalage de la réponse impulsionnelle 

- la phase devient alors linéaire: 

- la condition de symétrie devient

Filtres RIF à phase linéaire
64

k


g(k)


L impair


k


g(k)


L pair


h(k) h(k)

H
0(f) = H(f)e�j⇡f(M�1)

arg(H 0(f)) = �⇡(M � 1)f = �!(M � 1)

2

h(k) = h(M � 1� k)

M impair M pair
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l Un filtre RIF causal peut être caractérisé par: 

l Si le filtre est à phase linéaire 

l En utilisant ces propriétés de symétrie, on peut écrire  

l Les zéros de              sont aussi les zéros de 
- si z est un zéro, 1/z est aussi un zéro, de même que z* et 1/z* si h(n) est réelle 

y(k) =
M�1X

m=0

bmx(k �m) =
M�1X

m=0

h(m)x(k �m)

RIF causal: symétrie/asymétrie 
65

H(z) =
M�1X

k=0

h(k)z�k

h(k) = ±h(M � 1� k), k = 0, 1, ...,M � 1

z
�(M�1)

H(z�1) = ±H(z)

H(z�1) H(z)
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RIF causal à ph. linéaire: zéros 
66

Figure de [1].
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l Filtres RIF donnés par:  

l Construction à partir de l’objectif  
- Synthèse par séries de Fourier 

• Approximation analytique de h(k)  
• Un fenêtrage est généralement nécessaire 

- Echantillonnage fréquentiel 
l Réalisation à partir de la réponse impulsionnelle h(k) 
- Convolution directe / TFD 
- Réalisation non-récursive ou récursive

Construction de filtres RIF
67

Hd(�) =
⇥�

n=0

hd(n)e�j�n

y(n) =
M�1�

k=0

bkx(n� k)

y(n) =
M�1�

k=0

h(k)x(n� k) H(z) =
M�1�

k=0

h(k)z�k

Hd(!)
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Synthèse par fenêtrage
l Construction par approximation de la réponse impulsionnelle 
l La réponse impulsionnelle désirée est généralement infinie 

l On peut la limiter en multipliant par une fenêtre rectangulaire 

l Cela équivaut à une convolution dans le domaine fréquentiel

68

hd(n) =
1
2�

� �

��
Hd(⇥)ej⇥nd⇥

w(n) =
�

1, pour n = 0, 1, ...,M � 1
0, sinon. h(n) = hd(n)w(n)

H(⇥) = 1
2�

� �
�� Hd(�)W (⇥ � �)d�

W (�) =
�M�1

n=0 w(n)e�j�n
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W (�) = sin �M/2
sin �/2 e�j�(M�1)/2

arg(W (⇥)) =
�

�⇥ M�1
2 , pour sin(⇥M/2) ⇥ 0

�⇥ M�1
2 + �, pour sin(⇥M/2) < 0

|W (!)| = | sin (!M/2)|
| sin (!/2)| , �⇡  !  ⇡

Fenêtre rectangulaire: choix naturel
69
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Quelle fenêtre?

l Le type de fenêtre influence la largeur du lobe principal, et la 
décroissance des lobes latéraux, dans la réponse fréquentielle 

l Choix de la fenêtre  
- Compromis entre effets de Gibbs et lissage 

l Choix de la taille de la fenêtre 
- On peut se baser sur la réponse impulsionnelle si elle est connue 
- On peut prendre en compte la résolution spectrale

70

Figure de [1].
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wT (k) =
⇢

1� 2|k|
M , |k| M/2

0, sinon

WT (!) =
2
M

✓
sin ⇡!M/2

sin ⇡!

◆2

Fenêtre triangulaire (Bartlett)
71
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wH(k) =
↵

2

✓
ej2⇡k/M +

2(1� ↵)
↵

+ e�j2⇡k/M

◆

Hanning et Hamming

l But: atténuer les lobes secondaires 
- Superposition linéaire de trois répliques de la même fenêtre 

spectrale, avec un décalage de 1/M

72

wH(k) =
�

(1� �)� � cos 2�k
M�1 0 ⇥ k ⇥M � 1

0, sinon

� = 0.5
� = 0.46

Hanning
Hamming
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Et les autres...
73
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Hd(�) =
�

1e�j�(M�1)/2, pour 0 � |�| � �c

0, sinon.

hd(n) = sin ⇥c(n�(M�1)/2)
�(n�(M�1)/2) , n ⇥= (M � 1)/2

Exemple: Filtre RIF passe-bas
l En tenant compte de la condition de causalité 

l Après application d’une fenêtre rectangulaire

74

Figure de [1].

h(n) = sin ⇥c(n�(M�1)/2)
�(n�(M�1)/2) , 0 ⇥ n ⇥M � 1, n ⇤= (M � 1)/2
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Même filtre avec d’autres fenêtres
75

Figures de [1].
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Exemple: Filtre RIF passe-bande
76
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Synth. par échantillonnage fréq.
l La réponse fréquentielle désirée          est spécifiée à plusieurs 

valeurs de fréquence 

l On peut obtenir la réponse impulsionnelle à partir de ses 
échantillons

77

⇤k =
2⇥

M
(k + �) k = 0, 1, ..., (M � 1)/2, M odd

k = 0, 1, ...,M/2� 1, M even

� = 0 or 1/2

H(k + �) ⇥ H

�
2⇥

M
(k + �)

⇥
=

M�1⇤

n=0

h(n)e�j2⇥(k+�)n/M , k = 0, 1, ...,M � 1

h(n) =
1
M

M�1�

k=0

H (k + �) ej2⇥(k+�)n/M , n = 0, 1, ...,M � 1

H(!)

VideoDSP2.6-start
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Filtre RIF par échantillonnage fréq.
l A partir de h(n) on peut écrire: 

l Pour réduire les lobes latéraux, il est important d’optimiser le 
comportement dans la bande de transition 

l Réduction de complexité en utilisant les symétries 
- h(n) a des propriétés de symétrie si le filtre a une phase linéaire 
- comme h(n) est réel, on a  

l Un échantillonnage efficace présente un grand avantage 
- La plupart des échantillons H(k+α) sont nuls, ou unitaires

78

H(k + �) = H�(M � k � �)

H(z) =
1� z�Mej2⇥�

M

M�1�

k=0

H (k + �)
1� ej2⇥(k+�)/Mz�1

H(z) =
M�1X

n=0

1
M

M�1X

k=0

H (k + ↵) e
j2⇡(k+↵)n/M

z
�n
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Structure du filtre RIF par éch. fréq.
79

Ha(z)
 Hb(z)


x(n)


y(n)

w(n)


H0(z)


H1(z)


HM-1(z)


Ha(z)

1/M


y(n)


x(n)


H(z) =
1� z�Mej2⇥�

M

M�1�

k=0

H (k + �)
1� ej2⇥(k+�)/Mz�1
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Réalisation du filtre RIF par éch. fréq.

l Mise en cascade de deux filtres 

l Un filtre tout-zéro 

l Un filtre tout-pôle

80

H(z) =
1� z�Mej2⇥�

M

M�1�

k=0

H (k + �)
1� ej2⇥(k+�)/Mz�1

H(z) =
1
M

Ha(z)Hb(z)

Ha(z) = 1� z�M w(n) =
x(n)� x(n�M)

M

Hb(z) =
M�1�

k=0

H(k)
1

1� ej2�k/Mz�1
=

M�1�

k=0

Hk(z)

yk(n)� e
j2⇡k/M

yk(n� 1) = H(k)w(n)
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Combinaison tout-pôle / tout-zéro
81

Figure de [1].
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H4(z) =
1.414

�
1� z�1

⇥

1 + z�2

H3(z) =
�1.662

�
1� z�1

⇥

1� 0.765z�1 + z�2

Exemple 6: filtre passe-bande RIF
l Réalisation récursive de filtre passe-bande 
- Durée finie, M = 16 
- Phase linéaire si décalage de M/2 = 8

82

H5(z) =
�1.112

�
1� z�1

⇥

1 + 0.765z�1 + z�2

|Hd(f)|



Traitement des signaux, automne 2021 
Prof. Jean-Philippe Thiran  

Prof. Pascal Frossard

l Le filtre tout-zéro donne 

l Les filtres récursifs donnent 

l Finalement

y4(n) = 1.414 (w(n)� w(n� 1))� y4(n� 2)

Exemple 6: filtre passe-bande RIF (2)
83

w(n) = 1/16 (x(n)� x(n� 16))

y(n) = y3(n) + y4(n) + y5(n)

y5(n) = �1.112 (w(n)� w(n� 1))� 0.765y5(n� 1)� y5(n� 2)

y3(n) = �1.662 (w(n)� w(n� 1)) + 0.765y3(n� 1)� y3(n� 2)
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Robustesse aux imprécisions
l Idéalement, les zéros et les pôles s’annulent dans la méthode par 

échantillonnage de fréquence 
- ils sont tous sur le cercle unité 
- en cas d’imprécision, le comportement du filtre change 

l On peut ramener les pôles et zéros sur un cercle légèrement 
inférieur à l’unité, pour plus de robustesse 
- Le bruit dû aux imprécisions devient borné 
- Le filtre devient stable

84

H(z) =
1� rMz�Mej2⇥�

M

M�1�

k=0

H (k + �)
1� rej2⇥(k+�)/Mz�1

r = 1� �
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Comparaisons des méthodes
l Historiquement, le fenêtrage est la première méthode utilisée pour 

des filtres RIF à phase linéaire 
- Manque de contrôle précis des fréquences critiques 

l Les méthodes d’échantillonnage fréquentiel sont ensuite devenues 
très populaires 
- Attractif quand le filtre est réalisé par DFT 
- La réponse fréquentielle est généralement 0 ou 1, sauf dans la bande de transition 

(multiples de 2π/M) 

l Méthodes d’optimisation numérique (Chebyshev) donne un contrôle 
total sur les spécifications 
- Diluer l’erreur d’approximation dans les bandes passante et coupée pour minimiser 

le lobe latéral maximal 
- Plusieurs softwares permettent de résoudre ce problème

85

Traitement des signaux, automne 2021 
Prof. Jean-Philippe Thiran  

Prof. Pascal Frossard

Let’s play again...
86

www.falstad.com/dfilter/index.html
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Filtres numériques 
(Chapitre 6)

Prof. Pascal Frossard 
Laboratoire de traitement de signal (LTS4) 

EPFL 
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Plan
l A. Structures des filtres numériques 
l B. Construction de filtres RIF 
l C. Construction de filtres RII

90
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C. Filtres RII
l Caractéristiques de filtres RII 
l Conversion de filtres analogiques 
l Réalisation de filtres RII  
l Réponse de phase des filtres numériques

91VideoDSP2.7-start
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Caractéristiques de filtres RII
l Plus flexibles que les filtres RIF, mais stabilité pas garantie 
l Construction de filtres RII par conversion de filtres analogiques en 

filtres numériques 
l La construction de filtres analogiques est très bien maîtrisée: 

- Fonction de transfert: 

- Réponse impulsionnelle: 

- Equations différentielles: 

- Ces trois relations conduisent à différentes méthodes pour la conversion du 
filtre dans le domaine numérique

92

Ha(s) =
B(s)
A(s)

=
�M

k=0 ⇥ksk

�N
k=0 �ksk

Ha(s) =
� ⇥

�⇥
h(t)e�stdt

N�

k=0

�k
dky(t)
dtk

=
M�

k=0

⇥k
dkx(t)

dtk
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Conversion s ↔ z
l Un système analogique invariant est stable si tous ses pôles ont 

une partie réelle négative (partie gauche du plan des s)  

l La conversion doit avoir les propriétés suivantes: 
- L’axe imaginaire en s devrait correspondre au cercle unité en z 

• Ceci conduirait à une relation directe entre la fréquence dans les 2 domaines 

- Re[s] < 0 devrait correspondre à |z| < 1 
• Un filtre analogique stable devient ainsi un filtre numérique stable 

- La fréquence d’échantillonnage 1/T va apparaître explicitement 

l On ne peut pas réaliser un filtre causal RII avec une phase linéaire 
- La symétrie introduit des pôles hors du cercle unité: il ne peut pas être stable 

- Le filtre RII est essentiellement caractérisé par sa réponse d’amplitude 
- Si la phase doit être linéaire, on construit un filtre RIF

93

h(k) = ±h(�k) () H(z) = ±z
�(M�1)

H(z�1)
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s =
1� z�1

T

H(z) = Ha(s)|s=(1�z�1)/T

Equivalence de la dérivation
l Approximation par équation aux différences 

l Equivalence finalement donnée par:

94

y(t) dy(t)
dt

H(s) = s

y(n) y(n)� y(n� 1)
T

H(z) =
1� z�1

T

dy(t)
dt

����
t=nT

=
y(nT )� y(nT � T )

T
=

y(n)� y(n� 1)
T
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l Equivalence donnée par 

l Si on se concentre sur l’axe imaginaire du plan des s: 

l Cela correspond à un cercle  
de rayon 1/2 centré en z=1/2.

s =
1� z�1

T
z =

1
1� sT

s = j�

z =
1

1� j�T
=

1
1 + �2T 2

+ j
�T

1 + �2T 2

Relation entre les plans s et z
95

Figure de [1].

ou
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Equiv. de la dérivation: propriétés
l Les points de la partie gauche du plan de s correspondent à 

l’intérieur du cercle unité en z 
- Stabilité préservée 

l Les pôles potentiels sont par contre confinés dans les basses 
fréquences 
- Méthode utilisable seulement pour la construction de filtres passe-bas ou 

passe-bande avec basse fréquence de coupure 
l La diminution de T (= augmentation de la fréquence 

d’échantillonnage) entraîne une concentration de la transformée 
de Fourier autour de z=1

96
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l Filtre passe-bas donné par: 

l En appliquant la transformation: 

l Si on prend une période principale, pour       

H(z) = Ha(s)|s=(1�z�1)/T =
T

1 + T � z�1

Ha(s) =
1

s + 1
Ha(f) =

1
1 + j2�fa

z = ej2�fT

Exemple 7: filtre passe-bas
97

|Ha(fa)|
T=2

T=1
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Convertir le filtre analogique passe-bande 

l En utilisant l’équivalence de la dérivation 

l T doit être choisi suffisamment petit pour que les pôles soient 
proches du cercle unité, pour que leur effet soit important 
- p.ex., si 

Exemple 8: filtre passe-bande
98

Ha(s) =
1

(s + 0.1)2 + 9

H(z) =
1

( 1�z�1

T + 0.1)2 + 9

H(z) =
T

2
/(1 + 0.2T + 9.01T

2)
1� 2(1+0.1T )

1+0.2T+9.01T 2 z�1 + 1
1+0.2T+9.01T 2 z�2

T = 0.1
p1,2 = 0.91± j0.27 = 0.949e±j16.5o

VideoDSP2.7-end
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l Echantillonnage de la réponse 
impulsionnelle du filtre analogique 

l L’échantillonnage introduit une 
périodicité dans le domaine fréquentiel 

l La fréquence d’échantillonnage doit 
être suffisamment grande pour éviter 
les recouvrements (aliasing)

h(n) � ha(nT )

Equiv. de la rép. impulsionnelle
99

H(f) =
1
T

⇥⇤

k=�⇥
Ha

�
f � k

T

⇥

VideoDSP2.8-start
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Ha(s) =
Z 1

�1
ha(t)exp(�st)dt

he(t) = ha(t)
1X

k=�1
�(t� kT )

He(s) =
Z 1

�1

1X

k=�1
ha(t)�(t� kT )exp(�st)dt

=
1X

k=�1

Z 1

�1
ha(t)�(t� kT )exp(�st)dt

=
1X

k=�1
ha(kT )exp(�ksT ) H(z)|z=exp(sT ) = He(s)

Equivalence Laplace - z

l La transformée de Laplace du signal échantillonné est la 
transformée en z du signal numérique évaluée en

100

z = esT

l On ne peut travailler avec h(n) directement (RII), mais plutôt H(z)
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l Si on écrit                      et                 , l’équivalence              donne 

l Donc  

l La partie négative du plan des s  
devient l’intérieur du cercle unité en z

s = � + j� z = rej�

r = e�T � = �T

z = esT

Conversion s ↔ z
101

et

� < 0� 0 < r < 1
� > 0� r > 1
� = 0� r = 1

Figure de [1].
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Fonction avec pôles distincts
l Prenons un système caractérisé par des pôles simples 

l Par échantillonnage de la réponse impulsionnelle analogique 

l Les pôles sont donnés par:

102

Ha(s) =
N�

k=1

ck

s� pk

h(n) = ha(nT ) =
N�

k=1

ckepkTn

H(z) =
⇥⇧

n=0

h(n)z�n =
⇥⇧

n=0

⇤
N⇧

k=1

ckepkTn

⌅
z�n =

N⇧

k=1

ck

⇥⇧

n=0

�
epkT z�1

⇥n

H(z) =
N�

k=1

ck

1� epkT z�1

zk = epkT , k = 1, 2, ..., N

ha(t) =
NX

k=1

ckepkt, t � 0
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Echantillonnage h(t): propriétés
l Méthode par échantillonnage de la réponse impulsionnelle 
- Un pôle sj en s correspond à un pôle zj = exp(sj T) en z 
- Si Re[sj] < 0, alors |z| < 1: le filtre numérique est stable 

l Par la conversion z = exp(sT)  
- Une infinité de bandes horizontales (de largeur dépendante de 1/T) du plan des s 

est ‘projetée’ sur le cercle unité dans le plan des z 
- Recouvrements possibles, selon la valeur de T 
- Les filtres analogiques ne sont en pratique pas limités en fréquence, les 

recouvrements ne peuvent être totalement évités.  
l La méthode s’applique essentiellement pour les filtres à basse 

fréquence de coupure 
- L’influence du recouvrement est moindre à basse fréquence

103
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l Filtre passe-bas de type RC: 

l Un pôle en -1/RC donne un pôle en 
l Le filtrage peut être  

réalisé par  

l Les fonctions de transfert  
sont:

ha(t) = e�t/RCHa(s) =
1

s + 1/RC

z0 = e�
T

RC

y(n) = x(n) + e�
T

RC y(n� 1)

H(f) =
1

1� e�
T

RC e�j2�fT

Exemple 9: filtre passe-bas
104

20 log10|Ha(f)|


20 log10|H(f)|


f


f


T=0.125 T=0.0875

Ha(f) =
1

1 + j2�RCf
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H(z) =
1� (e�0.1T cos 3T )z�1

1� (2e�0.1T cos 3T )z�1 + e�0.2T z�2

Exemple 10: passe-bande
l Convertissons le filtre analogique 

l Le filtre a un zéro en                  et deux pôles  
l On peut décomposer en fractions partielles 

l Par l’équivalence de la réponse impulsionnelle

105

Ha(s) =
s + 0.1

(s + 0.1)2 + 9

s = �0.1 pk = �0.1± j3

H(s) =
1/2

s + 0.1� j3
+

1/2
s + 0.1 + j3

H(z) =
1/2

1� e�0.1T ej3T z�1
+

1/2
1� e�0.1T e�j3T z�1
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Exemple 10: passe-bande (2)
106

Figures de [1].

Filtre numérique Filtre analogique

l Réponses fréquentielles du filtre passe-bande (résonateur) 

l Le choix de T influence la fréquence de résonance 
l Le recouvrement (aliasing) est plus faible pour T petit

VideoDSP2.8-end



Traitement des signaux, automne 2021 
Prof. Jean-Philippe Thiran  

Prof. Pascal Frossard

l Considérons l’intégration 

l L'équivalent numérique est  
la règle trapézoïdale d'intégration 

l La transformée en z est  

l Comme dans le plan des s, l’intégration correspond à la division par 
s, on a l’équivalence 

l La relation d’équivalence s’appelle la transformation bilinéaire. 

Τ


t


x
a
(t)
 x(n)


nT


y(n)


ya(t) =
� t

�
xa(u)du

y(n) = y(n� 1) +
T

2
[x(n) + x(n� 1)]

Equivalence de l’intégration
107

1
s

=
T

2
1 + z�1

1� z�1
z =

1 + sT/2
1� sT/2

H(z) =
T

2
1 + z

�1

1� z�1

x(n� 1)

VideoDSP2.9-start
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l En posant                    et 
l On obtient 

l Donc 

l On a 

l De plus, si

z = rej� s = � + j�

s =
2
T

z � 1
z + 1

=
2
T

�
r2 � 1

1 + r2 + 2r cos �
+ j

2r sin�

1 + r2 + 2r cos �

⇥

� =
2
T

r2 � 1
1 + r2 + 2r cos ⇥

� =
2
T

2r sin�

1 + r2 + 2r cos �

Transformation bilinéaire: s ↔ z
108

et

r > 1� � > 0
r < 1� � < 0

r = 1� � = 0

� =
2
T

sin �

1 + cos �
=

2
T

tan
�

2

� = 2arctan
�T

2

σa


jωa


0


Re[z]


Im[z]


1


cercle


unité


⌦a
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Correspondance des fréquences
l Transformée de Fourier du signal numérique en évaluant H(z) 

pour 

l Avec                                 et 

l La construction doit tenir compte de la distorsion!

109

z = ej2�fT

1/2Τ


0
 0
1


1


fa


fa


Ha(fa )

H(f )


f


� = 2arctan
�T

2
� =2 �fa

f =
1
⇡

arctan (⇡faT )

fa =
1

⇡T
tan (⇡f)
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l Convertissons le filtre analogique 

l Le filtre analogique a une fréquence de résonance à  
l Si on veut une fréquence de résonance numérique à                   on 

doit choisir                 selon la transformation des fréquences 
l On a donc 

l En négligeant le terme en         au dénominateur, on obtient la 
bonne fréquence de résonance

Ha(s) =
s + 0.1

(s + 0.1)2 + 16

p1,2 = 0.987e±j⇡/2

Exemple 11: résonateur
110

⌦r = 4
!r = ⇡/2

T = 1/2

s = 4
✓

1� z�1

1 + z�1

◆

H(z) =
0.128 + 0.006z

�1 � 0.122z
�2

1 + 0.0006z�1 + 0.975z�2

z�1
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l Construisons un filtre passe-bas avec une fréquence de coupure 
de           à partir du filtre analogique 

l Par la transformation des fréquences 

l Le filtre analogique devient 

l Par la transformation bilinéaire 

l La réponse fréquentielle est 
- on a effectivement

⌦c = 2/T tan 0.1⇡ = 0.65/T

Exemple 12: passe-bas
111

0.2⇡
H(s) =

⌦c

s + ⌦c

H(s) =
0.65/T

s + 0.65/T

H(z) =
0.245(1 + z

�1)
1� 0.509z�1

(Plus de T!)

H(!) =
0.245(1 + e

�j!)
1� 0.509e�j!

H(0) = 1
|H(0.2⇡)| = 0.707

VideoDSP2.9-end
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Construction de filtres pb RII
l Spécifications du filtre numérique 
l Transformations des spécifications dans le domaine analogique 
- distorsion de fréquence si usage de la transformation bilinéaire 

l Construction du filtre analogique correspondant 
l En général transformation bilinéaire 
l Implémentation du filtre numérique résultant 

l On travaille en général avec des filtres passe-bas analogiques 
bien connus 
- On effectue des transformations de fréquences pour obtenir passe-haut, passe-

bande ou coupe-bande

112VideoDSP2.10-start
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Filtres analogiques p-b classiques
l La construction de filtres numériques RII s’effectue par conversion 

d’un filtre analogique (s ↔ z) 
l Il reste à définir le filtre analogique qui remplit les spécifications 

désirées 
l Le filtrage analogique est un domaine très étudié 
- Filtres de Butterworth 
- Filtres de Chebyshev 
- Filtres elliptiques 
- Filtres de Bessel

113

Figure de [1].
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l Filtre tout-pôle 

l Filtre monotone dans les  
bandes passante et coupée 

l L’ordre du filtre est donné par

Filtre de Butterworth
114

|H(�)|2 =
1

1 + (�/�c)2N
=

1
1 + �2(�/�p)2N

1
1 + ⇥2(�s/�p)2N

= �2
2

N =
log(�/⇥)

log(�s/�p)

�2 = 1/
�

1 + �2

Figure de [1].
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l 2 types de filtres  
- filtre tout-pôle avec des oscillations dans la bande passante (Type I) 

- filtre avec pôles et zéros, oscillations dans la bande coupée (Type II) 

l L’ordre des filtres est donné par 

l Spécifications atteintes avec moins de pôles que Butterworth 
- Bande de transition plus petite pour le même nombre de pôles

Filtres de Chebyshev
115

|H(�)|2 =
1

1 + �2T 2
N (�/�p)2N

TN (x) =
�

cos(N cos�1(x)), pour |x| � 1
cosh(N cosh�1(x)), sinon.

|H(�)|2 =
1

1 + �2 [T 2
N (�s/�p)/T 2

N (�s/�)]

N =
cosh�1(�/⇥)

cosh�1(�s/�p)
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Filtres de Chebyshev, illustration
116

Figures de [1].
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Filtres elliptiques
l Les filtres elliptiques (Cauer) ont un comportement ‘equiripple’ dans 

les bandes passante et coupée 

UN(x) est la fonction elliptique (Jacobian) d’ordre N 
l L’erreur d’approximation est répartie dans les deux bandes 

- Filtre d’ordre le plus petit pour des spécifications données 
- Pour un ordre donné, bande de transition la plus petite 

l La réponse de phase est très non-linéaire dans la bande passante
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|H(�)|2 =
1

1 + �2UN (�/�p)

N =
K(�p/�s)K

�⇤
1� (⇥2/�2)

⇥

K(⇥/�)K
�⇤

1� (�p/�s)2
⇥ K(x) =

� �/2

0

d�⇥
1� x2 sin2 �
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Filtres elliptiques, illustration
118

Figure de [1].
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Filtres de Bessel
l Filtre tout-pôle 

donné par les polynômes de Bessel 

l Large bande de transition 
l Phase linéaire dans la bande passante 

- détruite par la conversion numérique

119

H(s) =
1

BN (s)

BN (s) = (2N � 1)BN�1(s) + s2BN�2(s)

B0(s) = 1 B1(s) = s + 1avec et

Figure de [1].
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l Construction par transformation bilinéaire d’un filtre passe-bas avec 
les spécifications suivantes

Illustrations: filtre passe-bas
120

�1 = 60dB !p = 0.25⇡!s = 0.30⇡

Normalized frequency

Butterworth, N=37

Figure de [1].
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Illustrations: filtre passe-bas (2)
121

Normalized frequency

Chebyshev (I), N=13

Normalized frequency

Elliptic, N=7

Figures de [1].
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Réal. de filtres non passe-bas
l Réalisation de filtres passe-haut, passe-bande et coupe-bande 
- prototype passe-bas 
- transformation de fréquence 

l Transformation de fréquence 
- analogique, puis conversion s ↔ z 
- conversion s ↔ z  pour le filtre passe-bas, puis transformation de fréquence 

numérique 
l Les deux méthodes ne sont pas équivalentes en général 
l Si la transformation bilinéaire est utilisée, elles sont équivalentes 
- dans ce cas, il n’y a pas de problème dû au recouvrement 

l Pour les méthodes d’échantillonnage de h(n) et d’équivalence de la 
dérivation 
- filtre passe-bas numérique, puis conversion de fréquence numérique

122
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Transformation de fréq. analogique
123

Table de [1].

l
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Transformation de fréq. numérique
l Conversion de z-1 en g(z-1)  
l Le cercle unité est ‘invariable’ 
-

124

|g(�)| = 1, ��

g(z�1) = ±
n�

k=1

z�1 � ak

1� akz�1

|ak| < 1
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l Convertissons le filtre Butterworth passe-bas (                 ) en un 
filtre passe-bande entre      et  

l On utilise la transformation de fréquence suivante  

l Si                    et 

!u

!u = 3⇡/5 !l = 2⇡/5

H(z) =
0.245(1� z

�2)
1 + 0.509z�2

! = ⇡/2

Exemple 13: Conv. de fréquence
125

!p = 0.2⇡
!l

H(z) =
0.245(1 + z

�1)
1� 0.509z�1

z�1 ! � z�2 � a1z�1 + a2

a2z�2 � a1z�1 + 1

H(z) =
0.245(1� a2)(1� z

�2)
(1 + 0.509a2)� 1.509a1z

�1 + (a2 + 0.509)z�2

pk = ±j0.713 Résonance à
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Conception typique d’un filtre RII
1.Choix du filtre analogique (par transformation des contraintes 

numériques) 
2.Détermination de l’ordre du filtre à partir des spécifications (gabarit) 
3.Détermination du filtre passe-bas analogique avec une fréquence de 

coupure 
4.Transformation de fréquence (fréquence de coupure + type de filtre) 
5.Transformation bilinéaire 

126

�c = 1
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Et la phase?...
l Dans le design des filtres numériques, on s’est concentré sur les 

caractéristiques du module de la réponse fréquentielle 
l La réponse de phase est généralement donnée par les contraintes de 

stabilité, et de causalité 

l Pour avoir un système à phase linéaire, on doit avoir un filtre RIF 
- causalité et phase linéaire implique 
- on ne peut avoir un filtre RII à phase linéaire stable, puisque les pôles seraient 

présents hors du cercle unité 

l On peut par contre influencer la réponse de phase d’un filtre RII 
- la réponse de phase reste liée à la réponse d’amplitude pour un système causal
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H(z) = ±z
�N

H(z�1)

VideoDSP2.11-start
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Systèmes à phase minimum
l Il y a beaucoup de systèmes qui sont équivalents dans l’amplitude de la 

réponse fréquentielle, et qui diffèrent dans la phase 

- si on remplace un zéro zk par son inverse 1/zk, la réponse d’amplitude ne change pas 
- on peut donc inter-changer des zéros à l’intérieur ou à l’extérieur du cercle unité 

l Lorsque tous les zéros sont à l’intérieur du cercle unité: phase minimum 
- son inverse est alors aussi stable

128

|H(�)|2 = H(z)H(z�1)
��
z=ej��
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�1(�) = �� + tan�1 sin�
1
2 + cos �

�2(�) = �� + tan�1 sin�

2 + cos �

Exemple de phases différentes (RIF)
129

Figure de [1].

H1(z) = 1 +
1
2
z�1 = z�1(z +

1
2
)

|H1(�)| = |H2(�)| =
�

5
4

+ cos �

H2(z) =
1
2

+ z�1 = z�1(
1
2
z + 1)
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Phase minimale (RIF)
l Filtre RIF simple à phase minimale (zéro dans le cercle unité) 

l Filtre RIF simple à phase maximale (zéro hors du cercle unité) 

l Par extension, pour un système RIF d’ordre M  

- phase minimale: tous les zéros dans le cercle unité 
- phase maximale: tous les zéros hors du cercle unité 

l Par extension, un système RII stable a une phase minimale si 
tous les zéros et tous les pôles sont à l’intérieur du cercle unité
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�1(�)��1(0) = 0

�2(�)��2(0) = �

H(�) = b0(1� z1e
�j�)(1� z2e

�j�)...(1� zMe�j�)
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B2(z�1)

Hmin =
B1(z)B2(z�1)

A(z)
Hpt(z) =

B2(z)
B2(z�1)

Systèmes à phase minimale
l Tout système à phase non minimale peut mener à un système à 

phase minimale par un filtre passe-tout 

l Le filtre passe-tout transfert les zéros hors du cercle unité, sans 
modifier la réponse fréquentielle d’amplitude 

-             ne contient que des zéros dans le cercle unité 
-             ne contient que des zéros hors du cercle unité 
-                 ne contient que des zéros dans le cercle unité
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H(z) =
B1(z)B2(z)

A(z)

B2(z)
B1(z)

H(z) = Hmin(z)Hpt(z)
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Exemple 14
l Considérons le système suivant 

- 2 zéros en                                         et 
- Comme les zéros sont à l’intérieur du cercle unité: phase minimum 

l On peut le transformer en un autre système à phase non-
minimum par un filtre passe-tout
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z
1



z
2



1/z
1
*


1/z
2
*


Hpt(z) =
z�1 � z⇥1
1� z1z�1

z�1 � z⇥2
1� z2z�1

Hmin(z) = 1� 1.386z�1 + 0.640z�2

z1 = 0.8 exp(j�/6) z2 = 0.8 exp(�j�/6)
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k


gmin(k)

1


|Gmin(f)|


θ(f)


�θ(f)/f


f


f


f

z1


z2


0


Exemple: système à phase min.
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k


g(k)

1


|G(f)|


θ(f)


�θ(f)/f
1/z1
*


1/z2
*


0


Exemple: système à phase non-min.
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H(z)HI(z) = 1� HI(z) =
1

H(z)

w(n) = T �1[y(n)] = T �1{T [x(n)]} = x(n)

Inverse d’un filtre
135

w(n) = x(n)x(n) y(n)

Système direct Système inverse

Système identité

T T �1

l Un système a un inverse s’il y a une correspondance entre les 
signaux d’entrée et de sortie 

l Pour les systèmes linéaires et invariants 

l Les filtres numériques à phase minimum ont un inverse stable, qui 
est aussi à phase minimum

Traitement des signaux, automne 2021 
Prof. Jean-Philippe Thiran  

Prof. Pascal Frossard

Let’s play a last time...
136
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Résumé - filtrage 
l Stabilité et causalité sont les conditions nécessaires pour un 

design pratique 
l RIF utilisés dans les applications qui ont besoin d’une phase 

linéaire 
- échantillonnage de fréquence et méthodes optimales sont les meilleurs choix 

l RII utilisés quand la distorsion de phase est tolérée 
- filtres elliptiques sont préférés (ordre plus faible), ou méthodes optimales 
- RII pas idéal pour filtre à phase linéaire: même mis en cascade avec un passe-

tout pour corriger la phase, le nombre de coefficients est plus grand qu’un RIF 
l Les transformations de fréquence sont utilisées seulement pour 

les filtres RII 
- le résultat d’une transformation de fréquence est un filtre RII
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Estimation de signal
l Observation et interprétation de signaux perturbés par du bruit 
- Antennes, astrophysique, recherche biomédicale, compression par prédiction 

l Avec un modèle statistique du signal observé 
- Méthodes du maximum de vraisemblance, ou de risque minimum, etc. 

l Sans modèle à priori, on peut faire de l’estimation linéaire 
- besoin seulement de connaître ou mesurer l’auto/inter-corrélation 
- si l’observation est à statistique gaussienne, l’estimateur linéaire optimum 

donne la plus faible erreur quadratique moyenne (vs méthodes non-linéaires)
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€ 

b(t)

y(t) = s(t) + b(t)

s(t)

<latexit sha1_base64="oaCV5XUpHwkSelH183s6JjpIO0c="></latexit>

s(t) + b(t)
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Plan
l Rappel - signaux aléatoires, stationnarité, ergodicité 
l Processus aléatoires AR, MA, ARMA 
l Filtrage linéaire de signaux aléatoires 
l Estimation et prédiction par filtrage linéaire 
l Filtres optimaux: filtres de Wiener

141
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Signaux aléatoires
l Un processus stochastique (ou aléatoire) est représenté par un 

signal aléatoire à temps continu x(t). 
l Un signal aléatoire à temps discret x[n] peut se voir comme un 

vecteur de variables aléatoires, de dimension infinie 
- En prenant            ,                                                                   devient un signal à 

temps continu    

l Ces signaux sont caractérisés par une densité de probabilité, et 
un opérateur d’espérance. Pour pouvoir travailler avec ces 
signaux, on fait des hypothèses d’ergodicité, et de stationnarité. 

l Les signaux déterministes sont parfois considérés comme des 
signaux aléatoires en l’absence d’information sur leur génération.
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(..., x[(n� 1)T ], x[nT ], x[(n + 1)T ], ...)T � 0
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Signaux aléatoires

l Les phénomènes physiques naturels sont souvent caractérisés en 
termes statistiques  
- Les réalisations possibles forment un ensemble de fonctions aléatoires 
- Une réalisation x(t) est une série de variables aléatoires 
- Elle est caractérisée par une densité de probabilité jointe
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Stationnarité
l Un processus caractérisé par                              (densité de 

probabilité jointe), est dit stationnaire au sens strict si 

l Dans ce cas, les propriétés statistiques du signal sont invariantes 
par rapport à une translation dans le temps. Elles ne dépendent 
pas des instants auxquels les n échantillons successifs sont 
considérés.
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��,�n
p(xt1 , xt2 , ..., xtn)

p(xt1 , xt2 , ..., xtn) = p(xt1+� , xt2+� , ..., xtn+� )
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Moyennes statistiques
l Les moyennes statistiques sont calculées sur différentes 

réalisations du processus aléatoire 
l Par exemple, l’échantillon à l’instant    ,          est une variable 

aléatoire avec un densité de probabilité  
l Le moment d’ordre l de la variable aléatoire est donné par 

l Si le processus est stationnaire (                                  ), le 
moment d’ordre l est constant (indépendant du temps)
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ti X(ti)

E(X l
ti

) =
� ⇥

�⇥
xl

ti
p(xti)dxti

p(xti)

p(xti) = p(xti+� ), ��

Traitement des signaux, automne 2021 
Prof. Jean-Philippe Thiran  

Prof. Pascal Frossard

Autocorrélation
l Considérons 2 variables aléatoires                                   qui 

correspondent à des échantillons pris à des instants différents 
l Le moment joint est défini comme 

l Si le processus est stationnaire, la fonction d’autocorrélation est 

- La valeur en 0 est la puissance moyenne du signal 

l Stationnarité au sens large si 
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Xti = X(ti), i = 1, 2

�xx(⇥) = E[Xt1+� , Xt1 ] = E[Xt�1�� , Xt�1
] = �xx(�⇥)

�xx(0) = E[X2
t1 ]

E[Xti ] = const et

E[Xt1 , Xt2 ] =
� ⇥

�⇥

� ⇥

�⇥
xt1xt2 p(xt1 , xt2)dxt1dxt2

�xx(t1, t2) = �xx(t1 � t2) = �xx(⌧)
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Autocovariance
l La fonction d’autocovariance est liée à l’autocorrélation 

l Si le processus est stationnaire, on a 

l On peut alors définir la variance comme

147

cxx(t1, t2) = cxx(t1 � t2) = cxx(⇥) = �xx(⇥)�m2
x

mx = E[Xti ] = const � = t1 � t2avec et

⇥2
x = cxx(0) = �xx(0)�m2

x

cxx(t1, t2) = E {[Xt1 � E(Xt1)][Xt2 � E(Xt2)]}
= �xx(t1, t2)� E(Xt1)E(Xt2)
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Processus aléatoires joints

l 2 processus aléatoires X(t) et Y(t) sont caractérisés statistiquement 
par une fonction de densité de probabilité jointe  

l On définit alors l’intercorrélation et l’intercovariance comme

148

cxy(t1, t2) = �xy(t1, t2)� E(Xt1)E(Yt2)

p(xt1 , xt2 , .., xtn , yt�1
, yt�2

, ..., yt�m)

�xy(t1, t2) � E[Xt1 , Yt2 ] =
� ⇥

�⇥

� ⇥

�⇥
xt1yt2 p(xt1 , yt2)dxt1dyt2
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Caractérisation de processus joints
149

l Si les processus sont conjointement et individuellement stationnaires  

l Si les processus sont statistiquement indépendants, 

l Finalement, deux processus sont non-corrélés si

cxy(t1, t2) = cxy(�)�xy(t1, t2) = �xy(⇥) = �xy(�⇥) et

p(xt1 , xt2 , .., xtn , yt�1
, yt�2

, ..., yt�m) = p(xt1 , xt2 , .., xtn) p(yt�1
, yt�2

, ..., yt�m)

�n,�m,�ti,�t�i

�xy(t1, t2) = E(Xt1)E(Yt2) cxy(t1, t2) = 0ou
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Densité spectrale de puissance
l La transformée de Fourier n’est pas directement exploitable pour 

un signal aléatoire, généralement de durée et énergie infinies 
l On peut obtenir la transformée             d’une réalisation donnée 

par fenêtrage  
l La densité spectrale de puissance (DSP) est alors donnée par 

l Interprétation 
- l’énergie moyenne du signal par unité de temps est donnée par 
- Par Parseval 

- Cela montre que                                           est la contribution des fréquences                à la puissance 
moyenne du signal                   densité spectrale de puissance
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xA(t) = rect(t/A) x(t)
XA(�)

�xx(�) = lim
A�⇥

1
A

E[|XA(�)|2]

P = lim
A⇥⇤

1
A

� A/2

�A/2
|x(t)|2dt

P = lim
A⇥⇤

1
2�A

� ⇤

�⇤
|XA(⇥)|2d⇥ =

1
2�

� ⇤

�⇤
�xx(⇥)d⇥

� �2

�1

�xx(⇥)/(2�)d⇥ [�1, �2]
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Théorême de Wiener-Khintchine
l Un calcul direct de la DSP est très laborieux ! 
l Pour les signaux aléatoires stationnaires au sens large, on peut 

heureusement utiliser le théorême de Wiener-Khintchine: 

- la DSP s’obtient en calculant la transformée de Fourier de la fonction 
d’autocorrelation
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�xx(⇥) =
� ⇥

�⇥
�xx(t)e�j�tdt

Norbert Wiener Aleksandr Khinchin
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Preuve...
l Théorême de Wiener-Khintchine: 

l Preuve 

- Comme                                    on a effectivement 
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�xx(⇥) =
� ⇥

�⇥
�xx(t)e�j�tdt

1
A

E[|XA(⇥)|2] =
1
A

E

�⇤ ⇤
x(t)rect(t/A)e�j�tx(t⇤)⇥rect(t⇤/A)ej�t�dtdt⇤

⇥

=
1
A

⇤ ⇤
rect(t/A)rect(t⇤/A)E[x(t)x(t⇤)⇥]e�j�(t�t�)dtdt⇤

=
⇤

�xx(u)e�j�udu

⇤
rect(u/A + u⇤)rect(u⇤)du⇤ (chgt variables: u = t� t⇤, u⇤ = t⇤/A)

=
⇤

tri(u/A)�xx(u)e�j�udu

lim
A�⇥

tri(u/A) = 1 1
A

E[|XA(⇥)|2] =
�

�xx(u)e�j�udu
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Propriétés de la DSP
l On a les relations suivantes pour la distribution de puissance 

- La DSP est toujours réelle. Si le processus aléatoire prend des valeurs réelles, 
elle est aussi paire. 

l Par extension, on obtient la densité inter-spectrale de puissance 
pour deux processus aléatoires X(t) et Y(t)  

- On a                                , et                                 pour les processus réels
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�xx(0) =
� ⇥

�⇥
�xx(⇥)d⇥ = E[X2

t ] � 0

�xx(⇥) =
� ⇥

�⇥
�xx(t)e�j�tdt� �xx(t) =

� ⇥

�⇥
�xx(⇥)ej�td⇥

�xy(⇥) =
� ⇥

�⇥
�xy(t)e�j�tdt

��
xy(�) = �yx(��) �xy(�) = �yx(��)
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cxx(n, k) = �xx(n, k)� E(Xn)E(Xk)

Signaux aléatoires à temps discret
l On peut étendre les définitions précédentes aux signaux discrets 
- Généralement par échantillonnage uniforme des processus continus 
- L’échantillonnage d’un processus stationnaire forme un signal stationnaire  

l On a les relations suivantes pour le processus discret X(n) et les 
échantillons x(n) 
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�xx(n, k) = E[Xn, Xk] =
� ⇥

�⇥

� ⇥

�⇥
xnxk p(xn, xk)dxndxk
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Processus discrets stationnaires
155

l Si le processus discret est stationnaire 
- m = n - k 

l Par Wiener-Khintchine

�xx(n, k) = �xx(m)

E(X2
n) = �xx(0)

⇥2 = cxx(0) = �xx(0)� E(Xn)2
cxx(n, k) = cxx(m) = �xx(m)� E(Xn)2

�xx(f) =
⇥�

m=�⇥
�xx(m)e�j2�fm � �xx(m) =

⇥ 1/2

�1/2
�xx(f)ej2�fmdf
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Moyennes temp. et ergodicité
l En pratique, une seule réalisation est disponible en général 
- Cependant, nous avons caractérisé les processus aléatoires en termes de 

moyennes statistiques 
l Comment obtenir les moyennes du processus avec une seule 

réalisation? 
- Condition: le processus doit être ergodique 

l Définition: X(n) est ergodique si les moyennes statistiques sont  
égales aux moyennes temporelles (obtenues à partir d’une seule 
réalisation du processus) 
- Dans ce cas, on peut estimer les moyennes d’ensemble à l’aide des moyennes 

temporelles calculées sur une seule réalisation 
- Un signal ergodique est toujours stationnaire au sens strict (l’inverse n’est pas 

vrai!)
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Ergodicité de la moyenne
l Pour un processus stationnaire X(n), les moyennes statistiques et 

temporelles sont données resp. par 

l        est une estimation statistique calculée sur une seule réalisation 
- Son espérance calculée sur toutes les réalisations du processus devient 

- C’est un estimateur non biaisé. 
l La variance de l’estimateur est donnée par 

- si la variance tend vers 0 quand N devient très grand, l’estimation       converge 
avec une probabilité 1 vers la moyenne statistique 
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mx = E[Xn] et m̂x =
1

2N + 1

N�

n=�N

x(n)

m̂x

E[m̂x] =
1

2N + 1

N�

n=�N

E[x(n)] =
1

2N + 1

N�

n=�N

mx = mx

var(m̂x) = E(|m̂x|2)� |m̂x|2

mx

m̂x
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E(|m̂x|2) =
1

(2N + 1)2

N⇤

n=�N

N⇤

k=�N

E[x⇥(n)x(k)] =
1

(2N + 1)2

N⇤

n=�N

N⇤

k=�N

�xx(k � n)

=
1

2N + 1

2N⇤

m=�2N

�
1� |m|

2N + 1

⇥
�xx(m)

var(m̂x) =
1

2N + 1

2N⇤

m=�2N

�
1� |m|

2N + 1

⇥
�xx(m)� |mx|2

=
1

2N + 1

2N⇤

m=�2N

�
1� |m|

2N + 1

⇥
cxx(m)

Var. de l’estimation de la moyenne

l Les moyennes statistiques et temporelles sont égales si 

- on a alors 
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lim
N⇥⇤

1
2N + 1

2N⇤

m=�2N

�
1� |m|

2N + 1

⇥
cxx(m) = 0

mx = lim
N⇥⇤

1
2N + 1

N�

n=�N

x(n)

⇥�

m=�⇥
|cxx(m)| <�ou 
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Ergodicité de la corrélation
l On peut aussi calculer une estimation de la corrélation 

l L’estimateur est à nouveau non biaisé, puisque 

l La variance de l’estimation est donnée par 

- Si la variance tend vers 0 pour N très grand, l’estimation converge avec une 
probabilité 1 vers l’autocorrélation statistique
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rxx(m) =
1

2N + 1

N�

n=�N

x⇥(n)x(n + m)

E[rxx(m)] =
1

2N + 1

N�

n=�N

E[x⇥(n)x(n + m)] =
1

2N + 1

N�

n=�N

�xx(m) = �xx(m)

var(rxx(m)) = E(|rxx(m)|2)� |�xx(m)|2
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E(|rxx(m)|2) =
1

(2N + 1)2

N⇤

n=�N

N⇤

k=�N

E[x⇥(n)x(n + m)x(k)x⇥(k + m)]

=
1

(2N + 1)2

N⇤

n=�N

N⇤

k=�N

�m
vv(n� k) avec vm(n) = x⇥(n)x(n + m)

=
1

2N + 1

2N⇤

n=�2N

�
1� |n|

2N + 1

⇥
�m

vv(n)

var(rxx(m)) =
1

2N + 1

2N⇤

n=�2N

�
1� |n|

2N + 1

⇥
�m

vv(n)� |�xx(m)|2

Var. de l’estimation de corrélation

l La condition pour que le processus soit ergodique en terme de 
corrélation est donc                                        . On a alors
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var(rxx(m))� 0 as N �⇥

lim
N⇤⌅

1
2N + 1

N�

n=�N

E[x⇥(n)x(n + m)] = �xx(m)
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Illustrations: stationnarité, ergodicité
l Stationnarité 

l Ergodicité 

-         est un processus ergodique 
- a: variable aléatoire (indép. de         ) 
- x(t): signal stationnaire non ergodique
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x(t) = a x0(t)

x0(t)
x0(t)

signal de parole: non stationnaire bruit coloré stationnairesignal non stationnaire bruit coloré 
stationnaire

temps

pl
us

ie
ur

s 
ré

al
is

at
io

ns

t

statistiques différentesstatistiques différentes

pl
us

ie
ur

s 
ré

al
is

at
io

ns

VideoDSP2.13-end
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l Signal aléatoire x, donné par        ,         et 
l La moyenne du signal de sortie est donnée par

y(k) =
1X

l=�1
h(l)x(k � l)

Réponse de systèmes linéaires
162

mx �xx �xx

Système LTI 
h(k)

signal aléatoire 

x(k) y(k)

my = E[y(k)] =
1X

l=�1
h(l)E[x(k � l)] = mx

1X

l=�1
h(l)

VideoDSP2.14-start
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Rép. de systèmes linéaires
l Fonction d’autocorrélation du signal de sortie: 

l Densité spectrale de puissance
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stationnarité de x(k)

�yy(k) = E[y(l)y(l + k)] = E

" 1X

u=�1
h(u)x(l � u)

1X

v=�1
h(v)x(l + k � v)

#

=
1X

u=�1
h(u)

1X

v=�1
h(v)E[x(l � u)x(l + k � v)]

=
1X

u=�1
h(u)

1X

m=�1
h(u + m)�xx(k �m) =

1X

m=�1
�xx(k �m)

1X

u=�1
h(u)h(u + m)

=
1X

m=�1
�xx(k �m)�hh(m)

�yy(z) = H(z)H(1/z)�xx(z)

�yy(f) = H(f)H⇤(f) �xx(f) = |H(f)|2 �xx(f)
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Signal intéressant: bruit blanc
l Un bruit blanc est l’idéalisation mathématique d’un signal 

stationnaire à moyenne nulle dont la DSP est constante 

- Un tel signal a une puissance moyenne finie, et ses échantillons sont décorrélés. 
- On peut générer toutes sortes de bruits colorés par filtrage de bruit blanc 

l Dans le cas discret, un bruit blanc b(n) est un signal à moyenne 
nulle, stationnaire et caractérisé par l’indépendance des 
échantillons  

- La DSP reste constante: 
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�xx(⇤) = N0 � �xx(t) = N0 ⇥(t)

�bb(n) =
�

0 n �= 0
N0 n = 0

�bb(�) = N0
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Syst. linéaires et bruit blanc

l La fonction d’autocorrélation de y dépend de la variance du bruit blanc 

l La densité spectrale de puissance est alors simplement donnée par
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Système LTI 
h(k)

bruit blanc y(k)

�yy(k) =
1X

m=�1
�bb(k �m) �hh(m) =

1X

m=�1
�2

b�(k �m) �hh(m)

= �2
b�hh(k) = �2

b

1X

m=�1
h(m) h(m + k)

�yy(f) = |H(f)|2 �
2
b
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Représentation de l’innovation
l Un processus stationnaire au sens large          peut être 

représenté comme la sortie d’un système linéaire causal et 
invertible excité par un bruit blanc. 

l Preuve
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{x(n)}

�xx(z) =
⇥�

m=�⇥
�xx(m)z�m log �xx(z) =

⇥�

m=�⇥
v(m)z�m

série de Laurent 
(fonction analytique)

H(z) = exp

� ⇥⇤

m=1

v(m)z�m

⇥
, |z| > r1

�2
w = exp[v(0)]avec

et

fonction analytique 
système causal

Filtre linéaire 
causal H(z)

w(n)
x(n) =

��

k=0

h(k)w(n� k)

�xx(f) = �2
w|H(f)|2

Filtre linéaire 
causal 1/H(z)

w(n)x(n)

bruit blanc: processus d’innovation

�xx(z) = exp

� ⇥⇤

m=�⇥
v(m)z�m

⇥
= �2

mH(z)H(z�1)

H(z) =
⇥�

n=0

h(n)z�n

�2
!
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l On considère les processus stationnaires           ayant une DSP 
rationnelle 

l Par la représentation de l’innovation, ces processus peuvent être 
générés par un bruit blanc          , filtré par H(z)

Processus stationnaires par filtrage
167

�xx(z) = �2
w

B(z)B(z�1)
A(z)A(z�1)

H(z) =
B(z)
A(z)

=
�q

k=0 bkz�k

1 +
�p

k=1 akz�k

{w(k)}

{x(k)}
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Processus particuliers
168

l Processus AR (auto-régressif) 

l Processus MA (moyenne glissante) 

l Processus ARMA (AR + MA)

x(n) +
p�

k=1

akx(n� k) =
q�

k=0

bkw(n� k)

x(n) +
p�

k=1

akx(n� k) = w(n)

x(n) =
q�

k=0

bkw(n� k)

H(z) = 1/A(z)

H(z) = B(z)

H(z) = B(z)/A(z) Figure de [1].

x(n)w(n)

Réalisation ARMA
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E[x(n)x⇤(n�m)] = �
pX

k=1

akE[x(n� k)x⇤(n�m)] +
qX

k=0

bkE[w(n� k)x⇤(n�m)]

�xx(z)

Calcul de l’autocorrélation
169

�xx(m) = �
p�

k=1

ak�xx(m� k) +
q�

k=0

bk�wx(m� k)

�wx(m) = E[x�(n)w(n + m)] = E

� ⇥⇤

k=0

h(k)w�(n� k)w(n + m)

⇥
= ⇥2

wh(�m)

bruit blanc

�xx(m) =

�
⇤

⇥

�
⌅p

k=1 ak�xx(m� k) m > q
�

⌅p
k=1 ak�xx(m� k) + ⇥2

w

⌅q�m
k=0 bk+mh(k) 0 ⇥ m ⇥ q

�⇥xx(�m) m < 0

l On peut obtenir l’autocorrélation à partir des paramètres du filtre 
qui génère le signal aléatoire à partir d’un bruit blanc 

l Pour un processus ARMA (quand            est rationnelle):
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Equations de Yule-Walker

l On peut aussi obtenir la fonction d’autocorrélation pour un 
processus AR 

l ... et MA
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�xx(m) =

�
⇤

⇥

�
⌅p

k=1 ak�xx(m� k) m > q
�

⌅p
k=1 ak�xx(m� k) + ⇥2

w

⌅q�m
k=0 bk+mh(k) 0 ⇥ m ⇥ q

�⇥xx(�m) m < 0

�xx(m) =

�
⇤

⇥

0 m > q
⇥2

w

⌅q
k=0 bk+mbk 0 ⇥ m ⇥ q

��xx(�m) m < 0

équations de Yule-Walker

ARMA:

�xx(m) =

8
<

:

�
Pp

k=1 ak�xx(m� k) m > 0
�

Pp
k=1 ak�xx(m� k) + �2

w m = 0
�⇤xx(�m) m < 0

VideoDSP2.14-end
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ap(0) = 1

Prédiction linéaire et filtrage
l On veut prédire la valeur du 

processus aléatoire x(n) à partir de 
ses valeurs passées 

l Cela correspond à un filtre RIF

171

Figures de [1].

x̂(n) = �
p�

k=1

ap(k)x(n� k)

Ap(z) =
p�

k=0

ap(k)z�k

e(n) = fp(n) = x(n)� x̂(n)

Coefficients de prédiction

fp(n) = x(n) +
pX

k=1

ap(k)x(n� k)

avec

Erreur:

VideoDSP2.15-start
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Erreur de prédiction minimale
l L’erreur quadratique moyenne s’écrit comme: 

l La minimisation de cette fonction quadratique des coefficients donne 

l L’erreur minimale est donc:
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�xx(l) = �
pX

k=1

ap(k)�xx(l � k), l = 1, 2, ..., p

min[Ef
p ] ⌘ Ef

p = �xx(0) +
pX

k=1

ap(k)�xx(�k)

Equations normales

Ef
p = E[|fp(n)|2]

= �xx(0) + 2R
"

pX

l=1

a⇤p(l)�xx(l)

#
+

pX

k=1

pX

l=1

a⇤p(l)ap(k)�xx(l � k)
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Processus AR vs prédiction linéaire

l Il y a une correspondance entre les coefficients des 2 systèmes 
- si x(n) est un processus AR, les coefficients de prédiction sont les  
- l’erreur minimale du prédicteur est équivalente à la variance         du bruit blanc 

(séquence d’innovation)   
- le filtre de prédiction est en fait l’équivalent du filtre qui génère le bruit blanc à 

partir d’un processus stationnaire AR
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�xx(l) = �
pX

k=1

ap(k)�xx(l � k), l = 1, 2, ..., pEquations normales

Equations de Yule-Walker�xx(m) =

8
<

:

�
Pp

k=1 ak�xx(m� k) m > 0
�

Pp
k=1 ak�xx(m� k) + �2

w m = 0
�⇤xx(�m) m < 0

{ak}
�2

w
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l Les équations normales augmentées prennent la forme 
- avec 

l Solution par des méthodes récursives, comme l’algorithme de 
Levinson-Durbin (ou l’algorithme de Schur)

�xx(l) = �
pX

k=1

ap(k)�xx(l � k), l = 1, 2, ..., p

Ef
p = �xx(0) +

pX

k=1

ap(k)�xx(�k)

pX

k=0

ap(k)�xx(l � k) =
⇢

Ef
p , l = 0

0, l = 1, 2, .., p}
ap(0) = 1

Solutions des équations normales
174

Matrice Toeplitz!

LD: am(k) = am�1(k) + am(m)a⇤m�1(m� k), k = 1, 2, ..,m� 1 m = 1, 2, .., p

avec

�p =

2

66664

�xx(0) �⇤xx(1) ... �⇤xx(p)
�xx(1) �xx(0) ... �⇤xx(p� 1)

.

.
�xx(p) �xx(p� 1) ... �xx(0)

3

77775

�pap = ep
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Levinson-Durbin
l Algorithme efficace pour résoudre les équations normales, en 

utilisant les propriétés de la matrice       qui est Toeplitz 
l En combinant les équations normales, on peut écrire 

l On établit une relation de récurrence, en calculant la solution pour 
un filtre d’ordre i, à partir de celle pour un filtre d’ordre (i-1)
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�p

2

66664

�xx(0) �xx(1) ... �xx(p)
�xx(1) �xx(0) ... �xx(p� 1)

. . ... .

. . ... .
�xx(p) �xx(p� 1) ... �xx(0)

3

77775

2

66664

1
�ap(1)

.

.
�ap(p)

3

77775
=

2

66664

Ef
p

0
.
.
0

3

77775

ap ep�p

Signes de coefficients inversés par rapport aux relations précédentes - sans perte de généralité
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Récurrence dans Levinson-Durbin
l Solution pour le filtre d’ordre (i-1) 

l On peut augmenter le système 

- avec
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2

66664

�xx(0) �xx(1) ... �xx(i� 1)
�xx(1) �xx(0) ... �xx(i� 2)

. . ... .

. . ... .
�xx(i� 1) �xx(i� 2) ... �xx(0)

3

77775

2

66664

1
�ai�1(1)

.

.
�ai�1(i� 1)

3

77775
=

2

66664

Ef
i�1
0
.
.
0

3

77775

�i�1 = �xx(i)�
i�1X

k=1

ai�1(k)�xx(i� k)

2

6666664

�xx(0) �xx(1) ... �xx(i)
�xx(1) �xx(0) ... �xx(i� 1)

. . ... .

. . ... .

. . ... .
�xx(i) �xx(i� 1) ... �xx(0)

3

7777775

2

6666664

1
�ai�1(1)

.

.
�ai�1(i� 1)

0

3

7777775
=

2

6666664

Ef
i�1
0
.
.
0

�i�1

3

7777775
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�pap = ep

�pap = ep

Astuce...
l La dernière relation n’est pas sous la forme idéale 
l Mais, grâce aux propriétés Toeplitz, on peut écrire 

l En combinant les 2 dernières relations, on se rapproche de 
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2

6666664

�xx(0) �xx(1) ... �xx(i)
�xx(1) �xx(0) ... �xx(i� 1)

. . ... .

. . ... .

. . ... .
�xx(i) �xx(i� 1) ... �xx(0)

3

7777775

2

6666664

0
�ai�1(i� 1)

.

.
�ai�1(1)

1

3

7777775
=

2

6666664

�i�1

0
.
.
0

Ef
i�1

3

7777775

�i

2

6666664

2

6666664

1
�ai�1(1)

.

.
�ai�1(i� 1)

0

3

7777775
� ki

2

6666664

0
�ai�1(i� 1)

.

.
�ai�1(1)

1

3

7777775

3

7777775
=

2

6666664

2

6666664

Ef
i�1
0
.
.
0

�i�1

3

7777775
� ki

2

6666664

�i�1

0
.
.
0

Ef
i�1

3

7777775

3

7777775
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Ef
i = Ef

i�1 � ki�i�1 = Ef
i�1(1� k2

i )

Finalement
l Pour obtenir une forme                      il ne faut qu’une seule valeur 

non nulle dans le terme de droite, donc: 

l Avec ce choix, le vecteur de coefficients pour le filtre d’ordre i 
devient 

l On obtient donc les relations de récurrence suivantes
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ki =
�i�1

Ef
i�1

=
�xx(i)�

Pi�1
k=1 ai�1(k)�xx(i� k)

Ef
i�1

2

6666664

1
�ai(1)

.

.
�ai(i� 1)
�ai(i)

3

7777775
=

2

6666664

2

6666664

1
�ai�1(1)

.

.
�ai�1(i� 1)

0

3

7777775
� ki

2

6666664

0
�ai�1(i� 1)

.

.
�ai�1(1)

1

3

7777775

3

7777775

ai(i) = kiet

�pap = ep

ai(j) = ai�1(j)� kiai�1(i� j), j = 1, 2, ..., i� 1



Traitement des signaux, automne 2021 
Prof. Jean-Philippe Thiran  

Prof. Pascal Frossard

ki =
�xx(i)�

Pi�1
k=1 ai�1(k)�xx(i� k)

Ef
i�1

ai(i) = ki

if i > 1 then for j = 1, 2, .., i� 1

Ef
i = (1� k2

i )Ef
i�1

end

For i = 1, 2, ...p

a(j) = ap(j) j = 1, 2, ..,M

L’algorithme de Levinson-Durbin
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Ef
0 = �xx(0)

end

ai(j) = ai�1(j)� kiai�1(i� j)

VideoDSP2.15-end
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Filtrage de signaux bruités

l But: retrouver le signal d dans le signal bruité: 
l Méthode: construire un filtre linéaire h tel que sa sortie y soit aussi 

proche que possible de d 
- Filtrage:  
- Prédiction: 
- Erreur:  

l Hypothèses: s, w et d sont stationnaires au sens large et à 
moyenne nulle.
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Figure de [1].

e(n) = d(n)� y(n)

x(n) = s(n) + w(n)

d(n) = s(n)
d(n) = s(n + D), D > 0

VideoDSP2.16-start
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x(n) y(n)

Estimation linéaire

l L’estimation linéaire à partir de x peut être représentée par un 
filtre linéaire qui agit sur le signal x 

- les échantillons de la réponse impulsionnelle représentent les coefficients de 
l’estimateur linéaire 

l L’erreur d’estimation est donnée par 

- on cherche généralement à minimiser l’erreur quadratique moyenne 
- filtrage optimal obtenu par les filtres de Wiener (RIF, RII)
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Système linéaire

E[|e(n)|2]

y(n) =
NX

k=0

h(k)x(n� k)

e(n) = d(n)� y(n)
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l Estimation linéaire de y en fonction de x: 
l L’erreur quadratique est: 
l L’erreur est minimale quand

e = E[(d� (Ax + B))2]

E[(d� y)x] = 0) E[dx] = E[yx]

MMSE = E[e2(n)]
= E[e(n)(d⇤(n)� y⇤(n))]
= E[e(n)d⇤(n)]

Principe d’orthogonalité
182

principe d’orthogonalité

a2x(2)

a1x(1)
l L’interprétation géométrique 

l L’erreur e(n) est minimale lorsque le 
vecteur est perpendiculaire au plan 
des données x(n)

y = Ax + B

@e

@A
= E[2(d� (Ax + B))(�x)] = 0) E[(d� (Ax + B))x] = 0

d(n)

y(n)
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Equations de Wiener-Hopf
l Si la longueur du filtre linéaire est limitée à M, la sortie du filtre est 

l L’erreur quadratique moyenne s’écrit alors 

l L’erreur minimale (au sens de l’erreur quadratique moyenne 
minimale) est orthogonale au signal, 

l La minimisation de l’erreur quadratique conduit à un système 
d’équations  

- Ce sont les équations de Wiener-Hopf, ou équations normales
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y(n) =
M�1�

k=0

h(k)x(n� k)

E = E[|e(n)|2] = E

⇥

⌅
�����d(n)�

M�1⌃

k=0

h(k)x(n� k)

�����

2
⇤

⇧

M�1�

k=0

h(k)�xx(l � k) = �dx(l), l = 0, 1, ...,M � 1.

E[(d� y)x] = 0
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l Lorsque le filtre a une longueur M, on peut ré-écrire les équations 
comme 

- avec         une matrice Toeplitz où 
l Le filtre (de Wiener) optimum est donc donné par 

l L’erreur minimale est donnée par 

l Solutions par méthodes exploitant les propriétés de symétrie de la 
matrice (Toeplitz) de corrélation (Levinson-Durbin)

�MhM = �d

Filtres de Wiener RIF
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�M �lk = �xx(l � k)

hopt = ��1
M �d

MMSEM = min
hM

EM = ⇥2
d �

M�1�

k=0

hopt(k)�⇥dx(k) = ⇥2
d � �⇥td ��1

M �d

MMSE = E[e(n)d�(n)]
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Filtrage et prédiction par Wiener
l En pratique, le bruit et le signal sont généralement non corrélés 

l Filtrage:  
- si le signal et le bruit sont non corrélés: 

- les équations normales deviennent alors 

l Prédiction:  
- si le signal et le bruit sont non corrélés: 
- on a donc
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d(n) = s(n)

�xx(k) = �ss(k) + �ww(k)

�dx(k) = �ss(k)

M�1�

k=0

h(k)[�ss(l � k) + �ww(l � k)] = �ss(l), l = 0, 1, ...,M � 1.

�dx(k) = �ss(k + D)

M�1�

k=0

h(k)(�ss(l � k) + �ww(l � k)) = �ss(l + D), l = 0, 1, ...,M � 1.

d(n) = s(n + D), D > 0
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Exemple 10: filtrage RIF
l Considérons un signal                                 où                                           et            et            sont 

des bruits blancs de variance                 et             respectivement. On veut un filtre de Wiener de 
longueur              pour estimer           .  

- Comme            est en fait la sortie d’un filtre à un pôle, excité par un bruit blanc, on a la DSP 

- On a donc les équations de Wiener-Hopf 

- Les coefficients du filtre sont donc                        et 
- L’erreur quadratique (minimum) est donc     
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x(n) = s(n) + w(n) s(n) = 0.6s(n� 1) + v(n) {v(n)} {w(n)}
�2

v = 0.64 �2
w = 1

M = 2 {s(n)}

{s(n)}

�ss(f) = ⇤2
v |H(f)|2 =

0.64
|1� 0.6e�j2�f |2 =

0.64
1.36� 1.2 cos 2⇥f

⇥ �ss(m) = (0.6)|m|

2 h(0) + 0.6 h(1) = 1
0.6 h(0) + 2 h(1) = 0.6

h(0) = 0.451 h(1) = 0.165

MMSE2 = 1� h(0)�ss(0)� h(1)�ss(1) = 0.45
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Filtres de Wiener RII
l On peut avoir un filtre de Wiener à réponse impulsionnelle infinie 

l Il faut trouver les coefficients qui minimisent l’erreur quadratique 

- Ce qui donne les équations de Wiener-Hopf 

- Et l’erreur minimale suivante 

l Par contre, on ne peut pas résoudre les équations directement par 
la transformée en z (les équations ne sont définies que pour        )
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y(n) =
��

k=0

h(k)x(n� k)

E� = E[|e(n)|2] = E

⇥

⌅
�����d(n)�

�⌃

k=0

h(k)x(n� k)

�����

2
⇤

⇧

��

k=0

h(k)�xx(l � k) = �dx(l), l ⇥ 0.

MMSE⇥ = min
hM

E⇥ = ⇥2
d �

⇥�

k=0

hopt(k)��dx(k)

l � 0
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Calcul du filtre de Wiener RII
l On peut utiliser un processus d’innovation  

l Le filtre de Wiener peut alors être représenté par la mise en 
cascade d’un filtre 1/G(z), et d’un filtre Q(z) 

l Les équations de Wiener-Hopf deviennent 

l Puisque          est un bruit blanc, on a                     sauf si 
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�xx(z) = �2
i G(z)G(z�1)

{i(n)}

y(n) =
��

k=0

q(k)i(n� k)

��

k=0

q(k)�ii(l � k) = �di(l), l ⇥ 0.

{i(n)}

q(l) =
�di(l)
�ii(0)

=
�di(l)
⇥2

i

, l � 0

�ii(l � k) = 0 l = k

1/G(z) Q(z)
x(n) i(n) y(n)

Filtre de Wiener, H(z)
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Calcul du filtre de Wiener RII (2)

l On pose 
l On a donc 

l Et finalement:

189

Q(z) =
⇥�

k=0

q(k)z�k =
1
⇥2

i

⇥�

k=0

�di(k)z�k =
1
⇥2

i

[�di(z)]+

1/G(z) � V (z) =
⇥�

k=0

v(k)z�k

�di(z) =
⇤⇤

k=�⇤
�di(k)z�k =

⇤⇤

k=�⇤
E[d(n)i⇥(n� k)]z�k

=
⇤⇤

k=�⇤

� ⇤⇤

m=0

v(m)E[d(n)x⇥(n�m� k)]

⇥
z�k =

⇤⇤

k=�⇤

� ⇤⇤

m=0

v(m)�dx(k + m)

⇥
z�k

=
⇤⇤

m=0

v(m)
⇤⇤

k=�⇤
�dx(k + m)z�k =

⇤⇤

m=0

v(m)zm
⇤⇤

k=�⇤
�dx(k)z�k

(2)
�di(z) = V (z�1)�dx(z) =

�dx(z)
G(z�1)

Hopt(z) =
Q(z)
G(z)

=
1

�2
i G(z)

�
�dx(z)
G(z�1)

⇥

+
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Exemple 11: filtrage RII
l Considérons un signal                                 où                                           et            et            sont 

des bruits blancs de variance                 et             respectivement. On veut un filtre de Wiener RII        
pour estimer           .  

- On factorise d’abord la DSP 

- D’où 
- Ensuite 

- Et 

- Finalement
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x(n) = s(n) + w(n) s(n) = 0.6s(n� 1) + v(n) {v(n)} {w(n)}
�2

v = 0.64 �2
w = 1

{s(n)}

�xx(z) = �ss(z) + 1 =
1.8(1� 1/3z�1)(1� 1/3z))

(1� 0.6z�1)(1� 0.6z)

�2
i = 1.8 G(z) =

1� 1/3z�1

1� 0.6z�1
et

�dx(z) = �ss(z) =
0.64

(1� 0.6z�1)(1� 0.6z)

�
�dx(z)
G(z�1)

⇥

+

=
�

0.64
(1� 0.6z�1)(1� 1/3z)

⇥

+

=
�

0.8
1� 0.6z�1

+
0.266z

1� 1/3z

⇥

+

=
0.8

1� 0.6z�1

Hopt(z) =
1

1.8
1� 0.6z�1

1� 1/3z�1

0.8
1� 0.6z�1

=
4/9

1� 1/3z�1
hopt(n) =

4
9

�
1
3

⇥n

, n � 0ou
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Demo
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Résumé
l Estimation et prédiction linéaires peuvent être réalisées par 

filtrage 

l Processus stationnaires particuliers: AR, MA, ARMA 
- Génération par filtrage de bruit blanc 

l Prédiction linéaire optimale en résolvant les équations normales 

l Les filtres de Wiener RIF ou RII sont optimaux pour l’estimation 
au sens de l’erreur quadratique moyenne 
- nécessitent la connaissance de fonctions d’auto/inter-corrélation 
- généralisation aux systèmes dynamiques: filtres de Kalman
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