
Lab. On HW-SW Digital Systems Codesign
EE-390(a)

Prof. David Atienza
Dr. Denisa Constantinescu, Dr. Miguel Peón-Quirós,

Mr. Rubén Rodríguez-Álvarez, Ms. Stasa Kostic, Mr. Karan Pathak

Session 4
Array optimization using HLS

3

High-level synthesis (HLS) design flow for HW accelerators

C++ description of
HW

RTL HDL modules
(manual)

SoC-level design
(block diagram)

Integration with SW
(C++, Python, …)

Compiling

Scheduling

Allocation

Binding

RTL description
(generated)

Synthesis &
implementation

Bitstream

DESIGN FLOW VALIDATION FLOW

C++ functional
simulation

C++/RTL
co-simulation

HDL testbench RTL simulation

HW execution
on FPGA

RTL generation

Vivado

Vitis HLS
Golden reference

Metrics
• Latency
• Throughput
• Energy
• Resources (Area)

4

Design Space Exploration (DSE)

Number of resources (Area, Memory, Ports,..)

Ex
ec

ut
io

n
tim

e

Limited
resources

Parallelizing
Factor 16

Baseline

Pipeline and parallel
combination

Extremely
limited

resources

Parallelizing
Factor 4

Optimal solutions
Non-optimal solutions
Pareto optimal curve

Pipelining

C DFG Scheduling Allocation Binding RTL

 Loops optimizations (last week with Rubén)
 Pipelining
 Unrolling
 Merging
 Flattening

 Array optimizations
 What types of storage resources do we have on the FPGA

 How to map software arrays to hardware memory
 Partitioning
 Reshaping

 How to combine loop & array optimizations?

.... there is a full list of pragmas and directives optimizations

5

Learning Objectives: HLS optimizations

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Optimization-Directives?tocId=qybLKiQgNbeHWDv_%7EpFMPg

What types of storage resources do we have on the FPGA?
Remember the HLS translation table

6

What does the HLS compiler infer from these HW descriptions?

A. int my_array_A[];  not synthesizable
B. int my_array_B[10];  shift register logic (SRL)
C. int my_array_C[1024];  shift register logic (SRL)
D. int my_array_D[1025];  BRAM (default); LUTRAM or URAM with BIND_STORAGE directive/pragma

C++ Generated HW
Functions Modules with I/Os
Arguments Ports of modules
Private variables Local signals
Static variables Registers
Arrays (internal) Storage units (Memories)
Arrays or pointers in arguments Memory ports
Variables Signals (Wires)
Function calls Modules instantiation

???
???

Types of storage units on the FPGA

•RAM: BRAM, UltraRAM (URAM)
•LUTs (LUTRAM)
• Shift Register Logic (SRL)
•Registers (FFs)

HLS is not C++  not all C++ features are available!
dynamic memory allocation for arrays is not supported

???

???
???

What types of storage resources do we have on the FPGA?
Remember the HLS translation table

7

What does the HLS compiler infer from these HW descriptions?

A. int my_array_A[];  not synthesizable
B. int my_array_B[10];  shift register logic (SRL)
C. int my_array_C[1024];  shift register logic (SRL)
D. int my_array_D[1025];  BRAM (default); LUTRAM or URAM with BIND_STORAGE directive/pragma

C++ Generated HW
Functions Modules with I/Os
Arguments Ports of modules
Private variables Local signals
Static variables Registers
Arrays (internal) Storage units (Memories)
Arrays or pointers in arguments Memory ports
Variables Signals (Wires)
Function calls Modules instantiation

Types of storage units on the FPGA

•RAM: BRAM, UltraRAM (URAM)
•LUTs (LUTRAM)
• Shift Register Logic (SRL)
•Registers (FFs)

HLS is not C++  not all C++ features are available!
dynamic memory allocation for arrays is not supported

Exercise: how many cycles it takes to the loop?

8

int A[N];
// The loop below is the shift operation
for (int i = 0; i < N-1; ++i){
#pragma unroll

A[i] = A[i+1];
}

a) N=1024  1 cycle
b) N=1025  1025 cycles

?
?

Exercise: how many cycles it takes to the loop?

9

int A[N];
// The loop below is the shift operation
for (int i = 0; i < N-1; ++i){
#pragma unroll

A[i] = A[i+1];
}

a) N=1024  1 cycle
b) N=1025  1025 cycles

Array optimizations
Types of storage resources

Internal arrays:
#pragma HLS bind_storage variable=<variable> type=<type>

 FIFO
 RAM single port
 RAM single write port and multiple read ports
 RAM dual port (1 read only, and the other for read and write)
 RAM dual port (1 read only, and the other write only)
 True dual port RAM (both ports for read and write)
 Single port ROM, Dual port ROM, and multi-port ROM.

More about supported types and how to use the pragma bind_storage in AMD documentation:
https://docs.amd.com/r/en-US/ug1399-vitis-hls/pragma-HLS-bind_storage

https://docs.amd.com/r/en-US/ug1399-vitis-hls/pragma-HLS-bind_storage

11

Motivation
Why do we need array optimizations?

// assuming single port memory for each
a[2048];
b[2048];
o[2048];

Loop_1: for(int i = 0; i < 2048; i++) {
#pragma unroll factor=10

o[i] = a[i] + b[i];
}

Two main internal array optimizations

• Partitioning
• Reshaping

Array optimizations
Partitioning

Data 0

Original data Partitioned data

Complete Block factor 4 Cyclic factor 4

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data 7

Data 8

Data 9

Data 0

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data 7

Data 8

Data 9

Data 10

Data 11

Data 10

Data 11

Data 0

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data 7

Data 8

Data 9

Data 10

Data 11

Data 0

Data 4

Data 8

Data 1

Data 5

Data 9

Data 2

Data 6

Data 10

Data 3

Data 7

Data 11

The complete partitioning
separates all the elements of
the array in separate registers
individually accessible

Each memory block has a
limited amount of access
ports (single or dual ports),
which limits the data that can
be obtained in parallel

M
em

_0
M

em
_1

M
em

_0

M
em

_1

M
em

_2
M

em
_3

M
em

_2

M
em

_3

Array optimizations
Reshaping

Data 0

Original data Reshaped data
Complete

Block factor 2

Cyclic factor 2

Data 1

Data 2

Data 3

Data 3 Data 2 Data 1 Data 0

8 bits
32 bits

Data 2 Data 0

Data 3 Data 1

Data 1 Data 0

Data 3 Data 2

16 bits

16 bits

[0][0]
[1]
[2]
[3]

[0]
[1]

[0]
[1]

Partitioning and reshaping can be done for
each dimension in multidimensional arrays

The dim field indicates the dimension in which
the partition or reshape is applied (dim 0
applies the optimization to all dimensions)

MSB LSB

MSB LSB

MSB LSB

BRAM types
• 4096 x 8 bits
• 2048 x 16 bits
• 1024 x 32 bits

What if the original data is has 16 or 32 bits width?

Combining Loop and Array Optimizations

ap_uint<8> a[512][8];

loop_1: for(int i = 0; i < 512; i++) {
loop_2: for(int j = 0; j < 8; j++) {
#pragma HLS unroll factor=4

acc += a[i] [j];
}

}

baseline code
Partitioning:

Reshaping:

#pragma HLS array_partition variable=a
type=? factor=? dim=?

#pragma HLS array_reshape variable=a
type=? factor=? dim=?

BRAM types
• 4096 x 8 bits
• 2048 x 16 bits
• 1024 x 32 bits

Partition cyclic factor 4
Data 0

Data 4

Data 8

Data 1

Data 5

Data 9

Data 2

Data 6

Data 10

Data 3

Data 7

Data 11

M
em

_0

M
em

_1

M
em

_2

M
em

_3

Partition block factor 4
Data 0

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data 7

Data 8

Data 9

Data 10

Data 11

M
em

_0

M
em

_1

M
em

_2

M
em

_3

Combining Loop and Array optimizations
When to use partition and when to use reshape?

ap_uint<8> a[512][8];
acc = 0;
loop_1: for(int i = 0; i < 512; i++) {

loop_2: for(int j = 0; j < 8; j++) {
#pragma HLS unroll factor=4

acc += a[i] [j];
}

}

baseline code
Partitioning:

Reshaping:

#pragma HLS array_partition variable=a
type=cyclic factor=4 dim=2

#pragma HLS array_reshape variable=a
type=cyclic factor=4 dim=2

BRAM types
• 4096 x 8 bits
• 2048 x 16 bits
• 1024 x 32 bits

Assuming single port memories and 1 BRAM indivisible units

Number of BRAMs

Total Cycles

Baseline
Solution # BRAMS Utilization Cycles

baseline 1 (8 bits) 100% 4096

partition_4 4 (8 bits) 25% 1024

reshape_4 1 (32 bits) 100% 1024
reshape_4 partition_4

1 432

4096

1024

???
???

???

Exercise: can we do better? Tip: #pragma HLS unroll factor=8

Combining Loop and Array optimizations
When to use partition and when to use reshape?

ap_uint<8> a[512][8];

loop_1: for(int i = 0; i < 512; i++) {
loop_2: for(int j = 0; j < 8; j++) {
#pragma HLS unroll factor=4

acc += a[i] [j];
}

}

baseline code
Partitioning:

Reshaping:

#pragma HLS array_partition variable=a
type=cyclic factor=4 dim=2

#pragma HLS array_reshape variable=a
type=cyclic factor=4 dim=2

BRAM types
• 4096 x 8 bits
• 2048 x 16 bits
• 1024 x 32 bits

Assuming dual port memories OR 0.5 BRAM indivisible units (realistic)

Number of BRAMs

Total Cycles

Baseline

Solution # BRAMS Utilization Cycles

baseline 1 (8 bits) 100% 2048

partition_4 2 (4 x 0.5, 8 bits) 50% 1024

reshape_4 1 (32 bits) 100% 1024

partition_2 2 (8 bits) 50% 1024

reshape_2 1 (16 bits) 100% 1024

reshape_4
reshape_2

partition_4
partition_2

1 432

4096

1024

???
???

???
???

???

Combining Loop and Array optimizations
When to use partition and when to use reshape?

ap_uint<8> a[512][8];
#pragma HLS array_partition variable=a
type=cyclic factor=? dim=2
#pragma HLS array_reshape variable=a
type=cyclic factor=? dim=2

loop_1: for(int i = 0; i < 512; i++) {
loop_2: for(int j = 0; j < 8; j++) {
#pragma HLS unroll factor=?

acc += a[i] [j];
}

}

baseline code
Assuming dual port memories OR 0.5 BRAM indivisible units (realistic)

reshape_4

reshape_4
partition_2 partition_3

reshape_2

partition_2
reshape_4

reshape_4

0 1 2 3 4 5 6
0

100

200

300

400

500

600

BRAMS

Cy
cl

es

64bit bandwidth
bottleneck

Combining Loop and Array optimizations

ap_uint<8> a[2050][6];

loop_1: for(int i = 0; i < 2050; i++) {
#pragma HLS unroll factor=2

loop_2: for(int j = 0; j < 6; j++) {
#pragma HLS unroll complete

acc = a[i] [j];
}

}

Example code

Partitioning:
#pragma HLS array_partition variable=a
type=? Factor=? dim=1

#pragma HLS array_partition variable=a
type=? Factor=? dim=2

a[0][0]

a[9][0]

a[0] a[0][5]

a[9][5]

a[1]
a[2]
a[3]
a[4]
a[5]
a[6]
a[7]
a[8]
a[9]

mem0 mem1 mem2 mem3 mem4 mem5

Data accessed
in 1 cycle

Assuming dual port memories OR 0.5 BRAM indivisible units (realistic)

BRAM types
• 4096 x 8 bits
• 2048 x 16 bits
• 1024 x 32 bits

Solution # BRAMS Utilization Cycles

baseline 4 (8 bits) 85,798% 6150

partition_6 6 (8 bits) 50,005% 1025

partition_3 reshape_2 6 (16 bits) 50,005% 1025

partition_2 reshape_4 4 (32 bits) 75.073% 1025

reshape_4 4 (32 bits) 85,798% 1538

Combining Loop and Array optimizations

ap_uint<8> a[2050][6];

loop_1: for(int i = 0; i < 2050; i++) {
#pragma HLS unroll factor=2

loop_2: for(int j = 0; j < 6; j++) {
#pragma HLS unroll complete

acc = a[i] [j];
}

}

Example code

Assuming dual port memories OR 0.5 BRAM indivisible units (realistic)

BRAM types
• 4096 x 8 bits
• 2048 x 16 bits
• 1024 x 32 bits

???
???
???
???
???

partition_3
reshape_2

partition_2
reshape_4

reshape_4

0 2 4 6 8
0

1000
2000
3000
4000
5000
6000
7000

BRAMS
Cy

cl
es

Combining Loop and Array optimizations

ap_uint<8> a[2050][6];

loop_1: for(int i = 0; i < 2050; i++) {
#pragma HLS unroll factor=2

loop_2: for(int j = 0; j < 6; j++) {
#pragma HLS unroll complete

acc = a[i] [j];
}

}

Example code

Assuming dual port memories OR 0.5 BRAM indivisible units (realistic)

BRAM types
• 4096 x 8 bits
• 2048 x 16 bits
• 1024 x 32 bits

Solution # BRAMS Utilization Cycles

baseline 4 (8 bits) 85,798% 6150

partition_6 6 (8 bits) 50,005% 1025

partition_3 reshape_2 6 (16 bits) 50,005% 1025

partition_2 reshape_4 4 (32 bits) 75.073% 1025

reshape_4 4 (32 bits) 85,798% 1538

baseline

partition_6

partition_3
reshape_2

partition_2
reshape_4

reshape_4

0 2 4 6 8
0

1000
2000
3000
4000
5000
6000
7000

BRAMS
Cy

cl
es

Array optimizations: Type of interfaces

Interfaces:

 Slave interfaces (slave registers)

 Master interfaces
 Master AXI
 BRAM (single or dual port)
 FIFOs

Other Interfaces:

•None
•Valid
•Ack
•Valid & ack
•Output valid
•Control chain (Start, continue,

idle, done, ready)

C-argument type Paradigm Interface protocol (I/O/Inout)
Scalar(pass by value) Slave register s_axilite (Write only)
Pointer used as scalar Slave register s_axilite (Read and/or Write)
Reference Slave register s_axilite (Read and/or Write)
Array Master port m_axi
Pointer used as array Master port m_axi
hls::stream Stream AXI4-Stream (axis)

My_module(int *in_a,
int *in_b,
int *out) {

#pragma interface m_axi variable=in_a bundle=port_0
#pragma interface m_axi variable=in_b bundle=port_1
#pragma interface m_axi variable=out bundle=port_0
How many ports are generated?

Array optimizations: Type of interfaces

Interfaces:

 Slave interfaces (slave registers)

 Master interfaces
 Master AXI
 BRAM (single or dual port)
 FIFOs

Other Interfaces:

•None
•Valid
•Ack
•Valid & ack
•Output valid
•Control chain (Start, continue,

idle, done, ready)

C-argument type Paradigm Interface protocol (I/O/Inout)
Scalar(pass by value) Slave register s_axilite (Write only)
Pointer used as scalar Slave register s_axilite (Read and/or Write)
Reference Slave register s_axilite (Read and/or Write)
Array Master port m_axi
Pointer used as array Master port m_axi
hls::stream Stream AXI4-Stream (axis)

My_module(int *in_a,
int *in_b,
int *out) {

#pragma interface bram variable=in_a bundle=port_0
#pragma interface bram variable=in_b bundle=port_1
#pragma interface bram variable=out bundle=port_2
What if I access true dual-port BRAMs?

Homework: check preconditions and limitations of burst transfer here

https://docs.amd.com/r/en-US/ug1399-vitis-hls/Preconditions-and-Limitations-of-Burst-Transfer

 Types of storage resources and how to optimize their usage
 How to perform a Design Space Exploration in HLS using:

 Array optimizations pragmas: partitioning, reshaping.
 Combining loop and array optimizations

 Types of interfaces
 Slave
 Master
 Other protocols

24

Summary

Questions?
Denisa Constantinescu

EPFL – Embedded Systems Laboratory
denisa.constantinescu@epfl.ch

	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	High-level synthesis (HLS) design flow for HW accelerators
	Design Space Exploration (DSE)
	Learning Objectives: HLS optimizations
	What types of storage resources do we have on the FPGA?�Remember the HLS translation table �
	What types of storage resources do we have on the FPGA?�Remember the HLS translation table �
	Exercise: how many cycles it takes to the loop?
	Exercise: how many cycles it takes to the loop?
	Array optimizations�Types of storage resources
	Slide Number 11
	Array optimizations �Partitioning
	Array optimizations�Reshaping
	Combining Loop and Array Optimizations�
	Combining Loop and Array optimizations�When to use partition and when to use reshape?�
	Combining Loop and Array optimizations�When to use partition and when to use reshape?�
	Combining Loop and Array optimizations�When to use partition and when to use reshape?�
	Combining Loop and Array optimizations
	Combining Loop and Array optimizations
	Combining Loop and Array optimizations
	Array optimizations: Type of interfaces
	Array optimizations: Type of interfaces
	Summary
	Denisa Constantinescu��EPFL – Embedded Systems Laboratory�denisa.constantinescu@epfl.ch

