
ICT-Labs:

Quadrature Amplitude Modulation

Andreas Burg
Joachim Tapparel

Telecommunications Circuits Laboratory, EPFL

2025



Wireless communication is enabled by electromagnetic fields

• Rapidly alternate the field in one place (TX)

• Waves propagate through the medium and can be sensed in another place (RX)

Radio frequency (RF) communications rely on a high frequency that propagates in the EM field.
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Modulation and Demodulation

▪ Modulation: Alter properties of a radio frequency signal (carrier) according to the signal or information we would 

like to send

▪ Demodulation: Detect changes in the carrier and translate them back into the corresponding signal or information
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We distinguish between Analog and Digital modulation: 

▪ Analog: a continuous analog signal that directly modulates the carrier

▪ Digital: a sampled digital (discrete) signal comprising 0s and 1s that modulate the carrier
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Linear modulation modulates the phase and the amplitude of the carrier

𝑢 𝑡 = 𝐴 ∙ 𝑐𝑜𝑠 2𝜋 ∙ 𝑓0 ∙ 𝑡 + 𝜑

𝜑, 𝐴: Phase and amplitude selected based on data

• Since we can modulate both phase and amplitude as two properties to modulate independently, we 

have two different “channels” in one carrier

6

Modulation
Phase 𝜑

Amplitude 𝐴
010010
101001



▪ Phase and amplitude are two very different properties

▪ Modulating them with two different signals or bits is very inconvenient and asymmetric (different properties)

With some mathematical transformation, we can write 

▪ the phase and amplitude modulated carrier

𝑢 𝑡 = 𝐴 ∙ 𝑐𝑜𝑠 2𝜋 ∙ 𝑓0 ∙ 𝑡 + 𝜑

▪ as the sum of two 90 degree-out-of-phase independently amplitude modulated carriers:

𝑢 𝑡 = 𝐴𝐼 ∙ 𝑐𝑜𝑠 2𝜋 ∙ 𝑓0 ∙ 𝑡 + 𝐴𝑄 ∙ 𝑠𝑖𝑛 2𝜋 ∙ 𝑓0 ∙ 𝑡

𝐴𝐼, 𝐴𝑄 : “In-phase” and “quadrature” components
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The QAM modulator can be realized in a very straightforward manner

𝑢 𝑡 = 𝐴𝐼 ∙ 𝑐𝑜𝑠 2𝜋 ∙ 𝑓0 ∙ 𝑡 + 𝐴𝑄 ∙ 𝑠𝑖𝑛 2𝜋 ∙ 𝑓0 ∙ 𝑡
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Quadrature and in-phase components of the QAM signal 

𝑢 𝑡 = 𝐴𝐼 ∙ 𝑐𝑜𝑠 2𝜋 ∙ 𝑓0 ∙ 𝑡 + 𝐴𝑄 ∙ 𝑠𝑖𝑛 2𝜋 ∙ 𝑓0 ∙ 𝑡

𝐴𝐼, 𝐴𝑄 : “In-phase” and “quadrature” components 

can also be represented by a complex number

𝑈 = 𝐴𝐼 + 𝑗 ∙ 𝐴𝑄
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Every point in the plane represents a specific combination of in-phase and quadrature data

Constellations are sets of points 

on the complex plane

• Each point represents a 

unique combination of 𝐴𝐼, 𝐴𝑄

• Each point carries a label that 

represents a specific combination 

of bits
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A digital signal is composed of a discrete succession of values (constellation points)

To modulate the continuous carrier, the discrete-time sequence needs to be converted to a continuous time signal 

with sampling time 𝑻𝒔 (baud rate = 1/𝑻𝒔)
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▪ Look at the in-phase and quadrature signals independently

A discrete time signal is an abstract concept with no physical counterpart, 

BUT we can think of a discrete time signal as a series of Dirac pulses

Even if we could generate Dirac pulses, there would be two problems:

▪ Pulses are infinitely short

▪ Signal occupies an infinite bandwidth
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To limit the bandwidth of the train of Dirac pulses 

apply a filter with the desired bandwidth

The filter that defines the spectrum is called the pulse shape filter

▪ Fourier transform of the filter impulse response defines the spectrum of the signal after the filter.
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The pulse shape duration is typically longer than a symbol period

Subsequent pulses overlap: we observe only the sum of the subsequent modulated pulse shape
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To be able to distinguish the individual symbols we use a pulse shape that has a zero every period 𝑻𝒔
▪ The pulse shape fulfills the Nyquist ISI criterion
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To be able to distinguish the individual symbols we use a pulse shape that has a zero every period 𝑻𝒔
▪ The pulse shape fulfills the Nyquist ISI criterion
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One family of filters respecting the Nyquist criterion is called Raised cosine

• These filter have a parameter called rolloff factor, which offers a tradeoff between the bandwidth used and the 

importance of the sampling time precision.
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Observing a signal exactly at k ∙ 𝑻𝒔 is often very hard. 

We are interested in how the signal looks around k ∙ 𝑻𝒔
▪ How big is the time window in which we see almost no interference?

▪ How big is the interference with a small time offset?

The eye diagram looks at a long period of randomly chosen symbols and plots them on top of each other

Elementary pulse Eye diagram
Random pulse 

sequence
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The opening of the eye indicates the robustness of the signal

▪ Vertical opening of the eye: indicates the tolerance to offsets in the value (noise) at a given time offset

▪ Horizontal opening of the eye: indicates the tolerance to a time offset at a given value offset/threshold



With QAM signals, we can also plot a 2D eye diagram by plotting in-phase and quadrature components of 

the signal on the real and imaginary axes of the complex plane
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