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 Introduction to high-level synthesis (HLS)
 Levels of optimization and parallelism
 Mapping of function arguments to peripheral ports
 Examples of peripherals in HLS
 Integration with SW in Linux
 Memory & DSP resources in the Zynq 7000 FPGA family

2

Session objectives



Introduction to high-level 
synthesis (HLS)



 HLS is an automated process that takes a behavioral specification of a system and 
generates a register-transfer level (RTL) structure that implements the specified behavior1

 HLS increases the level of abstraction for the description of digital circuits
 In HDL, we describe a system in terms of finite-state machines and register-level transfers in a datapath
 In HLS, we can describe a system at the algorithmic and dataflow levels

 We can write a loop and the tool will automatically:
 generate a datapath with the required number and type of operators,
 produce the scheduling of operations over cycles, and
 infer the FSMs
 If we change the optimization criteria, e.g., number of pipeline stages, the tool will automatically adjust 

the FSM

 The designer describes the macro-architecture of the algorithm in C/C++
 Focusing on the design purpose and its interactions with other components

 Micro-architectural decisions such as FSMs, datapaths, register pipelines, etc. are left to 
the HLS tool
 Enables easy exploration of different microarchitectures from the same microarchitecture description
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What is high-level synthesis (HLS)?

1 Vitis High-Level Synthesis User Guide – UG1399
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High-level synthesis design flow for HW accelerators
C++ description of 

HW

RTL HDL modules
(manual)

SoC-level design
(block diagram)

Integration with SW 
(C++, Python, …)

Compiling

Scheduling

Allocation

Binding

RTL description
(generated)

Synthesis & 
implementation

Bitstream

DESIGN FLOW VALIDATION FLOW

C++ functional 
simulation

C++/RTL
co-simulation

HDL testbench RTL simulation

HW execution
on FPGA

RTL generation

Vivado

Vitis HLS
Golden reference



 HLS enables faster exploration of microarchitecture optimizations
 From one algorithmic description to multiple implementations
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Design exploration with HLS

1. Design the architecture

2. Describe it algorithmically in C/C++

3. Verify functionality at behavioral level

4. Use HLS tools to generate the RTL 
implementation for a given clock speed and 
input constraints

5. Verify the functionality of the generated RTL

6. Explore different microarchitectures changing 
HLS optimization pragmas and directives

The SW implementation of an algorithm and its 
HW description in HLS may require very different 

C/C++ code to be efficient

System 
architecture

RTL 
code

Algorithm C++ 
testbench

Optimization 
pragmas & 
directives

Verification
(C++)

Create design 
constraints

RTL generation 
with HLS

Review performance 
& use of resources

Co-simulation
C++/RTL

To RTL flow 
(Vivado)



 The HLS tool must be able to infer parallelism from sequential code
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Tips to write efficient HW descriptions using HLS

Sequential code in 
CPU

High performance

Sequential 
execution in FPGA Low performance

Parallel execution 
in FPGA

Process 
1

 Producer-consumer paradigm

Read input
FIFO 1 FIFO 2

Process 
2

FIFO 3
Write output

Tip: Favor consumer-producer 
architectures. Then, analyze the temporal 

interactions and the flow of data/tasks

This paradigm enables task parallelism 
and decoupling of execution times at the 

highest design level
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Consumer-producer paradigm in HLS

Process 
1

 Producer-consumer paradigm

Read input
FIFO 1 FIFO 2

Process 
2

FIFO 3
Write output

 Enables decoupling of tasks and pipelining on different data items.
 On 1 CPU    No increase of performance
 On n CPUs  ~ Linear speed-up up to some limit (coarse granularity)
 On FPGA     Each process can be replicated (fine granularity)

 Each process can also be internally pipelined

Process 
1

Process 
1

Process 
2

Process 
2

Process 
2

Three levels of parallelism:
1) Independent tasks that work on each 

step independently
2) Multiple tasks at each step
3) Each task can be pipelined to have 

multiple data elements “on-the-fly”



Levels of optimization and 
parallelism



 Macro-architectural level optimizations
 Data-driven parallelism
 Control-driven parallelism
 Mixed control/data-driven parallelism
 Specified by the block-level control protocol

 Micro-architectural level optimizations
 Loop optimizations

 Pipelining
 Unrolling (pipelining implies unrolling)
 Merge/fusion

 Array optimization & reshaping
 Loop optimizations determine access pattern
 If array is in top-level interface  Control signals to interface with external memory
 If array is internal to the design  Control signals + memory model for the RTL tool

 Function optimizations
 Task-level parallelism
 Separation into load-compute-store subfunctions to enable parallelism
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Levels of optimization in HLS



 Using task and stream abstractions from Xilinx HLS libraries
 A task is a function that is executed infinitely  HW module that processes an input as soon as it’s available

 Represented with hls::task
 No explicit calls to the function

 Streams provide read() and write() methods through hls::stream<T>
 In SW, equivalent to a thread executing a function, with input and output channels or FIFOs

 Useful when not interacting with SW, no explicit start/stop conditions, just flow of data
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Data-driven parallelism

evens_buf

odds_buf
splitter

evens()

odds()

out1

out2

in
S1

S2



 Useful when the system has start/stop signals
 E.g., accelerator synchronization with SW

 Takes a series of sequential function calls
 Creates a task-level pipeline architecture of concurrent processes

 Multiple sequential functions can be started simultaneously
 A function can be restarted before it finishes (pipelining with respect to itself)

 A subsequent function can start before the previous finishes (pipelining to chain functions)
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Control-driven parallelism

HLS will normally be able to 
parallelize B and C

With DATAFLOW optimization, 
HLS can pipeline multiple 

function invocations

A

B

C

DI
O1

O2

X1

X2

Z

A(I, O1, O2);

B(O1, X1);

C(O2, X2);

D(X1, X2, Z);

Let’s assume that the 
complete process is 
invoked 3 times

E.g., process 3 independent images, each 
one analyzed row-by-row. The functions can 

be pipelined by rows for each image
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Loop optimization primer

C)Parallelizing + pipelining iterations

 Consider the following loop:
for (i = 0; i < length; ++ i) {

A: a = in[i] * 2;
B: b = in[i] + 5;
C: out[i] = a+b;

}

A)Parallelizing inner operations:

B) Parallelizing + unrolling inner operations:

A B

C

A0 B0 C0 A1 B1 C1 A2 B2 C2

X + + X + + X + X Operators: X+
Latency: 3
Throughput: 1/3
Total: length*3

Time

A0 C0 A1 C1 A2 C2 A3 C3

X+ + X+ + X+ + X+ +

B0 B1 B2 B3

Operators: X+
Latency: 2
Throughput: 1/2
Total: length*2

Time

A0 C0 A2 C2 A4 C4 A6 C6

XX++ ++ XX++ ++ XX++ ++ XX++ ++

B0 B2 B4 B6

A1 C1 A3 C3 A5 C5 A7 C7

B1 B3 B5 B7

Time

Operators: XX++
Latency: 2
Throughput: 2/2
Total: ceil(length/2)*2

C0 C1 C2 C3 C4

X+ X++ X++ X++ X++ +

A0 A1 A2 A3 A4

B0 B1 B2 B3 B4

Time

Operators: X++
Latency: 2
Throughput: 1
Total: length + 1

C0 C2 C4

2X2+ 2X4+ 2X4+ 2+

C1 C3 C5

A0 A2 A4

B0 B2 B4

Time

Operators: XX++++
Latency: 2
Throughput: 2
Total: ceil(length/2) + 1

A1 A3 A5

B1 B3 B5

D) Parallelizing + unrolling + pipelining



Mapping of function arguments 
to peripheral ports



 A function is a HW component that can be instantiated multiple times
 Each function is implemented as a HW component with ports and start/end signals
 Function calls  component interactions, can be parallelized

 Recursion is not supported
 Inlining fuses functionality and use of resources

 Task-level parallelism is implemented at the function level
 I.e., in general, Vitis HLS infers parallelism only between function calls
 Loops that should execute in parallel have to be pushed into separate functions

 Sequential loops can be pipelined
 Re-architect functions into load-compute-store subfunctions to enable parallelism
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Functions in Vitis HLS



 Function’s local data is private
 Functions share data only over ports
 Local variables are converted into registers (flip-flops) or memories (e.g., BRAM)

 E.g., shift registers are automatically inferred, e.g., when elements of a local array  are displaced in a loop

 Arrays are converted into:
 Registers
 Memory as local storage (e.g., BRAM)

 Multiple options (pragmas) to control the type of resource: BRAM, distributed RAM, etc.
 Memory as global storage (e.g., DRAM)

 No support for dynamic memory
 The designer needs to know the amount of memory used by the algorithm
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Basic mapping of resources



 A register file is exposed through a slave AXI4 interface
 Assuming control-driven paradigm over AXI4 buses

 Scalar arguments are converted into registers in the register file 
 Arrays or pointers to arrays are converted into:

 One register in the register file to store the array address (pointer value)
 Logic to implement an AXI4 master to access the array

 Depending on the block-level control paradigm chosen
 HLS generates signals for start/done control of the module
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Mapping of top-level arguments to peripheral ports

#include <stdint.h>
#include <ap_int.h>

ap_uint<32> TopFunction(ap_uint<32> length, ap_uint<32> * input)
{
#pragma HLS INTERFACE s_axilite port=length
#pragma HLS INTERFACE s_axilite port=return
#pragma HLS INTERFACE m_axi port=input offset=slave

ap_uint<32> result = 0;

for (uint32_t ii = 0; ii < length; ++ ii)
result += input[ii];

return result;
}

Creates an entry in the RF for this scalar argument

Specifies that the module will have a control 
schema based on control/status registers visible in 
the AXI4 bus

Creates an entry in the RF for the result

Creates a master interface to retrieve the data of 
the vector, and an entry in the RF to specify the 

pointer address
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Mapping of top-level arguments to peripheral ports

#include <stdint.h>
#include <ap_int.h>

ap_uint<32> TopFunction(ap_uint<32> length, ap_uint<32> * input)
{
#pragma HLS INTERFACE s_axilite port=length
#pragma HLS INTERFACE s_axilite port=return
#pragma HLS INTERFACE m_axi port=input offset=slave

ap_uint<32> result = 0;

for (uint32_t ii = 0; ii < length; ++ ii)
result += input[ii];

return result;
}

Vitis HLS generates automatically a file (e.g., 
xadder_hw.h) with the register and control 

blocks definition

 A register file is exposed through a slave AXI4 interface
 Assuming control-driven paradigm over AXI4 buses

 Scalar arguments are converted into registers in the register file 
 Arrays or pointers to arrays are converted into:

 One register in the register file to store the array address (pointer value)
 Logic to implement an AXI4 master to access the array

 Depending on the block-level control paradigm chosen
 HLS generates signals for start/done control of the module



Examples of peripherals in HLS
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Example I: Combinational adder
 Top level accelerator function: Adder()

 Two ports to receive operands
 One port to return the result

 Ports implemented as AXI4 registers in a slave interface
 The module does not implement any specific control 

protocol (ap_ctrl_none)1

 It’s a purely combinational circuit where res is 
continuously updated

1 A single valid signal is implemented as a clear-on-read (COR) bit. This enables chaining a consumer and a producer using that single signal as flow control.



 An FSM is created to read values, perform the additions and write the results using external ports
 A datapath with enough adders to obtain an initiation interval of 1 is automatically created

 Vitis HLS adds the logic to control the start/done/idle/ready signals. The module starts working when the “start” bit in the 
control register is set to 1

 We can “bundle” the ports of the arrays to decide if they use one master interface each, or if some of them share an AXI 
interface. Add bundle=name to the m_axi lines as required
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Example II: Vector adder

Xilinx offers integer types with arbitrary precision 
to help adjusting the bitwidth of the datapaths

An array or pointer parameter is translated into:
• One register in the slave interface for the address
• One master port

If the protocol for the function name or “return” is s_axilite, 
start/done/ready/idle signals are implemented in an AXI4 register,

and the corresponding control FSM is generated



 The accelerator contains a main controller
 The controller is connected to the registers to react to commands

 The values of the registers can be connected directly as wires to the FSM
 The controller can write into the registers, which will be read by the 

processor in the future

 The main controller implements the task of the accelerator
 Using master interfaces to access memories or other peripherals
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Result of the synthesis of the vector adder

Bus 
master 

interface

Bus
slave 

interface

FSM 
controller

Register file

Index Name

0 Control & status

1 Global interrupt enable register

2 IP interrupt enable register

3 IP interrupt status register

4 Address of input1

7 Address of input2

10 Address of output

13 Length

15 Accumulator

How do we know the 
offset of the registers?

How do we know the bit positions of the 
start/done/idle/ready signals in the 

control & status register?



Integration with SW in Linux
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Integration of the vector adder in a SoC

The address map shows the address ranges that are 
accessible for every master interface in the system

Modify the configuration of the processor 
system to expose the required number of 

slave ports (S_AXI_HPi)
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HW-SW handshake protocol for AXI4 peripherals

 In SW, we use the control signals of the register at offset 0
 Program the input registers
 Write ‘1’ into bit 0 (LSB) to start the accelerator
 Wait until ‘1’ is read from bit 1 (done)  This resets start
 Access the results

Alternatively, we can connect the interrupt line 
to the processor and enable the interrupts with 

the global and IP interrupt enable registers

 ap_done is COR, so the done signal can only be read once!

 Reading ap_done completes the handshake, which clears ap_start
(COH: clear-on-handshake)



Memory & DSP resources in the 
Zynq 7000 FPGA family
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Storage resources in the Pynq board
DDR SDRAM

(Linux & apps) Inside the Zynq 7020 FPGA
 Registers (flip-flops, FF)

 Synchronous write
 Continuous read (multiplexers)

 Distributed RAM (LUTRAM)
 Implemented in the lookup tables of the slices 

Consume logic resources!
 Asynchronous

 Block RAM (BRAM)
 Implemented as small SRAMs in the FPGA fabric 

Don’t have reset!
 Synchronous write (0 cycles latency)
 Synchronous read (1 cycle latency!!!)

 Vivado can infer the memory resource type from 
the HDL description
 We can also guide HLS to use one specific type of 

resource



 The Z-7020 has 140 BRAMs
 1024*4*140 = 573 440 B  560 KiB

 Each of the 140 blocks has 2 ports
 140 blocks * 2 ports * 4 B * 100 MHz = 834 GB/s! 

(> 1.5 TB/s at 200 MHz!)

 BRAMs, logic cells and DSPs are organized in 
columns across the FPGA fabric

28

BRAMs offer vast bandwidth

Place logic close to 
storage

Enables parallel 
computation on data

BRAMs

DSPs

Slices



 Xilinx FPGAs contain hundreds (or thousands) of small synchronous static RAMs (SRAM)
 BRAMs are dual-port memories

 Each port is totally independent

 Each BRAM of 38 Kbits can be configured as:
 1024 words of 32 (36) bits
 2048 words of 16 (18) bits
 4096 words of 8 (9) bits
 Also: 32Kx1, 16Kx2, 8Kx4
 Each port can use a different configuration!

 Each BRAM can also be configured as 
 2 independent BRAMs of 18 Kbits
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BRAM characteristics

Each BRAM block contains additional 
bits that can be used as data or ECC

BRAM blocks contain logic to implement 
ECC without additional resources

0 1 2 3

∙ ∙ ∙ ∙
2044 2045 2046 2047

2048 2049 2050 2051

∙ ∙ ∙ ∙
4092 4093 4094 4095

4096 4097 4098 4099

∙ ∙ ∙ ∙
6140 6141 6142 6143

6144 6145 6146 6147

∙ ∙ ∙ ∙
8188 8189 8190 8191

8192 8193 8194 8195

∙ ∙ ∙ ∙
10236 10237 10238 10239

10240 10241 10242 10243

∙ ∙ ∙ ∙
12284 12285 12286 12287

AL
U

 0
AL

U
 1

AL
U

 2
AL

U
 3

AL
U

 n*
2

AL
U

 n*
2+

1

BRAM 0

BRAM 1

BRAM n

Port A

Port B

Port A

Port B

Port A

Port B



 Each port can perform independent reads and writes, for a total of 4 operations per cycle
 What happens if one port reads and writes from/to the same address?

 Conflicts possible if both ports access to the same address simultaneously

 The ports can be “linked” to double the BRAM width:
 1 read/write port of 512 words of 64 (72) bits --- or 64Kx1

 Each port can have its own clock
 BRAMs contain output registers to reduce critical paths
 BRAMs also implement FIFO functionality
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BRAMs are dual port memories

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

∙ ∙ ∙ ∙

∙ ∙ ∙ ∙
4080 4081 4082 4083

4084 4085 4086 4087

4088 4089 4090 4091

4092 4093 4094 4095

Port A (read)
32+32 = 64 b
(address = 0)

0

8

(bytes)
64-bit 

addresses

510

511

Port A (Write)
32+32 = 64 b
(address = 1)

Source: Xilinx UG473



 Writes happen on the next clock edge
 Before the next clock edge:

 writeAddr becomes stable with the address to write to
 dataIn becomes stable with the data to write
 writeEn becomes stable to ‘1’

 At the clock edge, the input data is written into the memory array

 Reads happen on the next clock edge; data are available one cycle later!
 Before the next clock edge:

 readAddr becomes stable with the address to read from
 If present, readEn becomes stable to ‘1’

 After the next clock edge:
 After the memory access time, the contents of the designated address become available on dataOut

31

BRAMs are synchronous memories



 Multipliers and accumulators can be implemented with dedicated HW blocks
 Our Z-7020 has 220 DSP slices

 Each DSP slice can implement:
 25x18 multiplier
 48-bit accumulator
 SIMD arithmetic (2x24-bit or 4x12-bit) for add/subtract/accumulate
 Other logic functions (see docs)

 DSP slices implement pipelining and can be
cascaded using dedicated buses

 HLS will infer automatically the use of DSPs
 If sizes and operations match DSP functionality

32

DSP slices

Source: Xilinx UG479



 Vitis High-Level Synthesis User Guide – UG1399 (v2022.2, Dec. 7th, 2022)
 Heavily quoted during this session
 Read carefully Sections I-III of the document
 Use Sections IV, VI as reference as needed

 “Zynq-7000 SoC Technical Reference Manual (UG585)”
 https://docs.xilinx.com/v/u/en-US/ug585-Zynq-7000-TRM

 “7 series FPGAs memory resources user guide (UG473)”
 https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.

pdf

 “7-series DSP48E1 slice user guide (UG479)”
 https://docs.xilinx.com/v/u/en-US/ug479_7Series_DSP48E1
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Bibliography (in Moodle)
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 Vitis HLS supports (mostly) all standard C/C++ data types
 signed/unsigned char, short, int, long, float, double

 Also: int8_t, int16_t, int32_t, int64_t
 Partial support for IEEE-754

 HLS synthesis will respect the order of FP operations May block some optimizations
 Support of math.h operations

 std::complex<double> is not supported

 Vitis HLS also supports integer types of arbitrary precision
 Useful to reduce the bitwidth of ports and hence of the datapath operators
 Integer types:

#include “ap_int.h”
ap_[u]int<W>, with 1 ≤ W ≤ 1024
ap_uint<14> count;

 Fixed point types:
#include “ap_fixed.h”
ap_[u]fixed<W,I,Q,O,N>
ap_fixed<> cnnWeights[SIZE];
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Supported data types in HLS

Value Meaning (ap_fixed)

W Word length in bits

I Integer bits to the left of the (binary) point

Q Quantization mode. Can be AP_RND, AP_RND_ZERO, 
AP_RND_MIN_INF, AP_RND_INF, AP_RND_CONV, 
AP_TRN, AP_TRN_ZERO – Check the documentation!

O Overflow mode: AP_SAT, AP_SAT_ZERO, AP_SAT_SYM, 
AP_WRAP, AP_WRAP_SM

N Number of saturation bits in overflow wrap modes

SIMD can be implemented using the type 
hls::vector<T, N>

All hls::vector operations are mapped on parallel HW
(best if both, bitwidth of T and N, are powers of 2)



Questions?
Prof. David Atienza   

EPFL – Embedded Systems Laboratory
david.atienza@epfl.ch
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