=Pr-L

D

EcoCloud

L ABURATORY

Lab. On HW-SW Digital Systems Codesign

EE-390(a)

Session 5
Virtual memory, memory for DMA and cache coherence

Prof. David Atienza
Dr. Denisa Constantinescu, Dr. Miguel Pedn-Quiros,
Mr. Rubén Rodriguez-Alvarez, Ms. Stasa Kostic, Mr. Karan Pathak

= Previous class: memory management & optimizations
- Programmable Logic (accelerator) point of view

= This class: memory management & optimizations
—> Processing System (processor & OS) point of view

=PrL
Virtual
Memory (VM)
and address
space
protection
‘ Virtualization ‘
Accessing
peripheral
registers with

MMIO from the
address space of
a user-level Linux

application

Allocate memory
suitable for Direct
Memory Access
(DMA) by
peripherals

Session objectives

Methods to
maintain
cache
coherence in
the Zynq
FPGAs

‘ Hierarchies ‘

Memory coherence

* Between the
accelerator accessing
the DDR and the
processors using a
cache

Physical memory map of the Zyng 7000

<

System main
memory for use by
> OS and applications

Mapping of peripherals
from the PS side

FFFC_0000 to FFFF_FFFF (2

CPUs and Other Bus
Address Range ACP AXI_HP Masters(l) Notes
OCM OCM OCM Address not filtered by SCU and OCM is
mapped low
DDR OCM OCM Address filtered by SCU and OCM is
mapped low
0000 _0000to 0003 FFFF(2)
Address filtered by SCU and OCM is not
DDR
mapped low
Address not filtered by SCU and OCM is
not mapped low
DDR Address filtered by SCU
0004 0000 to G007 FFFF
- - Address not filtered by SCU
DDR DDR DDR Address filtered by SCU
0008 0000 to OO0F FFFF
- - DDR DDR Address not filtered by SCU(3)
0010 0000 to 3FFF_FFFF DDR DDR DDR | Accessible to all interconnect masters__—>
. General Purpose Port #0 to the PL,
4000 0000 to 7FFF_FFFF PL PL M AXI GPO
o General Purpose Port #1 to the PL,
8000 0000 to BEFF_FFFF PL PL M AXI GP1
EQ00_0000 to EO2F FFFF IOP IOP I/O Peripheral registers, see Table 4-6
E100 0000 to ESFF_FFFF SMC SMC SMC Memories, see Table 4-5
FB00 0000 to F800_ OBFF SLCR SLCR SLCR registers, see Table 4-3
FB00 1000 to F880 FFFF PS PS PS System registers, see Table 4-7
F890 0000 to FBF0_ 2FFF CpPU CPU Private registers, see Table 4-4
FCO0 0000 to FDFF_FFFF® | Quad-SPI Quad-SPI | Quad-SPI linear address for linear mode
OCM OCM OCM OCM is mapped high

OCM is not mapped high

Source: Xilinx UG585

=PFL Memory access from the applications (without VM)

.

Application 1

System bus

Read inst. at
0x0010_0000

Read data at
0x0100_0000

In a bare metal environment
without Virtual Memory (VMM),
application memory addresses

addresses

\PflySicm memory map correspond to physical memory
0070 0000

0010 0004

\

Read data at
0x0100_0004

0100 0000

—

1

3FFF_FFFC

0100 0004

Write register at
0x43C0_0000

4000 0000

Read register at
0x43C0_0000

4000 0004

43C0_0000

-—-.-—--..-.---"“-~>

7FEF_FFFC

43C0_0004

. DRAM
accesses
MMIO
= (peripheral registers via
M_AXI_GPO0)

EPFL Problem: Indiscriminate memory accesses

= |f all the applications running on a system can access all &S music player physical physical

address process memaory map address

the memory space...

= Any application can modify, spy or corrupt the state of the
others!

= |f one application uses a wrong pointer, the complete system
is compromised

code

0x41200000

static

0x42200000

0x41A00000

= The solution is to isolate each application inside its own RS
virtual memory space

= Implemented in all major processors and operating systems: 0x40000000
Windows, Linux, Unix, MacOs, iOS, Android

heap

0x41A40000

0x30100000

stack { Ox42100000

e
ERERE R S ————— S E——— R R ———]

0x42140000

virtual text editor
address process

code

Ox 10040000

P e
[E——

Source: Brilliant.org 6

EPFL Solution: Virtual memory

<

= Each application believes to be alone in the system
= No application can access the memory of another S Sl nysica
= |nter-process communication (IPC) mechanisms address memory

= Addresses of an application are not related to the physical memory 0x20000000 |
map

= An application cannot know the physical location of its data or code!

0x20001000

OS builds a translation table for each application 0x20002000 }
= Translation is typically based on pages with fixed sizes (4 KiB, 1 MiB, 1 GiB)

0x20003000

= Processor translates virtual addresses into physical addresses
= For every application access to data or code!
= Translation overhead (time, area, energy) for every memory access

Source: Brilliant.org

VM enables better management of available memory

= Allocations from an application can be scattered over the physical address
space

Can you imagine
problems for our
peripherals?

= Contiguous addresses in application virtual address space do not
necessarily correspond to contiguous addresses in the physical address space!

=PFL Application memory accesses with virtual memory

Processor MMU System bus
Addresses (words) in the Addresses (pages) in the system
application virtual space physical address space
s 0x0000_0000 — 0x0000_OFFF
0x0000_1000 — 0x0000_1FFF
0x0000_2000 — 0x0000_2FFF
- 0x0000_1000 . __ DRAM
Application 1 0x0000_1004 =y 0x0010_0000 — 0x0010_OFFF accesses
e 0x0010_1000 — 0x0010_1FFF
0x6000_0000 0x0010_2000 — 0x0010_2FFF
0x6000 0004 0x0010_3000 — 0x0010_3FFF
mem alloc? . -
0xB250 0000 .
[526550-000¢] 3 :
Application 2 _ . MMIO
0xC470 0000 mapping? . (peripheral

0xD584 0000 > 0x43C0_0000 — 0x43CO_OFFF

0x873F 0000

registers)

- Contiguous to non-contiguous translation

- Non-contiguous to contiguous translation

- Translation to MMIO

- Same virtual address to different physical addresses

Where does the cache of the - 0OS-level memory allocation happens at page level

processors fit in this schema? Bonus question: Can you imagine > Different virtual addresses from two apps can map to the

. 2 same physical address (MMIO or shared memory)
MMU = Memory Management Unit how does Sl work:

=PFL Implications when accessing peripherals from Linux

&

= Qur application cannot access physical addresses directly... What do we do?

= We cannot access the registers of the slave peripherals! cma_mmap(...)
cma_get phy addr(..)

= Memory allocated by our application can be non-contiguous

= E.g., page size in the ARM Cortex-A9 is typically 4 KiB
» yint32_t inputVector[8192]; What do we do?
= uint32_t * inputVector = (uint32_t *)malloc(8192 * sizeof(uint32 t)); ¢cma_alloc(..)
= Both methods allocate 8 pages of 4 KiB, but each page is potentially anywhere in RAM! ~ ¢Ma_free(..)

= Qur application allocates memory in its virtual address space What do we do?
= How do we pass the physical address of a data object to the peripherals? cma_get phy addr(...)

= |[n production systems, we need device drivers

?
= |n the Pynq Linux image, we can use functions provided by Xilinx What do we do

Kernel space drivers

EPFL Mapping peripheral registers into the application virtual
address space

= With the Xilinx environment, use the function cma_mmap(physicalAddress, mappingSize) to
access physical addresses
= This is not a memory allocation! We are just mapping the registers of the peripherals (MMIO)
= Use cma_munmap(physicalAddress, mappingSize) to release the mapping Look into the class

CAccelDriver to see how

: . o this is implemented
= Alternative: Use mmap() to project a file into the address space of the app

= Normally used for fast I/O on large files (the file appears logically as an array)
= /dev/mem is a special “file” that represents the physical address space of the system

* The file /dev/mem is projected into the address space of the application with mmap ()
= Using as offset the starting address of the region we want to map

= This method:
= Requires root privileges
= In most platforms, cannot be used to access areas of memory managed by the OS
= Use it for the peripheral registers, which are outside of the RAM address range

= Works Only on embedded systems 0010_0000 to 3FFF_FFEE | DODR BER H frrEssible o all interconnect masters
= By default, disabled at the kernel level on | ..00 0000 t0 75er sree - o &e:irla;gme Port #0 to the PL,

non-embedded systems (e.g., PCs) DU - — [General Purpose Port #1 to the FL

8000_0000 _ M_AXI_GP1

10

EPFL Example of using mmap() to access MMIO

. First, open the file /dev/mem

Then, memory-map the file
+ into this application virtual
address space

{4 TS R FL I

()]

U o T % I % T % [6 I % [6 I %
Wl =]

Phy addr to Virt. addr

(]
=

L L

to BZDAFOOO

Ly L
W L B2

n

memMapSize
return memMap

[TV Ty ¥

]
[ay]

.

3

12

EPFL Sharing data with accelerators with VM

c Processor MMU System bus

Virtual addresses Physical addresses
uint_8* data = malloc(0x2000); // 8KB

|
| | —EORONO000N (/3 ta[0:4095]
. . 0x0000-1000
Application 1 | Fox0000 1000 I D:0000.2000
| : __ DRAM
\L0x0000_1FFF] l ? TR, accesses
data[0:8191] GTIIORS

= Address virtualization problem: L Rl Sl

= Applications see a private virtual address space, not the physical address space
= Master peripherals see the physical address space, they don’t know about the virtual address spaces

= Non-contiguity problem:

= Pages that are consecutive in an application’s virtual space may not be consecutive in the physical
address space

The MMU is part of the CPU. Our
accelerators don’t have access to it! [In desktops/servers, peripherals use virtual addresses! > Need}

for an IOMMU to translate also accesses from the peripherals 13

MMU = Memory Management Unit

=PFL Allocating buffers for data-sharing with accelerators

= We use two functions provided by Xilinx to allocate DMA-ready memory

= Allocate a block of contiguous memory:
uint32 t * inputl = (uint32_t *)cma_alloc(LENGTH * 4, MEM IS CACHEABLE);
" inputl is a virtual address suitable only for the application allocating the memory
= Granularity is 4 KiB
= Obtain the physical address corresponding to the buffer:
uint32_t * phyInputl = (uint32_t *)((uint32_t)cma_get phy addr(inputl));

The application must never use the physical address!
The accelerators never use virtual addresses

DMA memory is a system-wide resource
* It’s not released when the application ends!
* You must release it with cma_free()

The largest DMA block in the Pyng board is ~¥32 MiB

(virtual addr. space) (physical addr. space)
0x0010_0040 (phy) —®
Application .
550003 Physical address y

Pointer in the application | MMU Memory

$ How does this look with our accelerators?

0-4095
4096-8191
8192-12288

DRAM __ . Vector address

1048576-1052671 (physical)
1052672-1056767
1056768-1060863
1060864-1064959

Bus master
interface

FSM controller

Vector address

(physical)
MMU
cma_alloc()
Register file
Array address : Btfcs -
(virtual) slave interface
cma_map() -\,

Application

. - » |Vector phy. Addr.
Register Register W
address

address
(virtual) (physical)

15

=PrL

‘ Virtualization ‘

Session objectives

Methods to
maintain
cache
coherence in
the Zynq
FPGAs

‘ Hierarchies ‘

Memory coherence

* Between the
accelerator accessing
the DDR and the
processors using a
cache

16

EPFL Why memory hierarchies?

The “memory barrier” problem reflects the disparity between

* Processor speed
e Memory access speed

In general, the larger a memory, the higher the latency (and energy!) to access it

Concept of memory hierarchy

e Bring the most used data into small and fast memories close to the processor

A memory hierarchy can be

e Transparent: cache memories
* Visible in the programming model: “scratchpad” memories

Application processors tend to include instruction and cache memories

 The ARM cores in the Zyng-7000 include two levels of cache memory

17

EPFL Coherence between processor cache and peripherals

Zyng-7000 SoC
0 Processing System
. . Peripherals o0 Application Processor Unit
= ARM Cortex-A9 cores write data to their caches || 1 | [|| lecii] ["= e
3 2x USB _‘TTC ortex- ARN or:c;(--r’\‘
= From the processor registers to the L1 D-cache o [0 e I L
GigE | | 2xSD Level 32KB 32 KB 32KB | W32KB
= From the L1 D-cache to the shared L2 D-cache s%%o Contl| | .Cache | DCaone || LCacre | DCacne
SD IRQ . > | Glc ‘ ‘ Snoop Col , AWDT, Timer |-l-—
SDIO Yvy ‘ y
o GPIO | |- | C%MA BI ! ‘512 KB L2 Cache&ControIIer|
Ol UART | | ¢ annel i
. . |]| [oaRT] | 1 \
= Master peripherals access the DRAM directly o oo T \\
)) oC > nterconnect | SRAM
= Memory views can be different! e - I Mem%
SPI Interconnect | Interfaces
CoreSight DDR2/3,3L,
1 oo = Components LPDDR2
\ SRAN - Contr?lller
. NOR -
= Several solutions: - (o 4|
NAND < @ Programmlzzfclc_;ﬁ: 0110 Memo.y
= Use non-cacheable memory L TT 11 ! T T3
m The ACP port ConneCtS accelerators in PL tO the SnOOp EMIO XADC Gener;I-Fl‘urpose gMA IRQ (;\Olgél? High-Ceriormance Ports ACP
| | 12 bit ADC ors yne SHA Programmable Logic
controller o
o o o Resources
= Manage the cache in SW (flush/invalidate)
Why is “volatile” not enough? o010 ooootosrer_eerr | DDR | DoR | bR |ac Cacheable
What is then “volatile” for? 4000_0000to TEFF_FFFF | PL O N
“ cx . . - Non-cachable
Why does “volatile” work for MMIO to peripheral registers? 8000_0000 to BFFF_FFEF | PL PL | o At g1 18

EPFL Using non-cacheable memory

e = Marks ranges of memory as non-cacheable
= E.g., the ranges that correspond to the M_AXI_GPO and M_AXI_GP1 ports for MMIO

= Multiples way of specifying this option
= |n the Pynq boards, specifying ‘0’ to the cacheability parameter of cma_alloc()

= Accesses from the processors to non-cacheable mem. are MUCH slower
= Avoid when the processors need to operate heavily on the data

= May be a good idea to copy into a cacheable buffer, operate, copy back to the non-cacheable one
before the HW uses it

= No special measures in the software application
= Data is always consistent between processors and accelerators

= Particularly useful for intermediate buffers between multlple calls to an accelerator
= E.g., multiple layers of a neural network

SW execution with non-cacheable RAM:
From~28sto~ 224 s

19

EPFL Using the ACP port

&

= Accelerator Coherent Port (ACP)
= Allows a peripheral to talk directly to the snoop controller of the

processors
" The peripheral accesses directly the cache hierarchy of the
processors | L2 P
= |f the required data is in the caches, the peripheral will access it there E
= If the peripheral writes to data, either it stays in the cache or the cache line ||| |} *D
is invalidated and the processors know they have to go outside to fetch it cnf)
= The process is transparent for the SW application LB |
" The peripherals can enjoy the speed of the cache % I
o . £l T i L
= However, high risk of “thrashing” the cache N e i G
= |f the peripheral accesses large amounts of data, it will evict all data in the o
cache hierarchy

= The processors will have to access main memory for their own (unrelated)

data!
20

=PFL Configuring ZYNQY and peripherals for ACP caching

Re-customize IP
ZYNQ7 Processing System (5.5) ‘

O Documentation £ Presets IP Location & Import XPS Settings

Page Navigator PS-PL Configuration Summary Report
Zyng Block Design « 0O = =
PS-PL Configuration Search:
Name Select Description
Peripheral /0 Pins s General
i _ > AXlI Non Secure Enablement 0 ~ | Enable AXl Non Secure Transaction Re-customize IP 0
MIO Configuration
» GP Slave AXl Interface
)) » HP Slave AXl Interface
Clock Configuration
9 ~ ACP Slave AXl Interface '
DDR Configuration S AX| ACP interface Enables AX| coherent 64-bit slave interface | o
Tie off AxUSER Tie off AxUSER signals to high, enabling coherency when allowed by AxCACHE
SMC Timing Calculation > DMA Controller
» PS-PL Cross Trigger interface Enables PL cross trigger signals to PS and vice-versa Component Name Corw2D_HW_0

Interrupts

m axi dev reg (AxI4 Master Interface)

0K | | Cancel
«| Enable ID ports
To use the ACP port with cacheable transactions: f:wdthdth 132 1 -32)

* Inthe ZYNQ7 processor system configuration page: Enable USER ports
* Activate the ACP Slave AXI interface AWUSER width

1 [1-1024]
“| 4+ s_axi_contral L wi 102
* Enable the tying off of the AXUSER signals to ;l;;;';_n M# B : o
enable coherence when allowed by the ARUSER width) 1 -1024)
eri hera IS RUSER width 1 [1-1024]
p p USER value Ox00000000

PROT value "0oo"

* In our accelerator:
* Change the CACHE value (AXxCACHE lines) to acevane (i) |

—

“1111” (write-back, read and write-allocate) oc | [cancel | 21

EPFL Explicitly managing cache

&

= Applications can explicitly issue flush and invalidate operations for specific cache lines
(based on physical address ranges)
= Flush operation forces the cache hierarchy to write back a cache line to main memory

= |nvalidate operation marks a cache line as not valid (if present)
= The processors will have to re-fetch it from main memory the next time

Note: It is potentially dangerous to invalidate a cache line without flushing it, but flushing may not be safe if the
line data is partially in DRAM
e This problem appears if a communication buffer with a peripheral shares a cache line with other variables
* To avoid this situation, align your allocations to the cache line (e.g., 32 B or 64 B)
* In our case, this is fine since DMA memory is allocated with page granularity (>> line cache size)

= Drawback:
= The flush/invalidate operations work on cache lines
= For large buffers, a potentially high number of operations may be necessary!

22

EPFL Flush/invalidate in the Zyng-7000

= Before passing a data object to an accelerator
» cma_flush _cache(input, (uint32 t)phyInput, LENGTH IN BYTES);
» cma_invalidate cache(output, (uint32 t)phyOutput, LENGTH_IN BYTES);

= After the peripheral ends, before accessing the data object
= cma_invalidate cache(output, (uint32 t)phyOutput, LENGTH IN BYTES);

Note: We use flush(input)+invalidate(output) to pass data to the accelerator because the invalidate operation is itself
implemented as flush+invalidate in our platform. If we didn’t invalidate (+flush) the output lines before calling the
accelerator, if those cache lines had modified data before, they would overwrite the results stored in the buffer before
the processor had the chance to read them again. This situation is possible in our case since we are using both the
input and output buffers to compute the bias/ReLU/maxpool operations.

23

-

| Prof Dawd Atlenzé

EPFL—Embedded Systems Laboratory
david.atienza@epfl.ch

	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	Roadmap
	Session objectives
	Physical memory map of the Zynq 7000
	Memory access from the applications (without VM)
	Problem: Indiscriminate memory accesses
	Solution: Virtual memory
	Application memory accesses with virtual memory
	Implications when accessing peripherals from Linux
	Mapping peripheral registers into the application virtual address space
	Example of using mmap() to access MMIO
	Sharing data with accelerators with VM
	Allocating buffers for data-sharing with accelerators
	How does this look with our accelerators?
	Session objectives
	Why memory hierarchies?
	Coherence between processor cache and peripherals
	Using non-cacheable memory
	Using the ACP port
	Configuring ZYNQ7 and peripherals for ACP caching
	Explicitly managing cache
	Flush/invalidate in the Zynq-7000
	Prof. David Atienza��EPFL – Embedded Systems Laboratory�david.atienza@epfl.ch

