
Lab. On HW-SW Digital Systems Codesign
EE-390(a)

Prof. David Atienza
Dr. Denisa Constantinescu, Dr. Miguel Peón-Quirós,

Mr. Rubén Rodríguez-Álvarez, Ms. Stasa Kostic, Mr. Karan Pathak

Session 3
Design exploration & optimization using HLS

2

High-level synthesis (HLS) design flow for HW accelerators

C++ description of
HW

RTL HDL modules
(manual)

SoC-level design
(block diagram)

Integration with SW
(C++, Python, …)

Compiling

Scheduling

Allocation

Binding

RTL description
(generated)

Synthesis &
implementation

Bitstream

DESIGN FLOW VALIDATION FLOW

C++ functional
simulation

C++/RTL
co-simulation

HDL testbench RTL simulation

HW execution
on FPGA

RTL generation

Vivado

Vitis HLS
Golden reference

 How to perform a Design Space Exploration using Vitis HLS
 How to optimize loops in Vitis HLS
 Understand the HLS workflow: how C/C++ code is synthesized into RTL logic

3

Learning Objectives

 Metrics:
 Latency
 Throughput
 Energy
 Resources (Area)

4

Design Space Exploration (DSE)

Number of resources (Area)

Ex
ec

ut
io

n
tim

e

Limited
resources

Optimal solutions

Parallelizing
Factor 16

Non-optimal solutions

Baseline

Pipeline and parallel
combination

Extremely
limited

resources

Parallelizing
Factor 4

Pareto optimal curve

Pipelining

Post-synthesis reports:
 Resources: Implementation table
 Timings: Timings summary
 Solutions: Comparative report

5

DSE in Vitis

Solution in Vitis HLS
share the same code
but apply different
optimizations through
the directives. These
solutions can present
resources-performance
trade-off in the Design
Space.

Vitis HLS Solutions

Optimization
types

// source: accelerator.cpp
pragma OPTIMIZATION OPTION=2
e.g. INTERFACES

// source: directives.tcl
set_directive_optimization [OPTIONS]
e.g. Parallelization with different factors

// source: setup.tcl
set_command_optimization [OPTIONS]
e.g. Burst transaction widthBuild the DSE

 There is a full list of pragmas and directives optimizations.
 The most important ones are:
 Loops optimizations

 Pipelining
 Unrolling
 Merging
 Flattening

 Array optimizations (Next week with Denisa)
 Partitioning
 Reshaping
 Type of data storage

 Dataflow

6

HLS optimizations

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/HLS-Pragmas
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Optimization-Directives?tocId=qybLKiQgNbeHWDv_%7EpFMPg

7

Loops optimizations: Unrolling
Factor=2Not unrolled (baseline) Factor=4

Loop_1: for(int i = 0; i < LENGTH; i++) {
o[i] = a[i] + b[i];

}

Loop_1: for(int i = 0; i < LENGTH; i+=2) {
o[i] = a[i] + b[i];
o[i+1] = a[i +1] + b[i +1];

}

Loop_1: for(int i = 0; i < LENGTH; i+=4) {
o[i] = a[i] + b[i];
o[i+1] = a[i +1] + b[i +1];
o[i+2] = a[i +2] + b[i +2];
o[i+3] = a[i +3] + b[i +3];

}

Number of resources (Area)

Ex
ec

ut
io

n
tim

e

Baseline

1

3

2

4

8

Loops optimizations: Merge

Number of resources (Area)

Ex
ec

ut
io

n
tim

e

Baseline

1

3

2

4

loop_0: for(int i = 0; i < LENGTH; i++) {
if(sel[i])

o[i] = a[i] + b[i];
}
loop_1: for(int i = 0; i < LENGTH; i++) {

if(!sel[i])
o[i] = a[i] - b[i];

}

Separated loops (baseline)
loop_0: for(int i = 0; i < LENGTH; i++) {

if(sel[i])
o[i] = a[i] + b[i];

if(!sel[i])
o[i] = a[i] - b[i];

}

Merged loops

Scheduler view

ba
se

lin
e

M
er

ge
d

9

Loops optimizations: Flattening

Number of resources (Area)

Ex
ec

ut
io

n
tim

e

Baseline

1

3

2

4

 Perfect nested loops
 Logic code only on innermost loop
 Loop bounds fixed

 Semi-perfect nested loops
 Logic code only on innermost loop
 Only outer loop bound variable (the rest are fixed)

 Imperfect Nested loops
 Loops for which the previous conditions are not met

loop_i: for(int i = 0; i < LENGTH; i++) {
loop_j: for(int j = 0; j < WIDTH; j++) {

acc += A[i * WIDTH + j];
}

}

loop_i_j: for(int i = 0; i < LENGTH * WIDTH; i++) {
acc += A[i];

}

Only perfect and imperfect
loops can be flattened Separated loops (baseline)

Flattened

Note: Use LOOP_TRIPCOUNT pragma or directive in variable
bounded loops to allow Vitis HLS to report a minimum and
maximum number of iterations. If not done, Vitis HLS will be
unable to estimate the total execution time.

10

Loops optimizations: Pipelining

Number of resources (Area)

Ex
ec

ut
io

n
tim

e

Baseline

1

3

2

4

 The Iteration Interval (II)
represents the number of cycles
there is between two consecutives
elements of data at the output. It
measures the throughput of the
function being analyzed.

ap_uint<32> a[LENGTH];
ap_uint<32> b[LENGTH];
ap_uint<32> c[LENGTH];

loop_1: for(int i = 0; i < LENGTH; i++) {
o[i] = a[i] + b[i];

}

Example code

Time

Data element

data[1]
data[0]

data[2]
data[3]

Read TASK B TASK DSum Write

TASK A TASK B TASK DRead Sum Write

TASK A TASK B TASK DRead Sum Write

TASK A TASK B TASK DRead Sum Write

II = 1

Pipelined

Time

Data element

data[1]
data[0] Read TASK B TASK DSum Write

TASK A TASK B TASK DRead Sum Write

II = 3

Not pipelined

11

Synthesis Flow

int temp = 0;
for(int i=0 ; i<100 ; i++) {

temp = (a[i] + b[i]) * temp + (b[i] * c [i]);
}

C++ description

C DFG Scheduling Allocation Binding RTL

MUL

ADD MUL

ADD

Assume:
𝑡𝑡𝐴𝐴 = 6𝑛𝑛𝑛𝑛
𝑡𝑡𝑀𝑀 = 9𝑛𝑛𝑛𝑛
𝑡𝑡𝑅𝑅 = 0𝑛𝑛𝑛𝑛

1 3

2

4

Loop-carried
dependency

Data Flow Graph

MUL

ADD MUL

ADD

1 3

2

4

REG

𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖

𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖

Critical path: 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =?
Iteration Latency: ?
Initiation Interval: ?

12

Synthesis Flow

int temp = 0;
for(int i=0 ; i<100 ; i++) {

temp = (a[i] + b[i]) * temp + (b[i] * c [i]);
}

C++ description

C DFG Scheduling Allocation Binding RTL

Assume:
𝑡𝑡𝐴𝐴 = 6𝑛𝑛𝑛𝑛
𝑡𝑡𝑀𝑀 = 9𝑛𝑛𝑛𝑛
𝑡𝑡𝑅𝑅 = 0𝑛𝑛𝑛𝑛

Resources model:
𝐶𝐶𝑅𝑅 = 2 ∗ #𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠 + 3 ∗ #𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 1 ∗ #𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Total execution time Resources cost

𝑻𝑻𝑳𝑳 = 100 ∗ 3 ∗ 21𝑛𝑛𝑛𝑛 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝑪𝑪𝑹𝑹 = 2 ∗ 2 + 3 ∗ 2 + 1 ∗ 1 = 𝟏𝟏𝟏𝟏

Critical path: 𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 21𝑛𝑛𝑛𝑛
Iteration Latency: 𝐿𝐿𝐼𝐼 = 1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
Initiation Interval: 𝐼𝐼𝐼𝐼 = 1 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Timings model:
𝑇𝑇𝐿𝐿 = #𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐼𝐼𝐼𝐼 ∗ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

Solution: 𝑳𝑳𝑰𝑰 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄, 𝐈𝐈𝐈𝐈 = 𝟏𝟏 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜,𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐

MUL

ADD MUL

ADD

1 3

2

4

REG

𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖

MUL

ADD MUL

ADD

1 3

2

4

Loop-carried
dependency

Data Flow Graph
𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖

13

Synthesis FlowC DFG Scheduling Allocation Binding RTL

Solution: 𝐓𝐓𝐜𝐜𝐜𝐜𝐜𝐜 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ASAP with 𝑰𝑰𝑰𝑰 = 𝟑𝟑
DFG

𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄
𝑰𝑰𝑰𝑰
ADD MUL REG

𝑻𝑻𝑳𝑳
𝑪𝑪𝑹𝑹

Step Scheduling Allocation
ADD MUL REG

S0

S1

S2

S3

S4

S5

Assume:
𝑡𝑡𝐴𝐴 = 6𝑛𝑛𝑛𝑛
𝑡𝑡𝑀𝑀 = 9𝑛𝑛𝑛𝑛
𝑡𝑡𝑅𝑅 = 0𝑛𝑛𝑛𝑛

14

Synthesis FlowC DFG Scheduling Allocation Binding RTL

Solution: 𝐓𝐓𝐜𝐜𝐜𝐜𝐜𝐜 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ALAP with 𝑰𝑰𝑰𝑰 = 𝟑𝟑
DFG Step Scheduling Allocation

ADD MUL REG

S0

S1

S2

S3

S4

S5

𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄
𝑰𝑰𝑰𝑰
ADD MUL REG

𝑻𝑻𝑳𝑳
𝑪𝑪𝑹𝑹

Assume:
𝑡𝑡𝐴𝐴 = 6𝑛𝑛𝑛𝑛
𝑡𝑡𝑀𝑀 = 9𝑛𝑛𝑛𝑛
𝑡𝑡𝑅𝑅 = 0𝑛𝑛𝑛𝑛

15

Synthesis FlowC DFG Scheduling Allocation Binding RTL

Solution: 𝐓𝐓𝐜𝐜𝐜𝐜𝐜𝐜 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ASAP with 𝑰𝑰𝑰𝑰 = 𝟐𝟐
DFG Step Scheduling Allocation

ADD MUL REG

S0

S1

S2

S3

S4

S5

𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄
𝑰𝑰𝑰𝑰
ADD MUL REG

𝑻𝑻𝑳𝑳
𝑪𝑪𝑹𝑹

Assume:
𝑡𝑡𝐴𝐴 = 6𝑛𝑛𝑛𝑛
𝑡𝑡𝑀𝑀 = 9𝑛𝑛𝑛𝑛
𝑡𝑡𝑅𝑅 = 0𝑛𝑛𝑛𝑛

16

Synthesis FlowC DFG Scheduling Allocation Binding RTL

Solution: 𝐓𝐓𝐜𝐜𝐜𝐜𝐜𝐜 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ALAP with 𝑰𝑰𝑰𝑰 = 𝟐𝟐
DFG Step Scheduling Allocation

ADD MUL REG

S0

S1

S2

S3

S4

S5

𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄
𝑰𝑰𝑰𝑰
ADD MUL REG

𝑻𝑻𝑳𝑳
𝑪𝑪𝑹𝑹

Assume:
𝑡𝑡𝐴𝐴 = 6𝑛𝑛𝑛𝑛
𝑡𝑡𝑀𝑀 = 9𝑛𝑛𝑛𝑛
𝑡𝑡𝑅𝑅 = 0𝑛𝑛𝑛𝑛

17

Synthesis FlowC DFG Scheduling Allocation Binding RTL

Solution: 𝐓𝐓𝐜𝐜𝐜𝐜𝐜𝐜 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 with 𝑰𝑰𝑰𝑰 = 𝟐𝟐
DFG Step Scheduling Allocation

ADD MUL REG

𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄
𝑰𝑰𝑰𝑰
ADD MUL REG

𝑻𝑻𝑳𝑳
𝑪𝑪𝑹𝑹

Assume:
𝑡𝑡𝐴𝐴 = 6𝑛𝑛𝑛𝑛
𝑡𝑡𝑀𝑀 = 9𝑛𝑛𝑛𝑛
𝑡𝑡𝑅𝑅 = 0𝑛𝑛𝑛𝑛

18

DSEC DFG Scheduling Allocation Binding RTL

TL(𝑛𝑛𝑛𝑛)

𝐶𝐶𝑅𝑅

Solution 𝑻𝑻𝑳𝑳(𝒏𝒏𝒏𝒏) 𝑪𝑪𝑹𝑹(𝒏𝒏𝒏𝒏)

Solutions table

19

Synthesis FlowC DFG Scheduling Allocation Binding RTL

BindingScheduling

#ADD 1 #MUL 1 #REG 1

Allocated Resources FSM MUX1 MUX2 MUX3 MUX4 MUX5

S0

S1

REG

MULADD

MUX1 MUX2 MUX3 MUX5

MUX5

𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖

20

Exercise

int temp = 0;
for(int i=0 ; i<100 ; i++) {

temp = (a[i] + b[i]) * temp + (b[i] + c [i]);
}

C++ description

MUL

ADD ADD

ADD

1 3

2

4

𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖

Assume:
𝑡𝑡𝐴𝐴 = 6𝑛𝑛𝑛𝑛
𝑡𝑡𝑀𝑀 = 9𝑛𝑛𝑛𝑛
𝑡𝑡𝑅𝑅 = 0𝑛𝑛𝑛𝑛

Resources model:
𝐶𝐶𝑅𝑅 = 2 ∗ #𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠 + 3 ∗ #𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 1 ∗ #𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Timings model:
𝑇𝑇𝐿𝐿 = #𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐼𝐼𝐼𝐼 ∗ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

Data Flow Graph

Explore:
ASAP II=2 II=3
ALAP II=2 II=3
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 = 15𝑛𝑛𝑛𝑛
Binding for any solution
with 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚

21

Synthesis Flow Analysis and Debugging

 Always remember: you are not programming in C!
 You are defining a behavior: The C++ description functionality matches the generated HW functionality
 Not all C++ features are available
 You can rewrite the C description to guide the compiler and synthesizer towards a desired design (dependencies)

22

From C/C++ to HW

C++ Generated HW
Functions Modules with I/Os
Arguments Ports of modules
Private variables Local signals
Static variables Registers
Arrays Storage units (Memories)
Arrays or pointers in arguments Memory ports
Variables Signals (Wires)
Function calls Modules instantiation

HLS translation table
C++ Unsupported Features
System Calls
Dynamic memory allocation
Pointer casting only for not C++ types
Pointers to pointers
Function pointers
Recursive functions
Undefined behaviors for conditions
Virtual functions and pointers

Over the next session

23

If statement example

if(x == 0) {
a = …

} if else (x < 5) {
a = …

} if else (x == 5) {
a = …

}

if(x == 0) {
a = …

} if else (x < 5) {
a = …

} if else (x == 5) {
a = …

} else {
a = …

}

a = 0;

if(x == 0) {
a = …

} if else (x < 5) {
a = …

} if else (x == 5) {
a = …

}

Undefined
behavior

Define
behavior for

ALL cases

Initialization of
the variable

 How to perform a Design Space Exploration in HLS using:
 Several loop optimizations pragmas: unrolling, merging, flattening, pipelining.
 Adding resources constraints.
 Changing the target frequency.
 C/C++ description rewriting to help the interpreter understand the data dependencies.

 How HLS synthesizes C/C++ into HW through the Scheduling, Allocation and Binding.
 How the Initiation Interval (II) is directly related with the throughput and the total

execution time and depends on the carried loop dependencies and the number of
resources available.
 You have seen tools in Vitis HLS that will help us optimizing your HW:

 Creating different solutions through the use of directives
 Solution summary reports -> Giving us estimations of the timings and the resources consumption
 Analysis reports -> How the tool is synthesizing the C/C++ description

24

Summary

Questions?
Rubén Rodríguez Álvarez

EPFL – Embedded Systems Laboratory
ruben.rodriguezalvarez@epfl.ch

Lab. On HW-SW Digital Systems Codesign
EE-390(a)

Prof. David Atienza
Dr. Denisa Constantinescu, Dr. Miguel Peón-Quirós,

Mr. Rubén Rodríguez-Álvarez, Ms. Stasa Kostic, Mr. Karan Pathak

Templates for Scheduling, Allocation and Binding

27

Exercise

int temp = 0;
for(int i=0 ; i<100 ; i++) {

temp = (a[i] + b[i]) * temp + (b[i] + c [i]);
}

C++ description

MUL

ADD ADD

ADD

1 3

2

4

Loop-carried
dependency

𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖 𝑐𝑐𝑖𝑖

Assume:
𝑡𝑡𝐴𝐴 = 6𝑛𝑛𝑛𝑛
𝑡𝑡𝑀𝑀 = 9𝑛𝑛𝑛𝑛
𝑡𝑡𝑅𝑅 = 0𝑛𝑛𝑛𝑛

Resources model:
𝐶𝐶𝑅𝑅 = 2 ∗ #𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠 + 3 ∗ #𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 1 ∗ #𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Timings model:
𝑇𝑇𝐿𝐿 = #𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐼𝐼𝐼𝐼 ∗ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐

Data Flow Graph

Explore:
ASAP II=2 II=3
ALAP II=2 II=3
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 = 15𝑛𝑛𝑛𝑛
Binding for any solution
with 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚

Step Scheduling Allocation
ADD MUL REG

DFG

𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄
𝑰𝑰𝑰𝑰
ADD MUL REG

𝑻𝑻𝑳𝑳
𝑪𝑪𝑹𝑹

SOLUTION

Step Scheduling Allocation
ADD MUL REG

DFG

𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄
𝑰𝑰𝑰𝑰
ADD MUL REG

𝑻𝑻𝑳𝑳
𝑪𝑪𝑹𝑹

SOLUTION

Design Space Exploration

Solution 𝑻𝑻𝑳𝑳 𝑪𝑪𝑹𝑹

𝑻𝑻𝑳𝑳

𝐶𝐶𝑅𝑅

Binding

Scheduling

#ADD #MUL #REG

Allocated Resources

FSM MUX1 MUX2 MUX3 MUX4 MUX5 MUX6 MUX7 MUX8 MUX9

S0

S1

S2

S3

S4

S5

SOLUTION

	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	High-level synthesis (HLS) design flow for HW accelerators
	Learning Objectives
	Design Space Exploration (DSE)
	DSE in Vitis
	HLS optimizations
	Loops optimizations: Unrolling
	Loops optimizations: Merge
	Loops optimizations: Flattening
	Loops optimizations: Pipelining
	Synthesis Flow
	Synthesis Flow
	Synthesis Flow
	Synthesis Flow
	Synthesis Flow
	Synthesis Flow
	Synthesis Flow
	DSE
	Synthesis Flow
	Exercise
	Synthesis Flow Analysis and Debugging
	From C/C++ to HW
	If statement example
	Summary
	Rubén Rodríguez Álvarez��EPFL – Embedded Systems Laboratory�ruben.rodriguezalvarez@epfl.ch
	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	Exercise
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31

