=Pr-L

D

EcoCloud

L ABURATORY

Lab. On HW-SW Digital Systems Codesign

EE-390(a)

Session 8
Dynamic job scheduling across multiple accelerators

Prof. David Atienza
Dr. Denisa Constantinescu, Dr. Miguel Pedn-Quirds
Mr. Rubén Rodriguez-Alvarez, Ms. Stasa Kostic, Mr. Karan Pathak

PFL Session objectives

= Problem definition: genome sequence alignment

= SW implementation with OpenMP

= Basic HW implementation

= HW implementation with caching of sequences

= Improving performance with replication of the HW module

= Improving performance with configurable numbers of workers

Problem definition

—Genomic sequence alignment

EPFL Genomic sequence alignment

&

= |n bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA,
or protein to identify regions of similarity that may be a consequence of functional,
structural, or evolutionary relationships between the sequences.?

" [n essence, we have two sets of strings and we want to compare them, finding out how
many edits are required to transform one sequence into the other

= The problem can be solved using dynamic programming, i.e., creating a table

= |f we have n entries in the database file, and m entries in the file for the specimen under
study, we want to match n x m strings

Worker

1 Wikipedia. Sequence alignment. https://en.wikipedia.org/wiki/Sequence_alignment

on

' SW Implementat

—Using OpenMP

EPFL SW implementation with OpenMP

= The SW implementation reads all the lines of the DB and the specimen in memory
= Building auxiliary vectors with the length of each string

= Then, each sequence from the DB is compared against all the specimen sequences

= OpenMP is a C-library that allows the programmer to easily use multiple threads
= |tis based in compiler pragmas
= |nternally, it creates and destroys threads as necessary
= |n this case, we need to compute the split point in the vectors

es / NUM THRERDS;

EPFL SW implementation with OpenMP

= The SW implementation reads all the lines of the DB and the specimen in memory
= Building auxiliary vectors with the length of each string

= Then, each sequence from the DB is compared against all the specimen sequences

= OpenMP is a C-library that allows the programmer to easily use multiple threads
= |tis based in compiler pragmas
= |nternally, it creates and destroys threads as necessary
= |n this case, we need to compute the split point in the vectors

1

1
1:
1:
1
1:
1:
1
1

nDBEntries / NUM THRERDS;

Time Performance
(s) (comps/s)

321.7 124 333

00_SW (OpenMP)

HW Implementation
—Copying the SW as a HW specification in Vitis HLS

rect HW implementation

lengthsSpecimen,

return

tableMax <- Max score
/ Matrix M

ndex M[1] corresp
n the examples, i

hsDB, pSpec, *pLengthsSpec):

WM NN

W oW
[E==Rr

M is stored inside the FPGA
as a BRAM or registers

T
T
g
-
T
g

return comparisons;

Time Performance 0 <= lengthA; i) // <= because we are adding a 0 on the top and the left
(s) (comps/s)

00_SW (OpenMP) 321.7 124 333 D i el dengihmr 4T 1) (/) Uae e becanse we have in M one extra zero on the top and the left.

01_Basic_HW 5192.0 7 705

(top > left ? top : lefr):
if (max <
if (max > tableMax)

T A and B are accessed directly
) from the external DRAM

= max;

= Why do we get such a huge reduction in performance?
= The HW accesses every character of the strings from DRAM

return tableMax;

= How can we improve the design?

=PFL Direct HW implementation with sequence caching

&

= Exercise: Modify the HW description to copy each sequence in an internal buffer

= Call CalcScore() using the internal buffers
= Copy one DB sequence and keep it in the buffer while comparing against all the specimen sequences

= Then, repeat for each DB sequence

Time Performance
(s) (comps/s)

00_SW (OpenMP) 321.7 124 333
01_Basic_HW 5192.0 7 705
03_Cachelines 379.6 105 362

= \WWe obtain a significant improvement in performance,
= but we are still slower than the SW version

= How can we improve performance even more?

10

lon

Icat

"~ HW module repl

i
v
11
r

HW modaule replication

= After replication, we obtain a system design like this:

rst_ps7_0_100M

ext_reset_in
aux_reset_in

dem_locked

slowest_sync_clk mb_reset

bus_struct_reset[0:0]
peripheral_reset[0:0]

[
mb_debug_sys_rst interconnect_aresetn[0:0]
[

peripheral_aresetn[0:0]

Processor System Reset

ps7_0_axi_periph

H+ s00_AxI

ACLK

ARESETN

S00_ACLK
S00_ARESETN

MO0 ACLK
MOO_ARESETN
MO1_ACLK L bl |
MO1_ARESETN H-—HN
MO2_ACLK Ay
MO2_ARESETN
MO3_ACLK
MO3_ARESETN
M04_ACLK
MO4_ARESETN
MO5_ACLK
MO5_ARESETN

MOO_AXI
MO1_AXI
MO2_AXI
MO3_AXI
MO4_AXI
MO5_AXI

AXI Interconnect

SegMatcher HW 4

- s axi_control

m_axi_masterPort -+

ap_clk

—0 ap_rst_n

interrupt (

SegMatcher_HW (Pre-Production)
SegMatcher HW 5

I s_axi_control | vitis™ HLS

m_axi_masterPort -+

ap_clk

interrupt
b—a ap_rst n

SegMatcher_HW (Pre-Production)
SegMatcher HW_2

-i|4 s_axi_control | Vitis™ HLS

m_axi_masterPort -+

|+ S_Axi_HPO_FIFO_CTRL

processing_system7_0

DDR + ||===t={"» DDR
FIXED_IO + |||j==g=={> FIXED_IO

+ S_AXI_HPO
o \ S USBIND 0 +|||
M_AXI_GPO_ACLK - !

o . M_AXI_GPO - |} e
S_AXI_HPO_ACLK ZYNQ ik CLK: :

IRQ_F2P[0:0
Q_F2PL0:0] FCLK_RESETO_N

ZYNQ7Y Processing System

axi_mem_intercon

+ S00_AXI

+ o+ttt

ap_clk

- interrupt
p—-=0 ap_rst_n

SegMatcher_ HW (Pre-Production)

502_AXI
S03_AXI
504_AXI
505_AXI
ACLK

pei:| - S01_AXI
L
+
L
+
L
+
L
+

ARESETN

SegMatcher_ HW_3

500_ACLK

|4 s_axi_control | Vitis™ HLS

ap_clk

interrupt
p-—=0 ap_rst_n

SegMatcher_ HW (Pre-Production)

m_axi_masterPort - | e

SO0_ARESETN m o
MOO_ACLK
MOO_ARESETN
SO1_ACLK
SO1_ARESETN
S02_ACLK
S02_ARESETN

xlconcat_1

1n0[0:0]

In1[0:0]

In2[0:0]

In3[0:0]

In4[0:0]

In5[0:0]

Concat

dout{5:0]

SegMatcher HW_0

“:|+ s_axi_control | viis™ HLS

503_ACLK
S03_ARESETN
504_ACLK
504_ARESETN

m_ax_masterPort +

ap_clk

S05_ACLK

b—a ap_rst n

interrupt (

SegMatcher_HW (Pre-Production)
SegMatcher HW_1

I s_axi_control | vitis™ HLS

S05_ARESETN

AXI Interconnect

m_axi_masterPort -+

ap_clk
interrupt

b——g ap_rst n

SegMatcher_HW (Pre-Production)

util_reduced_logic_0

H 0pl(5:0] 3— Res F

Utility Reduced Logic

xlconcat 0

H In0[0:0] dout{0:0] F

Concat

H—=N Mo0_AXI + i

= This design introduces many
complications

= We need to replicate and
connect all the modules

= |f using interrupts, decide
how to connect them

= The SW has to interact with

each module independently!

12

SW interaction with each HW module

= We need to configure each HW module independently
CSegMatcherDriver segMatchers[NUM MODULES];

=1 &

Size of address r
[WUM _MODULES] = 00

RN]

w

indexScores =

- - . rti omparisons [F
&scores, bool log=t) .
uin ax ize = MAX S

n"):
2 & startCPUTime) ;
W, &start):

NUM MCDULES:; ++ iModul
maxBat

use by the device. We receive addresses in
HW Start (bat
¥ sizeof (1
sizeof (sc

Compute offset in DE sequences, sSince sequences have variable length
S — ; i S . . i . e uint32_t ii = s
eqsDi) ci . q
{ (ié?s B L 1 NULL)) ngEn =R / HEsR offsetDB +
prin N .

return £

ize; ++ ii)

[iModule])
_t)=segsDB);

1= t

32_t)scores, (uint3Z_t)scores);

return numComparisons;

on with each HW module

SW interact

gMatcherDriw H Mate HW 5 pim numD] ie uint32_t numSegsSpecimen,
seqsDB, X * i t32 t offsetSpec,

HH e
Wb o

o
ERT

[x1]

uint32 t CSegMatcherDriver:

@ -

[I SR R N N R R N
J Mt e WO W

[as]

w

volatile

nt3d_

We need to obtain th i of the wirtual addresses passed by the application.
The accelerat 1 t 1 addresses (and onl contiguouns memory) .

[as]

[xs]

(=]
=1 & o L B

[as]

status
usleep (1000);
while (((status & 2Z) 2y s A 1 1 ap done==1

32_t)seqsDB);

(=]
[ws]

OUND:

[as]

[Ta)
= O oD

GetDMAP calhddr (segsSpecime
ysSpecimen == 0)

[¥a)

32_t)segsSpecimen) ;

[Ta)

numComparisons = regs—->r

[fa)
s Lo B

return CK;

_Tt)lengthssSp

Why do we need to split the
) scores) ; start and stop actions?

»seqsDB

What other possibilities are there? For example,
e ienginespecinen: using a device driver and multiple threads.

return OK;

Worker replication
—With HLS tasks and streams

=PrL

System structure with split/merge streams and task
workers

Split Merge
Stream [Stream
—>|:|——>| Worker 1 |—->|:|—>
Reader Stream Stream Writer
—>|:|——>| Worker 2 |—->|:|—>
([(] ([
o (o
o ([o
Stream Stream
— > Workern [F—
\ J
DB Specimen Scores
(x 40 000) (x 1 000) (x 40 000 000)

16

A S T T) Y) N Y
[Wall s

b= O

(S o A T 0 T = ¥

PFL Use of HLS tasks and streams

= A task is a function that is executed infinitely 2 HW module that processes an input as soon as it’s available
= Represented with hls::task
= No explicit calls to the function
= Can only read streams, not AXI ports!

= Streams provide read() and write() methods through hls::stream<T>

= |[n SW, equivalent to a thread executing a function, with input and output channels or FIFOs

evens_buf outl

s1
@ odds_buf out2

Sz ot D,

vold odds and evens(hls::stream<int> &in, hls::stream<int> &outl,
El hls::stream<int> &out2) {
hls thread local hls::stream<int> sl1; // channel connecting tl and t2
hls thread local hls::stream<int> s52; // channel connecting tl and t3
// tl infinitely runs function spliffer., with input in and outputs sl and s2

hls_thread loca&fls::task tl(splitter, in, w

// t2 infinitely runs IUNCEINmmEmE—mrtt—WETT 51 and output outl

hls thread locadCnls::task t2(odds, sl, outl); —
// t3 infinitely runs fupncllOn SveR= N ipput 52 and output out2

hls thread locadhls::task t3(evens, s2, out2); >
-}

=

(R L]

(LS

O] dE WP oW1

-}

Useful when not interacting with SW, no explicit start/stop conditions, just flow of data

#include "test.h"

vold splitter(hls::stream<int> &in, hls::stream<int> &odds buf,
= hls::stream<int> &evens buf) {
int data = in.read();
if (data % == 0)
evens buf.write(data);
else
odds buf.write(data);
'}

Hvoid odds(hls::stream<int> &in, hls::stream<int> &out) {
out.write(in.read() + 1);
'}

Hvoid evens (hls::stream<int> &in, hls::stream<int> &out) {
out.write(in.read() + 2);

17

The HLS dataflow pragma

= The dataflow pragma defines a region in which functions and loops can overlap in their operation

This creates potential for higher parallelism

Operations in a loop or in a function can start before the previous loop or function has finished
Creating a task-level pipeline architecture of concurrent processes

Multiple sequential functions can be started simultaneously

HLS generates channels (e.g., FIFOs) that decouple the producers and consumers

Inside a dataflow region: only variable declarations and function calis!!!

. B A1 [F:I
EEN Y 0 |_ | |_ | I::I
0, c [| 1 | | With DATAFLOW optimization,
C I I I HLS can pipeline multiple
0 function invocations
A(I, 0,, 0,);
B(O;, Xy); E.g., process 3 independent images, each
C(0,, X,); one analyzed row-by-row. The functions can
D(Xy, X5 Z); be pipelined by rows for each image

Let’s assume that the
complete process is
invoked 3 times

18

EPFL The HLS split and merge classes

= Allow splitting and merging of jobs between multiple workers
= They work like streams that create one-to-many and many-to-one connections

= The split class has one input and multiple outputs
= |t distributes elements from its input towards its outputs, using round robin or load balancing

= The merge class has multiple inputs and one output

= |t reads elements from its inputs using round robin or load balancing, and sends all of them thru its
output

= The specification of the split/merge channels is:
* hls::split::round robin<DATATYPE, NUM PORTS[, DEPTH]> name

= hls::split::load_balancing<DATATYPE, NUM_PORTS[, DEPTH, N_PORT_DEPTH]> name;
= hls::merge::round robin<DATATYPE, NUM PORTS[, DEPTH]> name
* hls::merge::load _balancing<DATATYPE, NUM_PORTS[, DEPTH]> name
= With dataflow, we can create:
= One module to read sequences and send pairs to the workers
= Multiple workers that receive two sequences each, and produce an output score

= One module to receive the scores of the workers and write them back to the main memory

19

PFL Putting everything together

= Define a data type to pass information through the channels

= Modify the worker definition to use channels

The number of workers is configurable

20

Putting everything together

TPathMatrix M:
i Max:

datalut:;

segsDB, char
scores)

return

output.write (datadut) ;

I T Y U R A =]

e
-1 m
I

3 -1 -
= O ownom
0o

[X]

R5> workerInputs; 1 * seqgsDB, C
;ZJT—i_i'.‘CRpER::» workerOutputs; Deflne the sp /merge streams . hls::stream<TData
Declare an array of workers

adInputs (numDBEntries, numSegsSpecimen, seqgsDB, segsSpecimen, lengthsDl lengthsSpecimen, workerInputs.in);

< n: £ {uin ii O0; ii < NUM WOREERS; ++ ii) { . .
orkers gem T S ' One function to read and split data

workers[ii] C [ii],\workerOutputs.in[ii]);

L

83

@

all specimen entries.

} 32_t iSpec ; N . h : v .—— ispec)
) B e _ One function to gather and write outputs emcpy (dataln.B, pSpec, *plengthsSpec):
WriteCutputs (workerQutputs.out, scores, numDBEntries, numSegsSpecimen);

inputStream.write (dataln);
return numDBEntries * numSegsSpecimen;

And a configurable number of
workers to process the data

With this technique, we can configure any number of workers without
modifying the design in Vivado nor the SW that interacts with the accelerator

Analysis of results

= Using the multiple workers, we obtain the following results:

Time Performance
(s) (comps/s)

00_SW (OpenMP) 321.7 124 333
01_Basic_HW 5192.0 7 705
03_CachelLines 379.6 105 362
05_Workers_x2 179.2 223174
05_Workers_x4 90.4 442 441

05_Workers_x8 705 471

05 Workers_x10 734 630
05_Workers_x16 735 597

05 Workers_x24 735727

Why does performance saturate?
= Give four reasons

A) Problem of output bandwidth?
B) Is the split unit too slow as a job scheduler?

C) All the workers share the same input port?
= Replicate a module with 8 workers multiple times?

D) Total memory bandwidth
= BD fileis 851979 B
= Specimen file is 21 366 B
= With line caching, the system reads a total of “850 MiB of data
= Bandwidth is ~100 MHz @ 8-bit = 100 MiB/s
= Check if we perform 8- or 32-bit reads!
= Total reading time is ~8 s, without counting burst starting times

How can we push performance more?
= Last year, the students of final project managed to reach < 1 s!

E) Faster workers?

22

PFL Instructions for the exercise

= To complete the exercise of this session:

= Execute version 00_SW to get familiar with the problem and the execution options
= Generate the scores file and verify its MD5 checksum
= Use the provided Makefile to generate the bitstream for version 01_Basic HW
= Synthesize the design with make bitstream
= Transfer the bitstream and the Linux application to the Pyng board
= Execute the application and verify the correct results (use a reduced input size)
= Analyze and complete version 03 _Basic_Cachelines
= Complete the code of HLS/seqMatcher.cpp following the @TODO comments
= The HW should perform a copy of the strings into an internal buffer and call CalcScore() using those buffers
= Analyze the performance of this version
= Analyze and complete version 05 Workers
= Complete the code of HLS/seqMatcher.cop and HLS/seqMatcher.h
= Complete the configuration of the streams and tasks
= Modify the CalcScore() function to operate on the data received from the streams
= Complete the Read() and Write() functions to use the stream interface
= Analyze the performance of this version
= Experiment with varying numbers of workers 73

-

| Prof Dawd Atlenzé

EPFL—Embedded Systems Laboratory
david.atienza@epfl.ch

	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	Session objectives
	���Problem definition� —Genomic sequence alignment���	
	Genomic sequence alignment
	���SW Implementation� —Using OpenMP��	
	SW implementation with OpenMP
	SW implementation with OpenMP
	���HW Implementation� —Copying the SW as a HW specification in Vitis HLS��	
	Direct HW implementation
	Direct HW implementation with sequence caching
	���HW module replication�	
	HW module replication
	SW interaction with each HW module
	SW interaction with each HW module
	���Worker replication� —With HLS tasks and streams�	
	System structure with split/merge streams and task workers
	Use of HLS tasks and streams
	The HLS dataflow pragma
	The HLS split and merge classes
	Putting everything together
	Putting everything together
	Analysis of results
	Instructions for the exercise
	Prof. David Atienza ��EPFL – Embedded Systems Laboratory�david.atienza@epfl.ch

