=Pr-L

D

EcoCloud

L ABURATORY

Lab. On HW-SW Digital Systems Codesign

EE-390(a)

Session 4
Array optimization using HLS
Prof. David Atienza

Dr. Denisa Constantinescu, Dr. Miguel Pedn-Quiros,
Mr. Rubén Rodriguez-Alvarez, Ms. Stasa Kostic, Mr. Karan Pathak

EPFL High-level synthesis (HLS) design flow for HW accelerators

c DESIGN FLOW VALIDATION FLOW
N
vitisHLS | [C++ description of | Golden reference C++ functional
- HW J simulation
| J
Comi)iling \
Schec{luling C++/RTL
Allocation co-simulation
\/
Binding
\/

k RTL generation)

Viva§o -
[RTL description] §TL HDL modules

(generated) (manual)

SoC-Ieve.I S HDL testbench RTL simulation
(block diagram)

Synthesis &

implemientation
. %ilnte ration with SW HW execution
[Bitstream &] {]

(C++, Python, ...)) on FPGA

S

EPFL Design Space Exploration (DSE)
c DFG }—{ Scheduling }—{ Allocation }—={ Binding

Extremely

limited ® Optimal solutions
Metrics o | rfesources ® Non-optimal solutions
§ O - Pareto optimal curve
H . .
e Latency c Limited
* Throughput _8 resources
>
* Energy o _ ° o
) Baseline
* Resources X o

Pipelining

+
Pipeline and parallel

combination

Number of resources (Area, Memory, Ports,...)

Parallelizing Parallelizing
Factor 4 Factor 16

v

EPFL Learning Objectives: HLS optimizations

.

" Loops optimizations (last week with Rubén)
" Pipelining
= Unrolling
= Merging
" Flattening
= Array optimizations
= What types of storage resources do we have on the FPGA
= How to map software arrays to hardware memory
= Partitioning
= Reshaping
= How to combine loop & array optimizations?

.... there is a full list of pragmas and directives optimizations

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Optimization-Directives?tocId=qybLKiQgNbeHWDv_%7EpFMPg

EPFL \What types of storage resources do we have on the FPGA?
Remember the HLS translation table

C++ Generated HW

Functions Modules with 1/0s
Arguments Ports of modules Types of storage units on the FPGA
Private variables Local signals

* RAM: BRAM, UltraRAM (URAM)
Static variables ?°?7? ¢ LUTs (LUTRAM)

Arrays (internal) I - shift Register Logic (SRL)
Arrays or pointers in arguments || NG ° Registers (FFs)

Variables Signals (Wires)

Function calls Modules instantiation

What does the HLS compiler infer from these HW descriptions?

A.intmy_array_A[]; 1 HLS is not C++ > not all C++ features are available!

B. intmy_array_B[10]; FRE dynamic memory allocation for arrays is not supported
C. intmy_array_C[1024]; —> shift register logic (SRL)

D int my_array_D[1025]; - BRAM (default); LUTRAM or URAM with BIND_STORAGE directive/pragma 6

=PrL
c Exercise: how many cycles it takes to the loop?

int A[N];
// The loop below is the shift operation
for (int 1 = 0; 1 < N-1; ++1) {
#pragma unroll
A[1] = A[1+1];
}

a) N=1024 - 7

b) N=1025 > ?

=PrL

.

Internal arrays:

Array optimizations
Types of storage resources

#pragma HLS bind storage variable=<variable> type=<type>

" FIFO
=" RAM single port

=" RAM single write port and multip

=" RAM dual port (1 read on
=" RAM dual port (1 read on

y, and t
y, and t

e read ports
ne other for read and write)

ne other write only)

" True dual port RAM (both ports for read and write)
= Single port ROM, Dual port ROM, and multi-port ROM.

More about supported types and how to use the pragma_bind storage in AMD documentation:
https://docs.amd.com/r/en-US/ug1399-vitis-hls/pragma-HLS-bind_storage

https://docs.amd.com/r/en-US/ug1399-vitis-hls/pragma-HLS-bind_storage

=PrL

Motivation

Why do we need array optimizations?

// assuming single port memory for each
a[2048];
b[2048];
0[2048];

Loop_1:for(inti=0;i <2048; i++) {
#pragma unroll factor=10

o[i] = a[i] + b[i];
}

Two main internal array optimizations

* Partitioning
* Reshaping

= Latency

—- oop_unroll 5 l-:>-:> unroll_10
y (cycles m
—

(absolute) [min | t}t}"t}u ED"DI.J:-;
_
Interval (cycles) EIEI
| |max[1003 203 103 |

=PrL

.

Original data

Data O

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data 7

Data 8

Data 9

Data 10

Data 11

Complete
Data O Data 6
Data 1 Data 7
Data 2 Data 8
Data 3 Data 9
Data 4 Data 10
Data 5 Data 11

The complete partitioning
separates all the elements of
the array in separate registers
individually accessible

Mem 1 Mem O

Mem 2

Mem_3

Array optimizations
Partitioning

Partitioned data

Block factor 4

Data O

Data 1

Data 2

Mem_O

Data 3

Data 4

Data 5

Mem 2

Data 6

Data 7

Data 8

Data 9

Data 10

Data 11

Cyclic factor 4

Data O

Data 4

Data 8

Mem_1

Data 2

Data 6

Data 10

Mem_3

Data 1

Data 5

Data 9

Data 3

Data 7

Data 11

Each memory block has a
limited amount of access
ports (single or dual ports),

which limits the data that can
be obtained in parallel

10

=PrL

.

Array optimizations
Reshaping

Original data Reshaped data
3 bits Compl.ete
< > RRAM 32 bits
types s >
(0] bata 0 ypes [0] Data 3 Data 2 Data 1 Data 0
[2] Data 2 e 2048 x 16 b|tS Block factor 2
[3] Data 3 e 1024 x 32 bits 16 bits
[0] Data 2 Data O
Partitioning and reshaping can be done for [1] Data 3 Data 1
each dimension in multidimensional arrays MSB LSB
Cyclic factor 2
The dim field indicates the dimension in which 16 bits
the partltlon or‘ re.sha.pe is appllgd (dlm 0 (0] Data 1 Data 0
applies the optimization to all dimensions)
[1] Data 3 Data 2
MSB LSB

What if the original data is has 16 or 32 bits width?

=PrL

baseline code

ap_uint<8> a[512][8];

loop 1:for(inti=0;i <512;i++) {
loop 2:for(intj=0;]j <8; j++) {
#pragma HLS unroll factor=4
acc += a[i] [j];
}
}

Combining Loop and Array Optimizations

Mem O

Mem 2

Partitioning:

#pragma HLS array_partition variable=a

type=? factor=? dim=?

Reshaping:
#pragma HLS array_reshape variable=a

type=? factor=? dim=?

Partition block factor 4

Data O

Data 1

Data 2

Data 6

Data 7

Data 8

Mem_1

Mem_3

Data 3

Data 4

Data 5

Data 9

Data 10

Data 11

Mem_ O

Mem 2

BRAM types
* 4096 x 8 bits
e 2048 x 16 bits

1024 x 32 bits

Partition cyclic factor 4

Data O

Data 4

Data 8

Data 2

Data 6

Data 10

Mem_1

Mem_3

Data 1

Data 5

Data 9

Data 3

Data 7

Data 11

12

EPFL Combining Loop and Array optimizations
$ When to use partition and when to use reshape?

Assuming single port memories and 1 BRAM indivisible units

baseline code

ap_uint<8> a[512][8]; Partitioning:
acc =0;
loop 1:for(inti=0;i <512;i++) {

loop_2:for(intj=0;j <8;j++) { Reshaping:

#pragma HLS unroll factor=4

#pragma HLS array_partition variable=a
type="? factor=? dim="

#pragma HLS array_reshape variable=a

BRAM types

* 4096 x 8 bits
e 2048 x 16 bits
e 1024 x 32 bits

acc += ali] [j]; type=cyclic factor=? dim=?
\ i Total Cycles
4096 —+
#BRAMS | Utilization T
baseline [G T
partition_4 _ 1024
1 2 3 4

Exercise: can we do better? Tip: #pragma HLS unroll factor=8

Number of BRAMs 13

=PrL

Combining Loop and Array optimizations

When to use partition and when to use reshape?

Assuming dual port memories OR 0.5 BRAM indivisible units (realistic)

baseline code

ap_ uint<8>a[512][8];

loop_1:for(inti=0;i <512; i++) {
loop_2:for(intj=0;j <8;j++) {
#pragma HLS unroll factor=4

Partitioning:

#pragma HLS array_partition variable=a BRAM types
type=? factor=? dim="? e 4096 x 8 bits
Reshaping: e 2048 x 16 bits

#pragma HLS array_reshape variable=a

* 1024 x 32 bits

acc += ali] [j]; type="? factor=? dim="
\) Tq:caICycIes
BRAMS Cycles T
baseline 2?7 Bl
partition_4 T
reshape_4 1024
partition_2 [N -,
1 2 3 4

reshape_2 [N

Number of BRAMs 14

=PFL Combining Loop and Array optimizations
When to use partition and when to use reshape?

.

Assuming dual port memories OR 0.5 BRAM indivisible units (realistic)

baseline code

ap uint<8> a[512][8];

#pragma HLS array_partition variable=a
type=cyclic factor=? dim=2

#pragma HLS array_reshape variable=a
type=cyclic factor=? dim=2

loop 1:for(inti=0;i <512; i++) {
loop 2:for(intj=0;]j <8;j++) {
#pragma HLS unroll factor="
acc += ai] [j];

}

}

600

500

400

Cycles
w
o
o

200

100

reshape_4

64bit bandwidth
bottleneck

reshape_4
partition_2

partition_3
reshape_2

reshape_4

partition_2
reshape_4

2 3 4 5 6
BRAMS

15

EPFL Combining Loop and Array optimizations

Example code

ap_uint<8>a[2050][6];

loop_1:for(inti=0;i <2050; i++) {
#pragma HLS unroll factor=2
loop 2:for(intj=0;j <6;j++) {
#pragma HLS unroll complete
acc = ali] [jI;
}
}

Partitioning:
#pragma HLS array_partition variable=a
type=? Factor=? dim=1

#pragma HLS array_partition variable=a
type=? Factor=? dim=2

a[0]
a[1]
a[2]
a[3]
al4]
a[5]
a[6]
a[7]
a[8]
a[9]

memO mem1 mem?2 mem3 mem4 mem>5
a[0][0] a[0][5]
a[9][0] a[9][5]

Assuming dual port memories OR 0.5 BRAM indivisible units (realistic)

Data accessed
in 1 cycle

BRAM types

* 4096 x 8 bits
e 2048 x 16 bits
* 1024 x 32 bits

16

=PrL

.

Combining Loop and Array optimizations

Assuming dual port memories OR 0.5 BRAM indivisible units (realistic)

Solution # BRAMS

Example code 7000
int<8> a[2050][6] 0000 T
ap_uin a ;
P— ’ 5000
P B $ 4000
loop_1:for(inti=0;i <2050; i++) { S 2000 BRAM types
#pragma HLS unroll factor=2 reshape_4 partition_3 e 4096 x 8 bits
loop 2:for(intj=0;] <6; j++) { 2000 | ition. 2 reshape_2 . 2048 x 16 bits
#pragma HLS unroll complete 1002 reshape 4 = == « 1024 x 32 bits
acc = ali] [j1;
} [TL] 0 2 4 6 8
| # BRAMS

Utilization

baseline
partition_6
partition_3 reshape_2

partition_2 reshape_4
17

reshape_4

EPFL Combining Loop and Array optimizations

c Assuming dual port memories OR 0.5 BRAM indivisible units (realistic)
Example code 7000
6000 * baseline
ap uint<8> a[2050][6];
5000
: CF o — ()i . o 4000
loop_1:for(inti=0;i <2050; i++) { %; partition_3 BRAM types
#pragma HLS unroll factor=2 $3000 reshape 2 e 4096 x 8 bits
loop_ 2:for(intj=0;j <6; j++) { 2000 reShjp9_4 Z e 2048 x 16 bits
#pragma HLS unroll complete 1000 partition 2 = sartition 6 * 1024 x 32 bits
acc = a[i] [j]; 0 reshape_4
} 0 2 4 6 8
} # BRAMS
baseline 4 (8 bits) 85,798% 6150
partition_6 6 (8 bits) 50,005% 1025
partition_3 reshape_2 6 (16 bits) 50,005% 1025
partition_2 reshape_4 4 (32 bits) 75.073% 1025
reshape_4 4 (32 bits) 85,798% 1538 18

=PrL

¢ Array optimizations: Type of interfaces

My_module(int *in_a,
Interfaces: int *in_b,

int *out) {
= Slave interfaces (slave registers) |#pragma interface m axi variable=in_a

#pragma interface m_axi variable=in_b

= Master interfaces #pragma interface m_axi variable=out
= Master AXI How many ports are generated?
= BRAM (single or dual port)
" FIFOs
Scalar(pass by value) Slave register s_axilite (Write only e None
Pointer used as scalar Slave register s_axilite (Read and/or Write) e Valid
Reference Slave register s_axilite (Read and/or Write) e Ack
Array Master port m_axi * Valid & ack
Pointer used as array Master port m_axi * Output valiql _
his::stream Stream AX14-Stream (axis) COHTE] Sl (S, GonLmie,

idle, done, ready) 20

iEL Array optimizations: Type of interfaces

My_module(int *in_a,
Interfaces: int *in_b,

int *out) {
= Slave interfaces (slave registers) |#pragma interface bram variable=in_a

#pragma interface bram variable=in_b

= Master interfaces #pragma interface bram variable=out
= Master AX| What if | access true dual-port BRAMs?
= BRAM (single or dual port)
= FIFOs
Scalar(pass by value) Slave register s_axilite (Write only
Pointer used as scalar Slave register s_axilite (Read and/or Write) :\Ij;)I? de
Reference Slave register s_axilite (Read and/or Write) o Ack
Array Master port m_axi e Valid & ack
Pointer used as array Master port m_axi e Qutput valid
hls::stream Stream AX|4-Stream (axis) * Control chain (Start, continue,

idle, done, ready)
Homework: check preconditions and limitations of burst transfer here

https://docs.amd.com/r/en-US/ug1399-vitis-hls/Preconditions-and-Limitations-of-Burst-Transfer

= Types of storage resources and how to optimize their usage

= How to perform a Design Space Exploration in HLS using:
= Array optimizations pragmas: partitioning, reshaping.
= Combining loop and array optimizations
= Types of interfaces
= Slave
= Master
= Other protocols

Summary

22

Denlsa Constantmescu

EPFL—Embedded Systems Laboratory
denisa.constantinescu@epfl.ch

	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	High-level synthesis (HLS) design flow for HW accelerators
	Design Space Exploration (DSE)
	Learning Objectives: HLS optimizations
	What types of storage resources do we have on the FPGA?�Remember the HLS translation table �
	Exercise: how many cycles it takes to the loop?
	Array optimizations�Types of storage resources
	Slide Number 9
	Array optimizations �Partitioning
	Array optimizations�Reshaping
	Combining Loop and Array Optimizations�
	Combining Loop and Array optimizations�When to use partition and when to use reshape?�
	Combining Loop and Array optimizations�When to use partition and when to use reshape?�
	Combining Loop and Array optimizations�When to use partition and when to use reshape?�
	Combining Loop and Array optimizations
	Combining Loop and Array optimizations
	Combining Loop and Array optimizations
	Array optimizations: Type of interfaces
	Array optimizations: Type of interfaces
	Summary
	Denisa Constantinescu��EPFL – Embedded Systems Laboratory�denisa.constantinescu@epfl.ch

