=Pr-L

D

EcoCloud

L ABURATORY

Lab. On HW-SW Digital Systems Codesign

EE-390(a)

Session 2
Introduction to co-design with high-level synthesis (HLS)

Prof. David Atienza
Dr. Denisa Constantinescu, Dr. Miguel Pedn-Quirds
Mr. Rubén Rodriguez-Alvarez, Ms. Stasa Kostic, Mr. Karan Pathak

EP‘FL Session objectives
= Introduction to high-level synthesis (HLS)
= Levels of optimization and parallelism
= Mapping of function arguments to peripheral ports
= Examples of peripherals in HLS

" Integration with SW in Linux
= Memory & DSP resources in the Zyng 7000 FPGA family

-level

igh

A an
O
)
C
O
s
O
>

o)
®
S
s
k=

synthesis (HLS)

&'L What is high-level synthesis (HLS)?

= HLS is an automated process that takes a behavioral specification of a system and
generates a register-transfer level (RTL) structure that implements the specified behavior?

= HLS increases the level of abstraction for the description of digital circuits

= |[n HDL, we describe a system in terms of finite-state machines and register-level transfers in a datapath
= |n HLS, we can describe a system at the algorithmic and dataflow levels
= We can write a loop and the tool will automatically:

= generate a datapath with the required number and type of operators,
= produce the scheduling of operations over cycles, and
= infer the FSMs

= |[f we change the optimization criteria, e.g., number of pipeline stages, the tool will automatically adjust
the FSM

" The designer describes the macro-architecture of the algorithm in C/C++
= Focusing on the design purpose and its interactions with other components

= Micro-architectural decisions such as FSMs, datapaths, register pipelines, etc. are left to
the HLS tool

= Enables easy exploration of different microarchitectures from the same microarchitecture description

1 Vitis High-Level Synthesis User Guide — UG1399 4

=PFL High-level synthesis design flow for HW accelerators

$ DESIGN FLOW VALIDATION FLOW
vitisHLs | [C++ description of | P C++ functional
oo HW J simulation
T y
Comi)iling
Scheguling C++/RTL
Allocation co-simulation
¥
Binding
¥

RTL generation

l

Vivado
RTL description RTL HDL modules
(generated) (manual)

SoC-Ieve.I design HDL testbench RTL simulation
(block diagram)

Synthesis &

implementation
[Biksksaams =1 Integration with SW\ HW execution
(C++, Python, ...)) on FPGA

N

i
v
11
r

Design exploration with HLS

= HLS enables faster exploration of microarchitecture optimizations
= From one algorithmic description to multiple implementations

Algorithm

1. Design the architecture
: 2 - —— 2. Describe it algorithmically in C/C++
System | Verification
architecture . (C++) 3. Verify functionality at behavioral level
* 4. Use HLS tools to generate the RTL
r) Optimization implementation for a given clock speed and
Create d?S'gn pragmas & input constraints
\ constraints J directives . . .
5. Verify the functionality of the generated RTL
\ /
- . : 6. Explore different microarchitectures changing
{R;‘"ew pferformance] {RTL g.::el_:f:on] HLS optimization pragmas and directives
use or resources wi

a

The SW implementation of an algorithm and its
HW description in HLS may require very different
C/C++ code to be efficient

To RTL flow
(Vivado)

Co-simulation
C++/RTL

EPFL Tips to write efficient HW descriptions using HLS

&

= The HLS tool must be able to infer parallelism from sequential code

Sequential code in Sequential

CPU ~ execution in FPGA Low peviormance

Parallel execution

in FPGA —> High performance

" Producer-consumer paradigm

FIFO 1 FIFO 2 FIFO 3
Read input _\ > Write output

Tip: Favor consumer-producer
architectures. Then, analyze the temporal
interactions and the flow of data/tasks

This paradigm enables task parallelism
and decoupling of execution times at the
highest design level 7

EPFL Consumer-producer paradigm in HLS

" Producer-consumer paradigm

FIFO 1 FIFO 2 FIFO 3
Read input _\) > Write output
" Enables decoupling of tasks and pipelining on different data items.
= On1CPU -2 Noincrease of performance
= On n CPUs = ~ Linear speed-up up to some limit (coarse granularity)
= On FPGA - Each process can be replicated (fine granularity) Three levels of parallelism:
- Each process can also be internally pipelined Sl AT e U vl e e

step independently

2) Multiple tasks at each step

3) Each task can be pipelined to have
multiple data elements “on-the-fly”

ion and

1zat

Im

* Levels of opt
parallelism

= Macro-architectural level optimizations
Data-driven parallelism

Control-driven parallelism

Mixed control/data-driven parallelism
Specified by the block-level control protocol

= Micro-architectural level optimizations
= Loop optimizations
= Pipelining
= Unrolling (pipelining implies unrolling)
= Merge/fusion
= Array optimization & reshaping
= Loop optimizations determine access pattern
= |f array is in top-level interface - Control signals to interface with external memory
= |f array is internal to the design = Control sighals + memory model for the RTL tool
= Function optimizations
= Task-level parallelism
= Separation into load-compute-store subfunctions to enable parallelism

EPFL Levels of optimization in HLS

10

i

A S T T) Y) N Y
(el -

Data-driven parallelism

= Using task and stream abstractions from Xilinx HLS libraries

= A task is a function that is executed infinitely 2 HW module that processes an input as soon as it’s available
= Represented with hls::task

= No explicit calls to the function
= Streams provide read() and write() methods through hls::stream<T>
= |[n SW, equivalent to a thread executing a function, with input and output channels or FIFOs

= Useful when not interacting with SW, no explicit start/stop conditions, just flow of data

| S o B o |

[T 'S

- o

=

S2

vold odds and evens(hls::stream<int> &in,

evens_buf

odds_buf

hls::stream<int> &out2) {
hls thread local hls::stream<int> sl1; // channel
hls thread local hls::stream<int> s52; // channel

// tl infinitely runs function spliffer., with input in and outputs sl and s2

hls::stream<int> &outl,

outl

out2

connecting tl and t2
connecting tl and t3

hls_thread loca&fls::task tl(splitter, in,

// t2 infinitely runs ITUOCETOR—rmy

™= T R el

51 and output outl

hls thread locadQls::task t2(odds, sl, outl);

—

// t3 infinitely runs fUpCLIOR SUESR=E—S= TR —nput s2 and output out2

hls thread locadCnls::task t3(evens, s2, out2);

-

1 #include "test.h"

2

3 vold splitter(hls::stream<int> &in, hls::stream<int> &odds buf,
4 H hls::stream<int> &evens buf) {

5 int data = in.read();

6 if (data % == 0)

7 evens buf.write(data);

8 else

2] odds buf.write(data);

e L}

il

2 fvoid odds(hls::stream<int> &in, hls::stream<int> &out) {
8] out.write(in.read() + 1);

L)

)

L6 Hbvoid evens(hls::stream<int> &in, hls::stream<int> &out) {
L7 out.write(in.read() + 2);

B -}
b

11

= Useful when the system has start/stop signals |
= E.g., accelerator synchronization with SW 0,

= Takes a series of sequential function calls
= Creates a task-level pipeline architecture of concurrent processes

Control-driven parallelism

B

C

A(I, 04, 02)5
B(0y, Xi);

= Multiple sequential functions can be started simultaneously C(055 X5);

= A function can be restarted before it finishes (pipelining with respect to itself)

—

D(X;, X, Z);

Let’s assume that the
complete process is

A] [] invoked 3 times
e : : : HLS will normally be able to
Z] = — parallelize Band C
J I — —
= A subsequent function can start before the previous finishes (pipelining to chain functions)
A [[[: :
== F | With DATAFLOW optimization, E.g., process 3 independent images, each
I I I HLS can pipeline multiple one analyzed row-by-row. The functions can
¢ I—1 |l] [| function invocations be pipelined by rows for each image
0 12

=PrL

= Consider the following loop:

for (i =
A: a = in[i] * 2;
B: b = in[i] + 5;
C: out[i] = a+b;
}
X + + X + + X + X
Al B |G| A]|B]G] A]|B]|C
Time >

9; i < length; ++ i) { 0‘0
()

Operators: X+
Latency: 3
Throughput: 1/3
Total: length*3

A)Parallelizing inner operations:

X+ + X+ + X+ + X+ +
AO CO Al cl AZ cZ A3 c3
By B, B, B,
|-
Time ”

Operators: X+
Latency: 2
Throughput: 1/2
Total: length*2

B) Parallelizing + unrolling inner operations:

XX++ ++ XX++ ++ XX++ ++ XX++ ++
AlolAalolAalagl Al c
B, B, B, Bs
A | c
B,
>
Time

Operators: XX++
Latency: 2
Throughput: 2/2
Total: ceil(length/2)*2

Loop optimization primer

C)Parallelizing + pipelining iterations

X+ X++ X+ X4+ X+ 4
. ©lale[G[& Operators: X++
e M e e #itrir::cgyh pzut: 1
B, | B, | B, | B; | B, Total: length + 1
Time >

D) Parallelizing + unrolling + pipelining

2X2+ 2X4+ 2X4+ 2+

Time

Operators: XX++++
Latency: 2
Throughput: 2

Total: ceil(length/2) + 1

13

ts

10N drgumen

" Mapping of funct
to peripheral ports

FL Functions in Vitis HLS

= A function is a HW component that can be instantiated multiple times
= Each function is implemented as a HW component with ports and start/end signals

= Function calls 2 component interactions, can be parallelized
= Recursion is not supported
= |nlining fuses functionality and use of resources

= Task-level parallelism is implemented at the function level
= |.e., in general, Vitis HLS infers parallelism only between function calls

= Loops that should execute in parallel have to be pushed into separate functions
= Sequential loops can be pipelined
= Re-architect functions into load-compute-store subfunctions to enable parallelism

15

FL Basic mapping of resources

" Function’s local data is private
= Functions share data only over ports

= Local variables are converted into registers (flip-flops) or memories (e.g., BRAM)
= E.g., shift registers are automatically inferred, e.g., when elements of a local array are displaced in a loop

= Arrays are converted into:
= Registers

= Memory as local storage (e.g., BRAM)
= Multiple options (pragmas) to control the type of resource: BRAM, distributed RAM, etc.
= Memory as global storage (e.g., DRAM)

= No support for dynamic memory
= The designer needs to know the amount of memory used by the algorithm

16

=PFL - Mapping of top-level arguments to peripheral ports

A register file is exposed through a slave AXI4 interface
= Assuming control-driven paradigm over AXI4 buses

Scalar arguments are converted into registers in the register file

Arrays or pointers to arrays are converted into:
= One register in the register file to store the array address (pointer value)
= Logic to implement an AXI4 master to access the array

Depending on the block-level control paradigm chosen
= HLS generates signals for start/done control of the module

#include <stdint.h>
#include <ap_int.h>

Creates an entry in the RF for this scalar argument
ap_uint<32> TopFunction(ap_uint<32> length, ap_uint<32> * in
{ :
aracns WS IARMACE 3 acilite Rest=lanth —=p Creates an entry in the RF for the result
#pragma HLS INTERFACE s_axilite port=return

#pragma HLS INTERFACE m_axi port=input offset=slave Specifies that the module will have a control
==> schema based on control/status registers visible in

the AXI4 bus

ap_uint<32> result = 9;

for (uint32 t ii = @; ii < length; ++ ii)

result += input[ii];
. Creates a master interface to retrieve the data of

QUM RaSULE; the vector, and an entry in the RF to specify the
pointer address

}
17

i

PFL Mapping of top-level arguments to peripheral ports

= A register file is exposed through a slave AXI4 interface
= Assuming control-driven paradigm over AXI4 buses
= Scalar arguments are converted into registers in the register file
= Arrays or pointers to arrays are converted into:
= One register in the register file to store the array address (pointer value)
= Logic to implement an AXI4 master to access the array AT R T
4 I/ liit 0 - 2p—.s:§£t F(\S:adég;ite/COH)
= Depending on the block-level control paradigm chosen L bit 2 - apidle (nead)
j /7 b%t 3 - ap ready (Read/COR) .
= HLS generates signals for start/done control of the module N ST e
;; 0x04 : :iil:(};;;i inigiiigidEnable Register
#include <stdint.h> i /7 l\)iggqﬁ - t:iicr:l-:a"lginte]:rupt Enable (Read/Write)
#inC]-Ude <ap_int'h> 12 ;; 0x08 : ;P I;;clltpzézabla Register (Read/Write)
13 /7 bit 0 - enable ap_done interrupt (Read/Write)
ap_uint<32> TopFunction(ap_uint<32> length, ap_uint<32> * input) s // bit 1 - enable ap_ready interrupt (Read/Write)

15 I/ others - reserved
16 // 0x0c : IP Interrupt Status Register (Read/TOW)
7 /7 bit 0 - ap_done (Read/TOW)

/f bit 1 - ap ready (Read/TOW)

/I others - reserved

// 0x10 : Data signal of ap return

{

#pragma HLS INTERFACE s _axilite port=length
#pragma HLS INTERFACE s _axilite port=return
#pragma HLS INTERFACE m_axi port=input offset=slave

. 1 v bit 31~0 - ap_return([31:0] (Read)
ap_u1nt<32> result = 0; 0x18 : Data signal of length r
/7 bit 31~0 - length_r([31:0] (Read/Write)
. e . 22 . . s 4 // 0xlc @ reserved
for (u1nt32_’g ii = @; ii < length; ++ ii) 77 0x20 i Data signal of input_r
result += input[ii]; // bit 31~0 - input r[31:0] (Read/Write)

B oMM NN NN N
[Volir== R Jr. AL I ST RN N} [=Jt-N ="}
~
~

o . . 7 // 0%24 : Data signal of input r
return result; Vitis HLS generates automatically a file (e.g., /7 pit 31-0 - input r[63:32] (Read/Write)
H o // 0x28 @ reserved
} Xadder‘_hW. h) Wlth the reglster and ContrOI 30 /7 {zc = S;lf é‘irear, COR = Clear on Read, TOW = Toggle on Write,

=
~
~

COH = Clear on Handshake)

blocks definition 18

ipherals in HLS

- Examples of per

EPFL Example |: Combinational adder

Top level accelerator function: Adder()
1 #include <stdint.h> = Two ports to receive operands

2 #include <stdio.h>

$include "adder.h” = One port to return the result

o mention . chan) = Ports implemented as AXI4 registers in a slave interface

uint3i2 £t a= 5%, b = I, res;

The module does not implement any specific control
G Ldder(a, b, re=):
10 printf("Result: tu\n", res); protocol (ap_ctrl_none)!

12 = |t’s a purely combinational circuit where res is

e, —” continuously updated

1 #include <cstdint>

- , . - . 2 f/ ¥iris HLS - High-Level Synthesis from C, C++ and OpenCL v2Z020.2 (64-bit)
£ #LEC_'_ZdE Tadder.h" 3 f{ Copyright 1986-2020 Xilinx, Inc. All Rights Reserved.
g '-mﬁidder::‘_:tsz t a, uint32 £t b, uint32 t &re 0 : reserved
c L_—_I { — — 14 : reserved
- : %08 : reserved
6 #pragma HLS INTERFACE ap ctrl ort=return c : reserved
— . - — - —_ . ——— - J : Data =signal of a
#pragma HLS INTERFACE s axilite port=a Bit 31-0 - a[31:0] (Read/Write)
B #pragma HLS INTERFALE = axilite port=h Jxld o reserved
X - 1 0x18 : Data signal of b
#pragma HLS INTERFACENG axilite port=res 1 bit 31~0 — b[31:0] (Read/Write)
1 1 Oxlc : reserved
- 1 0x20 : Data signal of res
11 res = a + b 1 bit 31~0 - res[31:0] (Read)
7 - 18 / 0x24 : Control signal of res
- } 158 kit 0 - res_ap vld (Read/CCR)
1 - 20 others - reserved
21 (S5C = Self Clear, CCOR = Clear on Read, TOW = Toggle on Write, CCH = Clear on Handshake)
23 #define XADDER CCNTROL ADDR_A DATA 0x10
2 #define XADDER CCNTROL BITS_A DATA 32
2 #define XA CONTRCL ADDR B DATA 0x18
2 #define XAl CONTROL_BITS B_DATR 32
2 #define XAl TTROL_ADDR_RES_DATA 0x20
2 #define XA . CONTRCOL_BITS_RES DATA 32
2 #define XADDER CONTRCL ADDR_RES CTRL 0x24
= S

20

1 A single valid signal is implemented as a clear-on-read (COR) bit. This enables chaining a consumer and a producer using that single signal as flow control.

L Example II: Vector adder

Xilinx offers integer types with arbitrary precision

- . e — - to help adjusting the bitwidth of the datapaths
3 void Add‘\?ectnrsf ap uint<32> * input2,

2 ap uil 32> * putput,
ap uint<iZ> length, ap uwint<iZ> accum)

=R
T #pragma HLS INTERFACE s axilite port=length
#pragma HLS INTERFACE 5 _axilite port=accum
Tpragma HL3 f:';jif*f*fi s—a“;;;lt"t,l3:3?’f=:"t'*:;) eeans An array or pointer parameter is translated into:
#pragma HLS INTERFACE m axi depth=1024 port=immgtl offset= . . .
- * One register in the slave interface for the address

11 #pragma HLS INTERFACE m _axi depth=1024 port=inpu

24 port=output

12 #pragma HLS INTERFACE m axi depth=10 . One master port
14 if (length > I+ *)
1L+ length = o% *

17 for (ap_uint<ii> ii = 0; ii < length; ++ 1ii)
18 cutput[ii] = inputl[ii] + inputZ[ii] + accum,

If the protocol for the function name or “return” is s_axilite,
start/done/ready/idle signals are implemented in an AXI4 register,
and the corresponding control FSM is generated

An FSM is created to read values, perform the additions and write the results using external ports
= A datapath with enough adders to obtain an initiation interval of 1 is automatically created

Vitis HLS adds the logic to control the start/done/idle/ready signals. The module starts working when the “start” bit in the
control registeris setto 1

We can “bundle” the ports of the arrays to decide if they use one master interface each, or if some of them share an AXI
interface. Add bundle=name to the m_axi lines as required

21

EPFL Result of the synthesis of the vector adder

= The accelerator contains a main controller
= The controller is connected to the registers to react to commands
= The values of the registers can be connected directly as wires to the FSM

= The controller can write into the registers, which will be read by the
processor in the future

Bus
master
interface

= The main controller implements the task of the accelerator
= Using master interfaces to access memories or other peripherals

Register file

interface

Control & status

Global interrupt enable register

IP interrupt enable register

Address of input1
How do we know the

0
1
2
3 IP interrupt status register
4
! offset of the registers?

Address of input2
10 Address of output

13 Lot How do we know the bit positions of the
start/done/idle/ready signals in the
15 Accumulator control & status register?

22

Linux

IN

ith SW

on wW

| Integrat

EPFL Integration of the vector adder in a SoC

Modify the configuration of the processor

system to expose the required number of
slave ports (S_AXI_HP;)
ps7_0_axi_periph
rst_ps7_0_100M w3+ S00_AXI
) ACLK AddVectors_0 . .
slowest_sync_clk mb_reset ARESETN .7. p axi_mem_intercon o .
ext_reset_in bus_struct reset[0:0] S00_ACLK .Y. MOO_AXI - fi ~|4 s_axi_control) [viis™ His A) processing_system?_0 _
aux_reset_in peripheral_reset[0:0] SO00_ARESETN m<am $—= ap_c __ - D
mb_debug_sys_rst interconnect_aresetn[0:0] MOO_ACLK ap_rst_n 4 ACLK E—n et " DDR
) ARESETN | HPO_FIFO_CTRL FIXED_IO + |||=======["> FIXED_IO
dem_locked peripheral_aresetn[0:0] MOO_ARESETN) | [P— M e - USBIND 0 + " —
J') VectorAdder (Pre-Production) SOO_ARESEFN - i = o ZYNQ o AT G;O i
Processor System Reset AX| Interconnect MO0 ACLK =n S AXI HPD ACLK - EeLk CLK:_ i
MOO_ARESETN T FCLK_RESETO_N J,
AX| Interconnect ZYNQ7 Processing System .
Diagram x| Address Editor »x Address Ma >c:
9 P The address map shows the address ranges that are
Q = = 1 Assigned (2) | Unassigned (0) | Excluded (0) Hide All accessible for every master interface in the system
MName A1 nterface Slave Segment Master Base Address Range Master High Address
w B MNetwork O

w AF fAddvectors 0
~ H /Aaddvectors 0/Data_m_axi gmem (54 address bits : 16E)
1§ /processing_system7 _0/S_AXI HPO S_&Xl HPO HFO_DDR_LOWOCM
~ B8 MNetwork 1
w IF jprocessing_system7_0
~ Hi /processing_system7 _0/Data (22 address bits : 0x40000000 [1G 1)
1§ /Aaddvectors_0fs_axi_control s_axi_control Reg ¥ 4000 0000

0x0000_0000_0000_0e00 »~ S1ZM Ox0000_0000_1FFF_FFFF

S0 84K Ox4000_FFFF

24

=PrL

l
l
l
l
[
[
/Y
/Y
/Y
10 /Y
11 l
12 l
13 l
14 l
15 l
16 /Y
17 /Y
/Y
’
’
’
l
l
l
/Y
/Y
/Y
/Y
/Y
l
7

o o T (Y S W% T % T o

oL i B oo

Lo B W B s

[V T o T T o T o T T T T T o T o T S
S o T Y S T T

=

bit 0 - enable ap done interrupt (Read/Write) ap start ,

bit 1 - enable ap ready interrupt (Read/Write) - ,;;

others - reserved d
Ox0c : IP Interrupt Status Register (Read/TOW) ap_idle r\

bit 0 - ap done (Read/TOW)

bit 1 - ap ready (Read/TOW) ap_ready

others - reserved

O0x10 : Data signal of inputl
Oxlc : Data signal of input2

0x28 : Data signal of output r

bit 31~0 - output_r[31:0] (Read/Write) Data Inputs | Read Data Inputs \
Ux34 : Data signal of length r \ |
bit 31~0 - length r[31:0] (Read/Write) [
Ox3c : Data signal of accum Data Outputs \
bit 31~0 - accum[31:0] (Read/Write) T ' T T
(sC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, return : : !
1 I I

HW-SW handshake protocol for AX14 peripherals

0x00 : Control signals

bit 0 - ap start (Read/Write/COH)
bit 1 - ap done (Read/COR) I
bit 2 - ap idle (Read)
bit 3 - ap ready (Read/COR)
bit 7 - auto restart (Read/Write) clock ! 1 e a3 4 5 & 7 2]] 10
bit 9 - interrupt (Read)
others - reserved I I
0x04 : Global Interrupt Enable Register ap—ISt : : :
bit 0 - Global Interrupt Enable (Read/Write) I I
others - reserved | I
0x08 : IP Interrupt Enable Register (Read/Write) : r
| I
I
|

bit 31~0 - inputl[31:0] (Read/Write) ap_done

bit 31~0 — input2[31:0] (Read/Write)

1B

— e —— o ——— e — -

I I
I I
1 1
I |
I |
| |
I I
[[
I I
I I
I I
I I
I I
| |
I [
[[
| |
I I
I I
I I

[
[
|
|
|
I
|
[
[
|
|
|
I
I
[
I
|
|
|
Write Data QOutputs }—ri
|
I
I

COH = Clear on Handshake)

= |n SW, we use the control signals of the register at offset 0

i i . X X = gp_doneis COR, so the done signal can only be read once!
Program the input registers Alternatively, we can connect the interrupt line P 8 4
Write ‘1’ into bit O (LSB) to start the accelerator

Wait until 1’ is read from bit 1 (done) > This resets start to the processor and enable the interrupts with = Reading ap_done completes the handshake, which clears ap_start
Icunti I | o . .
Access the results the global and IP interrupt enable registers (COH: clear-on-handshake) 25

Memory & DSP resources in the
Zyng 7000 FPGA family

=PrL

|

DDR SDRAM
(Linux & apps)

]

Storage resources in the Pynqg board

Inside the Zyng 7020 FPGA
= Registers (flip-flops, FF)

= Synchronous write
= Continuous read (multiplexers)

= Distributed RAM (LUTRAM)

= Implemented in the lookup tables of the slices 2>
Consume logic resources!

= Asynchronous

= Block RAM (BRAM)

= Implemented as small SRAMs in the FPGA fabric 2
Don’t have reset!

= Synchronous write (0 cycles latency)
= Synchronous read (1 cycle latency!!!)

= Vivado can infer the memory resource type from
the HDL description

= We can also guide HLS to use one specific type of
resource

27

EPFL BRAMIs offer vast bandwidth

» The Z-7020 has 140 BRAMs
= 1024*4*140 =573 440 B = 560 KiB

= Each of the 140 blocks has 2 ports
= 140 blocks * 2 ports * 4 B * 100 MHz = 834 GB/s!
(> 1.5 TB/s at 200 MHz!)

= BRAMIs, logic cells and DSPs are organized in
columns across the FPGA fabric

Place logic close to
storage

Enables parallel
computation on data

BRAMs
DSPs

Slices

0
[
O
O
i
i
i
=0
O
|
]
O
O

28

=PrL

&

= Xilinx FPGAs contain hundreds (or thousands) of small synchronous static RAMs (SRAM)

= BRAMs are dual-port memories
= Each port is totally independent

= Each BRAM of 38 Kbits can be configured as:

= 1024 words of 32 (36) bits Each BRAM block contains additional]
2048 words of 16 (@ bits bits that can be used as data or ECC

4096 words of 8 (9) bits [BRAM blocks contain logic to implemen

)

ECC without additional resources
Also: 32Kx1, 16Kx2, 8Kx4
Each port can use a different configuration!

= Each BRAM can also be configured as
= 2 independent BRAMs of 18 Kbits

BRAM characteristics

BRAM O

BRAM 1

BRAM n

Port A

i

2044

2045

2046

2047

2048

2049

2050

2051

Port B

4092

4093

4094

4095

4096

4097

4098

4099

Port A

6140

6141

6142

6143

6144

6145

6146

6147

Port B

8188

8189

8190

8191

8192

8193

8194

8195

Port A

11111

11111

11111

Port B

12284

12285

12286

12287

\QLU n*2+;/ \ALU n*z/ \ ALU 3 / \ ALU 2 / \ ALU 1 / \ ALU 0 /

29

=PrL

&

Each port can perform independent reads and writes, for a total of 4 operations per cycle

BRAMSs are dual port memories

= What happens if one port reads and writes from/to the same address?

= Conflicts possible if both ports access to the same address simultaneously

The ports can be “linked” to double the BRAM width:
= 1 read/write port of 512 words of 64 (72) bits --- or 64Kx1

Each port can have its own clock

BRAMSs contain output registers to reduce critical paths

BRAMs also implement FIFO functionality

WE
EN

Address

DI

Register

Write
J-L Strobe

Memory D Q D Q
Array Latches Register
(common to
both ports) —>
[
Read Latch
Strobe J-I— Enable J_I—

CLK —

Optional
Inverter

Control Engine

|:|Com‘igurable Options

addresses

Port A (Write)
32+32=64b

64-bit

510 [4080

4081

4082

4083

4084

4085

4086

4087

511 | 4088

4089

4090

4091

4092

4093

4094

4095

Source: Xilinx UG473

30

EPFL BRAMSs are synchronous memories

&

= Writes happen on the next clock edge

= Before the next clock edge:
= writeAddr becomes stable with the address to write to
= dataln becomes stable with the data to write
= writeEn becomes stable to ‘1’

= At the clock edge, the input data is written into the memory array

= Reads happen on the next clock edge; data are available one cycle later!

= Before the next clock edge:
= readAddr becomes stable with the address to read from
= |f present, readEn becomes stable to ‘1’

= After the next clock edge:
= After the memory access time, the contents of the designated address become available on dataOut

31

=PrL

&

DSP slices

= Multipliers and accumulators can be implemented with dedicated HW blocks

= Qur Z-7020 has 220 DSP slices

= Each DSP slice can implement:
= 25x18 multiplier
= 48-bit accumulator

= SIMD arithmetic (2x24-bit or 4x12-bit) for add/subtract/accumulate

= Other logic functions (see docs)
= DSP slices implement pipelining and can be
cascaded using dedicated buses

= HLS will infer automatically the use of DSPs
= |f sizes and operations match DSP functionality

\

-

(-

Pre-adder

25x 18
Multiplier

-

48-Bit Accumulator/Logic Unit

Pattern Detector

Source : Xilinx UG479

32

EPFL Bibliography (in Moodle)

&

= Vitis High-Level Synthesis User Guide — UG1399 (v2022.2, Dec. 7, 2022)

= Heavily quoted during this session
= Read carefully Sections I-Ill of the document
= Use Sections IV, VI as reference as needed

= “7yng-7000 SoC Technical Reference Manual (UG585)”
= https://docs.xilinx.com/v/u/en-US/ug585-Zyng-7000-TRM

= “7 series FPGAs memory resources user guide (UG473)”

m https://www.Xxilinx.com/support/documentation/user guides/ugd73 7Series Memory Resources.
pdf

m “7-series DSP48E1 slice user guide (UG479)”
= https://docs.xilinx.com/v/u/en-US/ugd/79 7Series DSP48E1

33

https://docs.xilinx.com/v/u/en-US/ug585-Zynq-7000-TRM
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1

EPFL Supported data types in HLS

&

= Vitis HLS supports (mostly) all standard C/C++ data types
= signed/unsigned char, short, int, long, float, double
= Also:int8 t, intl6_t, int32 t, inte4 t
= Partial support for IEEE-754
= HLS synthesis will respect the order of FP operations = May block some optimizations
= Support of math.h operations
= std::complex<double> is not supported

= Vitis HLS also supports integer types of arbitrary precision
= Useful to reduce the bitwidth of ports and hence of the datapath operators
= |nteger types:

#include “ap_int.h” W Word length in bits
ap_[u]int<W>, with 1 < W £ 1024 | Integer bits to the left of the (binary) point
ap_uint<14> count; Q Quantization mode. Can be AP_RND, AP_RND_ZERO,

= Fixed point types: AP_TRN-AP. TRN, ZERO - Gheck the documentaton!
#include “ap_fixed.h” o) Overflow mode: AP_SAT, AP_SAT ZERO, AP_SAT_SYM,
ap_[u]fixed<W,I,Q,0,N> AP_WRAP, AP_ WRAP_SM
ap_fixed< > cnnWeights [SIZE] ; N Number of saturation bits in overflow wrap modes

SIMD can be implemented using the type

All hls::vector operations are mapped on parallel HW
hls::vector<T, N>

(best if both, bitwidth of T and N, are powers of 2) 34

-

| Prof Dawd Atlenzé

EPFL—Embedded Systems Laboratory
david.atienza@epfl.ch

	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	Session objectives
	���Introduction to high-level synthesis (HLS)���	
	What is high-level synthesis (HLS)?
	High-level synthesis design flow for HW accelerators
	Design exploration with HLS
	Tips to write efficient HW descriptions using HLS
	Consumer-producer paradigm in HLS
	���Levels of optimization and parallelism���	
	Levels of optimization in HLS
	Data-driven parallelism
	Control-driven parallelism
	Loop optimization primer
	���Mapping of function arguments to peripheral ports
	Functions in Vitis HLS
	Basic mapping of resources
	Mapping of top-level arguments to peripheral ports
	Mapping of top-level arguments to peripheral ports
	���Examples of peripherals in HLS���	
	Example I: Combinational adder
	Example II: Vector adder
	Result of the synthesis of the vector adder
	���Integration with SW in Linux���	
	Integration of the vector adder in a SoC
	HW-SW handshake protocol for AXI4 peripherals
	���Memory & DSP resources in the Zynq 7000 FPGA family	
	Storage resources in the Pynq board
	BRAMs offer vast bandwidth
	BRAM characteristics
	BRAMs are dual port memories
	BRAMs are synchronous memories
	DSP slices
	Bibliography (in Moodle)
	Supported data types in HLS
	Prof. David Atienza ��EPFL – Embedded Systems Laboratory�david.atienza@epfl.ch

