
Lab. On HW-SW Digital Systems Codesign
EE-390(a)

Prof. David Atienza
Dr. Denisa Constantinescu, Dr. Miguel Peón-Quirós,

Mr. Rubén Rodríguez-Álvarez, Ms. Stasa Kostic, Mr. Karan Pathak

Session 5
Virtual memory, memory for DMA and cache coherence

 Previous class: memory management & optimizations
 Programmable Logic (accelerator) point of view

 This class: memory management & optimizations
 Processing System (processor & OS) point of view

Roadmap

2

Session objectives

Virtual
Memory (VM)
and address

space
protection

Accessing
peripheral

registers with
MMIO from the

address space of
a user-level Linux

application

Allocate memory
suitable for Direct
Memory Access

(DMA) by
peripherals

Memory coherence
• Between the

accelerator accessing
the DDR and the
processors using a
cache

Methods to
maintain

cache
coherence in

the Zynq
FPGAs

Virtualization Hierarchies

3

4

Physical memory map of the Zynq 7000

Source: Xilinx UG585

System main
memory for use by
OS and applications

Mapping of peripherals
from the PS side

5

Memory access from the applications (without VM)

•
•

0010_0000
0010_0004

3FFF_FFFC

Application 1
Read data at
0x0100_0000

Read data at
0x0100_0004

0100_0000
0100_0004

•
• DRAM

accesses

•
•

4000_0000
4000_0004

7FFF_FFFC

43C0_0000
43C0_0004

•
• MMIO

(peripheral registers via
M_AXI_GP0)

Read register at
0x43C0_0000

Write register at
0x43C0_0000

Read inst. at
0x0010_0000

Processor System bus In a bare metal environment
without Virtual Memory (VM),
application memory addresses
correspond to physical memory

addresses
Physical memory map

6

Problem: Indiscriminate memory accesses

 If all the applications running on a system can access all
the memory space…
 Any application can modify, spy or corrupt the state of the

others!
 If one application uses a wrong pointer, the complete system

is compromised

 The solution is to isolate each application inside its own
virtual memory space
 Implemented in all major processors and operating systems:

Windows, Linux, Unix, MacOs, iOS, Android

Source: Brilliant.org

7

Solution: Virtual memory

 Each application believes to be alone in the system
 No application can access the memory of another
 Inter-process communication (IPC) mechanisms

 Addresses of an application are not related to the physical memory
map
 An application cannot know the physical location of its data or code!

 OS builds a translation table for each application
 Translation is typically based on pages with fixed sizes (4 KiB, 1 MiB, 1 GiB)

 Processor translates virtual addresses into physical addresses
 For every application access to data or code!
 Translation overhead (time, area, energy) for every memory access

 VM enables better management of available memory
 Allocations from an application can be scattered over the physical address

space
 Contiguous addresses in application virtual address space do not

necessarily correspond to contiguous addresses in the physical address space!

Can you imagine
problems for our

peripherals?

Source: Brilliant.org

Bonus

8

Application memory accesses with virtual memory

Where does the cache of the
processors fit in this schema?

Application 1

Addresses (words) in the
application virtual space

MMU = Memory Management Unit

Application 2

0x0000_0000
0x0000_0004

0x0000_1000
0x0000_1004

0x6000_0000
0x6000_0004
0xB250_0000

0x0000_0000
0x0000_0004
0xC470_0000
0xD584_0000

DRAM
accesses

MMIO
(peripheral
registers)

Addresses (pages) in the system
physical address space

0x43C0_0000 – 0x43C0_0FFF

•
•

•
•
•
•
•
•
•
•

0x0000_2000 – 0x0000_2FFF
0x0000_1000 – 0x0000_1FFF
0x0000_0000 – 0x0000_0FFF

0x0010_3000 – 0x0010_3FFF
0x0010_2000 – 0x0010_2FFF
0x0010_1000 – 0x0010_1FFF
0x0010_0000 – 0x0010_0FFF

0x873F_0000  Contiguous to non-contiguous translation
 Non-contiguous to contiguous translation
 Translation to MMIO
 Same virtual address to different physical addresses
 OS-level memory allocation happens at page level
 Different virtual addresses from two apps can map to the
same physical address (MMIO or shared memory)

Bonus question: Can you imagine
how does swapping work?

mem alloc?

mapping?

System busMMUProcessor

9

Implications when accessing peripherals from Linux

 Our application cannot access physical addresses directly…
 We cannot access the registers of the slave peripherals!

 Memory allocated by our application can be non-contiguous
 E.g., page size in the ARM Cortex-A9 is typically 4 KiB
 uint32_t inputVector[8192];
 uint32_t * inputVector = (uint32_t *)malloc(8192 * sizeof(uint32_t));

 Both methods allocate 8 pages of 4 KiB, but each page is potentially anywhere in RAM!

 Our application allocates memory in its virtual address space
 How do we pass the physical address of a data object to the peripherals?

 In production systems, we need device drivers
 In the Pynq Linux image, we can use functions provided by Xilinx

What do we do?
cma_mmap(…)
cma_get_phy_addr(…)

What do we do?
cma_get_phy_addr(…)

What do we do?
cma_alloc(…)
cma_free(…)

What do we do?
Kernel space drivers

10

Mapping peripheral registers into the application virtual
address space

 With the Xilinx environment, use the function cma_mmap(physicalAddress, mappingSize) to
access physical addresses
 This is not a memory allocation! We are just mapping the registers of the peripherals (MMIO)
 Use cma_munmap(physicalAddress, mappingSize) to release the mapping

 Alternative: Use mmap() to project a file into the address space of the app
 Normally used for fast I/O on large files (the file appears logically as an array)
 /dev/mem is a special “file” that represents the physical address space of the system
 The file /dev/mem is projected into the address space of the application with mmap()

 Using as offset the starting address of the region we want to map

 This method:
 Requires root privileges
 In most platforms, cannot be used to access areas of memory managed by the OS

 Use it for the peripheral registers, which are outside of the RAM address range
 Works only on embedded systems

 By default, disabled at the kernel level on
non-embedded systems (e.g., PCs)

Look into the class
CAccelDriver to see how

this is implemented

12

Example of using mmap() to access MMIO

First, open the file /dev/mem

Then, memory-map the file
into this application virtual

address space

Phy addr to Virt. addr

System busMMUProcessor

13

Sharing data with accelerators with VM

 Address virtualization problem:
 Applications see a private virtual address space, not the physical address space
 Master peripherals see the physical address space, they don’t know about the virtual address spaces

 Non-contiguity problem:
 Pages that are consecutive in an application’s virtual space may not be consecutive in the physical

address space

Virtual addresses

MMU = Memory Management Unit

0x0000_0000
…

0x0000_1000
… DRAM

accesses

Physical addresses

0x0010-0000
0x0010-1000

•
•

0x0000-2000
0x0000-1000
0x0000-0000

0x0010-2000
0x0010-3000

The MMU is part of the CPU. Our
accelerators don’t have access to it! In desktops/servers, peripherals use virtual addresses!  Need

for an IOMMU to translate also accesses from the peripherals

0x0000_0FFF

0x0000_1FFF

uint_8* data = malloc(0x2000); // 8KB

data[0:8191]

data[0:4095]

data[4096:8191]

Application 1

m_axi Accelerator

?

14

Allocating buffers for data-sharing with accelerators

 We use two functions provided by Xilinx to allocate DMA-ready memory
 Allocate a block of contiguous memory:

uint32_t * input1 = (uint32_t *)cma_alloc(LENGTH * 4, MEM_IS_CACHEABLE);
 input1 is a virtual address suitable only for the application allocating the memory
 Granularity is 4 KiB

 Obtain the physical address corresponding to the buffer:
uint32_t * phyInput1 = (uint32_t *)((uint32_t)cma_get_phy_addr(input1));

• The application must never use the physical address!
• The accelerators never use virtual addresses
• DMA memory is a system-wide resource

• It’s not released when the application ends!
• You must release it with cma_free()

• The largest DMA block in the Pynq board is ~32 MiBPointer in the application
(virtual addr. space)

0x0010_0040 (phy)
Application

MMU

0x0000_0040 (virt) Accelerator0x0010_0040 (phy)

Memory
(physical addr. space)

Physical address

MMU

15

How does this look with our accelerators?

Vector address
(physical) Bus master

interface

Bus
slave interface

FSM controller

Register file

Application
Register
address
(virtual)

Vector phy. Addr.
Register
address

(physical)

DRAM
1048576-1052671
1052672-1056767

•
•

8192-12288
4096-8191

0-4095

1056768-1060863
1060864-1064959

Array address
(virtual)

Vector address
(physical)

cma_map()

cma_alloc()

Session objectives

Virtual
Memory (VM)
and address

space
protection

Accessing
peripheral

registers with
MMIO from the

address space of
a user-level Linux

application

Allocate memory
suitable for Direct
Memory Access

(DMA) by
peripherals

Memory coherence
• Between the

accelerator accessing
the DDR and the
processors using a
cache

Methods to
maintain

cache
coherence in

the Zynq
FPGAs

Virtualization Hierarchies

16

17

Why memory hierarchies?

The “memory barrier” problem reflects the disparity between
• Processor speed
• Memory access speed

In general, the larger a memory, the higher the latency (and energy!) to access it

Concept of memory hierarchy
• Bring the most used data into small and fast memories close to the processor

A memory hierarchy can be
• Transparent: cache memories
• Visible in the programming model: “scratchpad” memories

Application processors tend to include instruction and cache memories
• The ARM cores in the Zynq-7000 include two levels of cache memory

18

Coherence between processor cache and peripherals

 ARM Cortex-A9 cores write data to their caches
 From the processor registers to the L1 D-cache
 From the L1 D-cache to the shared L2 D-cache

 Master peripherals access the DRAM directly
 Memory views can be different!

 Several solutions:
 Use non-cacheable memory
 The ACP port connects accelerators in PL to the snoop

controller
 Manage the cache in SW (flush/invalidate)

Why is “volatile” not enough?
What is then “volatile” for?

Why does “volatile” work for MMIO to peripheral registers? Non-cachable

Cacheable

19

Using non-cacheable memory
 Marks ranges of memory as non-cacheable

 E.g., the ranges that correspond to the M_AXI_GP0 and M_AXI_GP1 ports for MMIO

 Multiples way of specifying this option
 In the Pynq boards, specifying `0’ to the cacheability parameter of cma_alloc()

 Accesses from the processors to non-cacheable mem. are MUCH slower
 Avoid when the processors need to operate heavily on the data
 May be a good idea to copy into a cacheable buffer, operate, copy back to the non-cacheable one

before the HW uses it

 No special measures in the software application
 Data is always consistent between processors and accelerators

 Particularly useful for intermediate buffers between multiple calls to an accelerator
 E.g., multiple layers of a neural network

SW execution with non-cacheable RAM:
From ~ 28 s to ~ 224 s

20

Using the ACP port

 Accelerator Coherent Port (ACP)
 Allows a peripheral to talk directly to the snoop controller of the

processors

 The peripheral accesses directly the cache hierarchy of the
processors
 If the required data is in the caches, the peripheral will access it there
 If the peripheral writes to data, either it stays in the cache or the cache line

is invalidated and the processors know they have to go outside to fetch it

 The process is transparent for the SW application
 The peripherals can enjoy the speed of the cache
 However, high risk of “thrashing” the cache

 If the peripheral accesses large amounts of data, it will evict all data in the
cache hierarchy

 The processors will have to access main memory for their own (unrelated)
data!

21

Configuring ZYNQ7 and peripherals for ACP caching

To use the ACP port with cacheable transactions:
• In the ZYNQ7 processor system configuration page:

• Activate the ACP Slave AXI interface
• Enable the tying off of the AxUSER signals to

enable coherence when allowed by the
peripherals

• In our accelerator:
• Change the CACHE value (AxCACHE lines) to

“1111” (write-back, read and write-allocate)

22

Explicitly managing cache

 Applications can explicitly issue flush and invalidate operations for specific cache lines
(based on physical address ranges)
 Flush operation forces the cache hierarchy to write back a cache line to main memory
 Invalidate operation marks a cache line as not valid (if present)

 The processors will have to re-fetch it from main memory the next time

 Drawback:
 The flush/invalidate operations work on cache lines
 For large buffers, a potentially high number of operations may be necessary!

Note: It is potentially dangerous to invalidate a cache line without flushing it, but flushing may not be safe if the
line data is partially in DRAM

• This problem appears if a communication buffer with a peripheral shares a cache line with other variables
• To avoid this situation, align your allocations to the cache line (e.g., 32 B or 64 B)

• In our case, this is fine since DMA memory is allocated with page granularity (>> line cache size)

23

Flush/invalidate in the Zynq-7000

Before passing a data object to an accelerator
 cma_flush_cache(input, (uint32_t)phyInput, LENGTH_IN_BYTES);
 cma_invalidate_cache(output, (uint32_t)phyOutput, LENGTH_IN_BYTES);

After the peripheral ends, before accessing the data object
 cma_invalidate_cache(output, (uint32_t)phyOutput, LENGTH_IN_BYTES);

Note: We use flush(input)+invalidate(output) to pass data to the accelerator because the invalidate operation is itself
implemented as flush+invalidate in our platform. If we didn’t invalidate (+flush) the output lines before calling the
accelerator, if those cache lines had modified data before, they would overwrite the results stored in the buffer before
the processor had the chance to read them again. This situation is possible in our case since we are using both the
input and output buffers to compute the bias/ReLU/maxpool operations.

Questions?
Prof. David Atienza

EPFL – Embedded Systems Laboratory
david.atienza@epfl.ch

	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	Roadmap
	Session objectives
	Physical memory map of the Zynq 7000
	Memory access from the applications (without VM)
	Problem: Indiscriminate memory accesses
	Solution: Virtual memory
	Application memory accesses with virtual memory
	Implications when accessing peripherals from Linux
	Mapping peripheral registers into the application virtual address space
	Example of using mmap() to access MMIO
	Sharing data with accelerators with VM
	Allocating buffers for data-sharing with accelerators
	How does this look with our accelerators?
	Session objectives
	Why memory hierarchies?
	Coherence between processor cache and peripherals
	Using non-cacheable memory
	Using the ACP port
	Configuring ZYNQ7 and peripherals for ACP caching
	Explicitly managing cache
	Flush/invalidate in the Zynq-7000
	Prof. David Atienza��EPFL – Embedded Systems Laboratory�david.atienza@epfl.ch

