
Lab. On HW-SW Digital Systems Codesign
EE-390(a)

Session 8
Dynamic job scheduling across multiple accelerators

Prof. David Atienza
Dr. Denisa Constantinescu, Dr. Miguel Peón-Quirós

Mr. Rubén Rodríguez-Álvarez, Ms. Stasa Kostic, Mr. Karan Pathak

 Problem definition: genome sequence alignment
 SW implementation with OpenMP
 Basic HW implementation
 HW implementation with caching of sequences
 Improving performance with replication of the HW module
 Improving performance with configurable numbers of workers

2

Session objectives

Problem definition
—Genomic sequence alignment

 In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA,
or protein to identify regions of similarity that may be a consequence of functional,
structural, or evolutionary relationships between the sequences.1

 In essence, we have two sets of strings and we want to compare them, finding out how
many edits are required to transform one sequence into the other
 The problem can be solved using dynamic programming, i.e., creating a table
 If we have n entries in the database file, and m entries in the file for the specimen under

study, we want to match n x m strings

4

Genomic sequence alignment

1 Wikipedia. Sequence alignment. https://en.wikipedia.org/wiki/Sequence_alignment

Worker

DB
(x 40 000)

Specimen
(x 1 000)

Scores
(x 40 000 000)

SW Implementation
—Using OpenMP

 The SW implementation reads all the lines of the DB and the specimen in memory
 Building auxiliary vectors with the length of each string

 Then, each sequence from the DB is compared against all the specimen sequences
 OpenMP is a C-library that allows the programmer to easily use multiple threads

 It is based in compiler pragmas
 Internally, it creates and destroys threads as necessary
 In this case, we need to compute the split point in the vectors

6

SW implementation with OpenMP

 The SW implementation reads all the lines of the DB and the specimen in memory
 Building auxiliary vectors with the length of each string

 Then, each sequence from the DB is compared against all the specimen sequences
 OpenMP is a C-library that allows the programmer to easily use multiple threads

 It is based in compiler pragmas
 Internally, it creates and destroys threads as necessary
 In this case, we need to compute the split point in the vectors

7

SW implementation with OpenMP

NAME Time
(s)

Performance
(comps/s)

00_SW (OpenMP) 321.7 124 333

HW Implementation
—Copying the SW as a HW specification in Vitis HLS

 Why do we get such a huge reduction in performance?
 The HW accesses every character of the strings from DRAM

 How can we improve the design?
9

Direct HW implementation

NAME Time
(s)

Performance
(comps/s)

00_SW (OpenMP) 321.7 124 333

01_Basic_HW 5 192.0 7 705

M is stored inside the FPGA
as a BRAM or registers

A and B are accessed directly
from the external DRAM

 Exercise: Modify the HW description to copy each sequence in an internal buffer
 Call CalcScore() using the internal buffers
 Copy one DB sequence and keep it in the buffer while comparing against all the specimen sequences
 Then, repeat for each DB sequence

10

Direct HW implementation with sequence caching

NAME Time
(s)

Performance
(comps/s)

00_SW (OpenMP) 321.7 124 333

01_Basic_HW 5 192.0 7 705

03_CacheLines 379.6 105 362

 We obtain a significant improvement in performance,
 but we are still slower than the SW version

 How can we improve performance even more?

HW module replication

 After replication, we obtain a system design like this:

12

HW module replication

 This design introduces many
complications
 We need to replicate and

connect all the modules
 If using interrupts, decide

how to connect them
 The SW has to interact with

each module independently!

 We need to configure each HW module independently
 CSeqMatcherDriver seqMatchers[NUM_MODULES];

13

SW interaction with each HW module

14

SW interaction with each HW module

Why do we need to split the
start and stop actions?

What other possibilities are there? For example,
using a device driver and multiple threads.

Worker replication
—With HLS tasks and streams

16

System structure with split/merge streams and task
workers

Reader

DB
(x 40 000)

Stream

Stream

Stream

Split
Stream

Stream

Stream

Merge

Worker 1

Worker 2

Worker n

Specimen
(x 1 000)

Scores
(x 40 000 000)

Writer

 A task is a function that is executed infinitely  HW module that processes an input as soon as it’s available
 Represented with hls::task
 No explicit calls to the function
 Can only read streams, not AXI ports!

 Streams provide read() and write() methods through hls::stream<T>

 In SW, equivalent to a thread executing a function, with input and output channels or FIFOs
 Useful when not interacting with SW, no explicit start/stop conditions, just flow of data

17

Use of HLS tasks and streams

evens_buf

odds_buf
splitter

evens()

odds()

out1

out2

in
S1

S2

 The dataflow pragma defines a region in which functions and loops can overlap in their operation
 This creates potential for higher parallelism
 Operations in a loop or in a function can start before the previous loop or function has finished
 Creating a task-level pipeline architecture of concurrent processes
 Multiple sequential functions can be started simultaneously
 HLS generates channels (e.g., FIFOs) that decouple the producers and consumers
 Inside a dataflow region: only variable declarations and function calls!!!

18

The HLS dataflow pragma

A

B

C

DI
O1

O2

X1

X2

Z

A(I, O1, O2);

B(O1, X1);

C(O2, X2);

D(X1, X2, Z);

Let’s assume that the
complete process is
invoked 3 times

With DATAFLOW optimization,
HLS can pipeline multiple

function invocations

E.g., process 3 independent images, each
one analyzed row-by-row. The functions can

be pipelined by rows for each image

 Allow splitting and merging of jobs between multiple workers
 They work like streams that create one-to-many and many-to-one connections
 The split class has one input and multiple outputs

 It distributes elements from its input towards its outputs, using round robin or load balancing

 The merge class has multiple inputs and one output
 It reads elements from its inputs using round robin or load balancing, and sends all of them thru its

output

 The specification of the split/merge channels is:
 hls::split::round_robin<DATATYPE, NUM_PORTS[, DEPTH]> name
 hls::split::load_balancing<DATATYPE, NUM_PORTS[, DEPTH, N_PORT_DEPTH]> name;
 hls::merge::round_robin<DATATYPE, NUM_PORTS[, DEPTH]> name
 hls::merge::load_balancing<DATATYPE, NUM_PORTS[, DEPTH]> name

 With dataflow, we can create:
 One module to read sequences and send pairs to the workers
 Multiple workers that receive two sequences each, and produce an output score
 One module to receive the scores of the workers and write them back to the main memory

19

The HLS split and merge classes

20

Putting everything together

 Define a data type to pass information through the channels
 Modify the worker definition to use channels

The number of workers is configurable

21

Putting everything together

Define the split/merge streams

Declare an array of workers

One function to read and split data

One function to gather and write outputs

And a configurable number of
workers to process the data

With this technique, we can configure any number of workers without
modifying the design in Vivado nor the SW that interacts with the accelerator

 Using the multiple workers, we obtain the following results:

22

Analysis of results

NAME Time
(s)

Performance
(comps/s)

00_SW (OpenMP) 321.7 124 333

01_Basic_HW 5 192.0 7 705

03_CacheLines 379.6 105 362

05_Workers_x2 179.2 223 174

05_Workers_x4 90.4 442 441

05_Workers_x8 56.7 705 471

05_Workers_x10 54.4 734 630

05_Workers_x16 54.4 735 597

05_Workers_x24 54.4 735 727

 Why does performance saturate?
 Give four reasons

 A) Problem of output bandwidth?
 B) Is the split unit too slow as a job scheduler?
 C) All the workers share the same input port?

 Replicate a module with 8 workers multiple times?
 D) Total memory bandwidth

 BD file is 851 979 B
 Specimen file is 21 366 B
 With line caching, the system reads a total of ~850 MiB of data
 Bandwidth is ~100 MHz @ 8-bit = 100 MiB/s

 Check if we perform 8- or 32-bit reads!
 Total reading time is ~8 s, without counting burst starting times

 How can we push performance more?
 Last year, the students of final project managed to reach < 1 s!

 E) Faster workers?

 To complete the exercise of this session:
 Execute version 00_SW to get familiar with the problem and the execution options

 Generate the scores file and verify its MD5 checksum
 Use the provided Makefile to generate the bitstream for version 01_Basic_HW

 Synthesize the design with make bitstream
 Transfer the bitstream and the Linux application to the Pynq board
 Execute the application and verify the correct results (use a reduced input size)

 Analyze and complete version 03_Basic_CacheLines
 Complete the code of HLS/seqMatcher.cpp following the @TODO comments
 The HW should perform a copy of the strings into an internal buffer and call CalcScore() using those buffers
 Analyze the performance of this version

 Analyze and complete version 05_Workers
 Complete the code of HLS/seqMatcher.cpp and HLS/seqMatcher.h

 Complete the configuration of the streams and tasks
 Modify the CalcScore() function to operate on the data received from the streams
 Complete the Read() and Write() functions to use the stream interface

 Analyze the performance of this version
 Experiment with varying numbers of workers 23

Instructions for the exercise

Questions?
Prof. David Atienza

EPFL – Embedded Systems Laboratory
david.atienza@epfl.ch

	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	Session objectives
	���Problem definition� —Genomic sequence alignment���	
	Genomic sequence alignment
	���SW Implementation� —Using OpenMP��	
	SW implementation with OpenMP
	SW implementation with OpenMP
	���HW Implementation� —Copying the SW as a HW specification in Vitis HLS��	
	Direct HW implementation
	Direct HW implementation with sequence caching
	���HW module replication�	
	HW module replication
	SW interaction with each HW module
	SW interaction with each HW module
	���Worker replication� —With HLS tasks and streams�	
	System structure with split/merge streams and task workers
	Use of HLS tasks and streams
	The HLS dataflow pragma
	The HLS split and merge classes
	Putting everything together
	Putting everything together
	Analysis of results
	Instructions for the exercise
	Prof. David Atienza ��EPFL – Embedded Systems Laboratory�david.atienza@epfl.ch

