=Pr-L

D

EcoCloud

L ABURATORY

Lab. On HW-SW Digital Systems Codesign

EE-390(a)

Session 3
Design exploration & optimization using HLS

Prof. David Atienza
Dr. Denisa Constantinescu, Dr. Miguel Pedn-Quiros,
Mr. Rubén Rodriguez-Alvarez, Ms. Stasa Kostic, Mr. Karan Pathak

£PFL High-level synthesis (HLS) design flow for HW accelerators

DESIGN FLOW VALIDATION FLOW
N
vitisHLs | [C++ description of | P C++ functional
oo HW J simulation
T J y
@ Comi)iling \
Schet:uling C++/RTL
Allocation co-simulation
\/
Binding
¥

k RTL generation)

Vivalo -
RTL description RTL HDL modules
(generated) »® (manual)

SoC-Ieve.I design HDL testbench RTL simulation
(block diagram)

Synthesis &
implementation

N

Integration with SW] HW execution
(C++, Python, ...) |

——/

[Bitstream on EPGA

PFL Learning Objectives

= How to perform a Design Space Exploration using Vitis HLS
= How to optimize loops in Vitis HLS
= Understand the HLS workflow: how C/C++ code is synthesized into RTL logic

=PrL

= Metrics:
= Latency
* Throughput
= Energy
= Resources (Area)

ali Flow Navigator X

4 CSIMULATION
* Run C Simulation

4 C SYNTHESIS
* Run C Synthesis
“ Reports & Viewers
Report
Function Call Graph
Schedule Viewer

Resource Usage

| [Verilog
2592

LATC

Dataflow Viewer
4 C/RTL COSIMULATION
* Run Cosimulation

“4 IMPLEMENTATION
Export RTL
* Run Implementation
“ Reports & Viewers
Report (RTL Synthesis)
Report (Place & Route)

Execution time

Design Space Exploration (DSE)

® Optimal solutions
® Non-optimal solutions
- Pareto optimal curve

Extremely
limited
resources

Limited
resources

Baseline

Pipelining

Parallelizing Parallelizing

Pipeline and parallel
Factor 4 Factor 16 g "

combination

v

Number of resources (Area)

Final Timing

Timing met

=Prl DSE in Vitis

c "~ Outline =& Directive x
~ # yector_adder

ERHLS UNROLL Factor=4

VitiS HLS SOlUtiOﬂS @llsum _loop

~ #® yector_select

M Explorer x & Module Hierarchy Solution in Vitis HLS HLSLOOP_MERGE
il loop 0
share the same code Billloop_1

- & session5_examples but apply different o ILLS TOP name=top
> @M Includes optimizations through
V] =R the directives. These
im Test Bench .
gy —r— solutions can present a array
> #m loop_merge resources_performance B HLS ARRAY_PARTITION cyclic dim=1 Factor=4 variable=a_array

» im partition_unroll pipeline Space_

I | # pragma OPTIMIZATION OPTION=2
, e.g. INTERFACES
Post-synthesis reports: types 7

// source: directives.tcl
set_directive_optimization [OPTIONS]
" Timings: Timings summary e.g. Parallelization with different factorsV

y

= Resources: Implementation table

A 4

= Solutions: Comparative report // source: setup.tcl
set_command_optimization [OPTIONS]

L BUIld the DSE e.g. Burst transaction width S s

\ 4

EPFL HLS optimizations

&

" There is a full list of pragmas and directives optimizations.

=" The most important ones are:
= L oops optimizations
= Pipelining
= Unrolling
= Merging
= Flattening
= Array optimizations (Next week with Denisa)
= Partitioning
= Reshaping
= Type of data storage
= Dataflow

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Optimization-Directives?tocId=qybLKiQgNbeHWDv_%7EpFMPg

EPFL Loops optimizations: Unrolling

$ Not unrolled (baseline) Factor=2 Factor=4
Loop 1:for(inti=0;i <LENGTH; i++) { || Loop 1:for(inti=0;i <LENGTH; i+=2){ || Loop 1: for(inti=0;i < LENGTH; i+=4) {
o[i] = a[i] + b[il; o[i] = a[i] + b[i]; o[i] = a[i] + b[i[;
} o[i+1] = a[i +1] + b[i +1]; o[i+1] = a[i +1] + b[i +1];
} o[i+2] = a[i +2] + b[i +2];

o[i+3] = a[i +3] + b[i +3];

}

O 1 2
c O o
e

5 e

2 3 Baseline 4
> O ®
o

Q

>

L

n
»

Number of resources (Area) |

Separated loops (baseline)

Loops optimizations: Merge

Merged loops

for(inti=0;i < LENGTH; i++) {
if(selli])
o[i] = a[i] + bli];
if(!sel[i])

oli] = a[i] - b[il;

for(inti=0; 1 <LENGTH; i++) {
if(selli])
o[i] = a[i] + b[i];
}
for(inti=0;i < LENGTH; i++) {
if(!selli])
o[i] = a[i] - b[i];
}
Scheduler view
0:1 Operation\Control Step
E vector_select_Pipeline_loop_0O(Function
B vector_select Pipeline_loop_1(Function
Operation\Control Step
9 :
B0 i(alloca)
E i_write_In14(write)
> br_In14(br)

» loop O

Execution time

1 2
o o
.-

3 Baseline 4
o o

»

»

Number of resources (Area)

=PFL
$ Only perfect and imperfect

loops can be flattened

Loops optimizations: Flattening

Separated loops (baseline)

/= Perfect nested loops
= Logic code only on innermost loop
= Loop bounds fixed

= Semi-perfect nested loops
= Logic code only on innermost loop

\ loop_i: for(inti=0;i < LENGTH; i++) {

loop_j: for(intj=0;j < WIDTH; j++) {
acc+=A[i * WIDTH + j];

}

}
Flattened

\ = Only outer loop bound variable (the rest are fixeoy loop i j:for(inti=0;i <LENGTH * WIDTH; i++) {

" Imperfect Nested loops

= Loops for which the previous conditions are not met

A

acc += Alil;

}

)
c 1 2

o [[

c

.0

5 e

o 3 Baseline 4

X ® ®

Note: Use LOOP_TRIPCOUNT pragma or directive in variable
bounded loops to allow Vitis HLS to report a minimum and
maximum number of iterations. If not done, Vitis HLS will be
unable to estimate the total execution time.

Number of resources (Area)

=PrL

&

Loops optimizations: Pipelining

Example code

. _)
= The Iteration Interval (ll) ap_u!nt<§§> E[tmgm]' £ .1 3
. =)
represents the number of cycles zp_ﬁ::zgzz C[[LENGTH]]j c
there is between two consecutives - ’ = o
Baseline
elements of data at the output. It || 1 ¢orinti=0;1 < LENGTH; i++) { 3 3 4
measures the throughput of the o[i] = a[i] + b[i; "
function being analyzed. } -
Number of resources (Area)
Not pipelined Data element Pipelined
Data element data[0] Read ‘ Sum Write
4 data[1] Read Sum Write
data[0] Read Sum Write data[2] Read Sum Write
data[1] Read e . data[3] Read Sum Write
) | Time Time
=3 I1=1

10

=PrL DEG Scheduling]—>[Allocation]—»[Binding]—>[RTL] SynthESiS FlOW

C++ description Data Flow Graph ai bi Ci
. b. .
int temp = 0; A i Ci
for(int i=0;i<100 ; i++) { 1 (oo 3
temp = (a[i] + b[i]) * temp + (b[i] * c [i]);
}
Assume: o (v
ty, = 6bns Loop-carried
ty = 9ns dependency
tp = 0ns !
4 { ADD
REG

Critical path: tpgen =7
lteration Latency: ?
Initiation Interval: ? 11

EPFL —

Scheduling }—{ Allocation }—{ Binding }—{ RTL

C++ description

—

Data Flow Graph

int temp =0;
for(inti=0;i<100 ; i++) {

}

temp = (a[i] + b[i]) * temp + (b[i] * c [i]);

a;

Assume:
ty, = 6bns
ty = 9ns
tp = 0ns

Timings model:
T, = #iterations * II * Ty,

Resources model:
Cr=2*#ADDs + 3 * #MULs +

Loop-carried
dependency

1 *#REGs

Solution: L; = 1 cycle, Il = 1 cycle, T, = 21ns

Total execution time Resources cost

T; =100%* 3 *21ns = 2100ns

CR=2+2+3%2+1x1=11

b;

Ci

Synthesis Flow

a; b;
1 (ADD 3
2 M‘l'JL
4 A;D

Critical path: tp,en = 21ns
Iteration Latency: L; = 1 cycle
Initiation Interval: II = 1 cycle

Ci

12

=PrL

.

DFG }—{ Scheduling }~{ Allocation }—{ Binding |—{ RTL

Solution: T, = 10ns ASAP with I = 3

Synthesis Flow

Step

Scheduling

Allocation

ADD

MUL

REG

SO

S1

S2

S3

MUL

REG

S4

S5

13

=PrL

.

DFG }—{ Scheduling }~{ Allocation }—{ Binding |—{ RTL

Solution: T, = 10ns ALAP with Il = 3

Synthesis Flow

Step

Scheduling

Allocation

ADD

MUL

REG

SO

S1

S2

S3

MUL

REG

S4

S5

14

=PrL

.

DFG }—{ Scheduling }~{ Allocation }—{ Binding |—{ RTL

Solution: T, = 10ns ASAP with II = 2

Synthesis Flow

Step

Scheduling

Allocation

ADD

MUL

REG

SO

S1

S2

S3

MUL

REG

S4

S5

15

=PrL

.

DFG }—{ Scheduling }~{ Allocation }—{ Binding |—{ RTL

Solution: T, = 10ns ALAP with II = 2

Synthesis Flow

Step

Scheduling

Allocation

ADD

MUL

REG

SO

S1

S2

S3

MUL

REG

S4

S5

16

=PrL

.

DFG }—{ Scheduling }~{ Allocation }—{ Binding |—{ RTL

Solution: T, = 15ns with Il = 2

Synthesis Flow

Step

Scheduling

Allocation

ADD

MUL

REG

MUL

REG

17

=PrL

.

DFG }—{ Scheduling }~{ Allocation }—{ Binding |—{ RTL

Solutions table

DSE

Ty, (ns)‘

Solution

T (ns)

Cr(ns)

Cr 18

=PrL DFG }—{ Scheduling }—={ Allocation }—={ Binding SynthES|S Flow
Scheduling Binding
a; bi Ci
FSM MUX1 | MUX2 | MUX3 | MUX4 | MUX5
Allocated Resources -~
#ADD 1 | #MUL 1 #REG s1 19

EPFL Exercise

.

C++ description Data Flow Graph
] b; i
int temp = 0; N ’ Explore:
for(int i=0; <100 ; I++){ ASAP ”=2 ||=3
temp = (afi] + b[i]) * temp + (b[i] + c [i]); A

} ALAP 11=2 [1=3
Assume: Tdk = min
ty = 6Tl:9 Tclk = 15715
ty = 9ns Binding for any solution
trg = Ons with Tclk = min

Timings model:
T, = #iterations * II = T,y

Resources model:
Cpr =2*#ADDs + 3 * #MULs + 1 » #REGs

20

Synthesis Flow Analysis and Debugging

moving_avg_P mf $/00 0|80

Operation\Control Step
4 CSIMULATION 4

* Run C Simulation i_1(read)
: i_cast(zext
4 Reports & Viewers I_cast(zext

icmp_In9(i) e = . . =

Pre-Synthesis Control Flow E:r:ﬁé(r;r)(lcmp) LOOP_ACCUM: (1=0; i<(length - 3); i++){

4 C SYNTHESIS shl_In(bitconcatenate) accum = 1n []_] + 1n [1] + 1n [1 :| + 1in [1
» Run C Synthesis zext In10@zext) out[i] = accum/4;

= add_In10(+)

4 Rep-urts & Viewers trunc_In{partselect)

Report . sext_In10(sext)
Function Call Graph input_r_addr{getelementptr)

) empty(readreq)
Schedule Viewer add_In10_1(+)

Dataflow Viewer i_write_In9(write)

4 C/RTL COSIMULATION input_r_addr_read(read)
input_r_addr_read_1(read)
input_r_addr_read_2(read)
4 Reports & Viewers 9 input_r_addr_read_3(read)

Report add_In10_2(+)
add_In10_3(+)
)) accum(+)
Timeline Trace tmp(bitselect)

Wave Viewer sub In11(-)

&ll Flow Navigator X

* Run Cosimulation

Function Call Graph

~ Performance & Resource Estimates &

tEA®R @ a BEE->0

Modules & Loops ‘ Issue Type Violation Type | Distance ‘ Slack{ Latency{cyclesi Latency{nsi lteration Latency{ Intervai Trip Couml Pipelineu‘ BRAN‘ DSF‘(FFI LUTI URAN‘
4 @ moving_avg 183 1,830E3 - 184 - no 0 0 2272 3788 0
4 @ moving_avg_Pipeline_LOOP_ACCUM.II Violation 175 1,750E3 = = no 0 0 423 512 0
LOOP_ACCUM @ Il Violation Memory Dependency 1 173 1,730E3 15 40 yes - - - - -

EPFL From C/C++ to HW

<

= Always remember: you are not programming in C!
You are defining a behavior: The C++ description functionality matches the generated HW functionality

Not all C++ features are available

You can rewrite the C description to guide the compiler and synthesizer towards a desired design (dependencies)

HLS translation table

C++ Generated HW C++ Unsupported Features

Functions Modules with 1/0s System Calls
Arguments Ports of modules Dynamic memory allocation
Private variables Local signals Pointer casting only for not C++ types
Static variables Registers Pointers to pointers
Arrays Storage units (Memories) Function pointers
[Arrays or pointers in arguments Memory ports } Recursive functions
Variables Signals (Wires) Undefined behaviors for conditions
Function calls Modules instantiation | Virtual functions and pointers

Over the next session 22

=PrL

X

v/

if(x ==0) {
a=..

}if else (x < 5) {
a=..

}if else (x ==5) {
a=..

}

if(x ==0) {
a=..

}if else (x < 5) {
a=..

}if else (x == 5) {
a=..

} else {
a=..

}

Undefined
behavior

Define
behavior for
ALL cases

v/

a=0;

if(x ==0) {
a=..

}if else (x < 5) {
a=..

} if else (x == 5) {
a=..

}

Initialization of
the variable

If statement example

23

EPrL Summary

= How to perform a Design Space Exploration in HLS using:
= Several loop optimizations pragmas: unrolling, merging, flattening, pipelining.
= Adding resources constraints.
= Changing the target frequency.
= C/C++ description rewriting to help the interpreter understand the data dependencies.

= How HLS synthesizes C/C++ into HW through the Scheduling, Allocation and Binding.

= How the Initiation Interval (ll) is directly related with the throughput and the total
execution time and depends on the carried loop dependencies and the number of
resources available.

= You have seen tools in Vitis HLS that will help us optimizing your HW:
= Creating different solutions through the use of directives
= Solution summary reports -> Giving us estimations of the timings and the resources consumption
= Analysis reports -> How the tool is synthesizing the C/C++ description

24

E Ruben' Rodnguei Alvarez

EPFL—Embedded Systems Laboratory
ruben.rodriguezalvarez@epfl.ch

=Pr-L

D

EcoCloud

L ABURATORY

Lab. On HW-SW Digital Systems Codesign

EE-390(a)

Templates for Scheduling, Allocation and Binding

Prof. David Atienza
Dr. Denisa Constantinescu, Dr. Miguel Pedn-Quiros,
Mr. Rubén Rodriguez-Alvarez, Ms. Stasa Kostic, Mr. Karan Pathak

=PrL
C++ description Data Flow Graph
. b.
int temp =0; | l

for(int i=0; i<100 ; i++) {
temp = (a[i] + b[i]) * temp + (b[i] + c [i]);
}

Assume:
ty = 6ns Loop-carried
ty = 9ns dependency
tp = 0ns

Timings model:
T, = #iterations * II = T,y

Resources model:
Cpr =2*#ADDs + 3 * #MULs + 1 » #REGs

Ci

Exercise

Explore:

ASAP I1=2 11=3

ALAP II=2 11=3

T/ = min

T, = 15ns

Binding for any solution
with T, = min

27

=PFL SOLUTION

&

Step

Scheduling

Allocation

ADD

MUL

REG

DFG

MUL

REG

=PFL SOLUTION

&

Step

Scheduling

Allocation

ADD

MUL

REG

DFG

MUL

REG

=PrL

2

Solution

T,
A

Design Space Exploration

=PFL SOLUTION

Binding

.

Scheduling

FSM

MUX1

MUX2

MUX3

MUX4

MUX5

MUX6

MUX7

MUX8

MUX9

SO

S1

S2

Allocated Resources

S3

#ADD

#MUL

#REG

s4

S5

	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	High-level synthesis (HLS) design flow for HW accelerators
	Learning Objectives
	Design Space Exploration (DSE)
	DSE in Vitis
	HLS optimizations
	Loops optimizations: Unrolling
	Loops optimizations: Merge
	Loops optimizations: Flattening
	Loops optimizations: Pipelining
	Synthesis Flow
	Synthesis Flow
	Synthesis Flow
	Synthesis Flow
	Synthesis Flow
	Synthesis Flow
	Synthesis Flow
	DSE
	Synthesis Flow
	Exercise
	Synthesis Flow Analysis and Debugging
	From C/C++ to HW
	If statement example
	Summary
	Rubén Rodríguez Álvarez��EPFL – Embedded Systems Laboratory�ruben.rodriguezalvarez@epfl.ch
	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	Exercise
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31

