
Lab. On HW-SW Digital Systems Codesign
EE-390(a)

Prof. David Atienza
Dr. Denisa Constantinescu , Dr. Miguel Peón-Quirós

Mr. Rubén Rodríguez-Álvarez, Ms. Stasa Kostic, Mr. Karan Pathk

Session 1
Concept of HW-SW co-design for SoCs

Introduction to the concept of
SoC

 SoC = System-on-Chip

 A computing system that includes all its components in a single integrated circuit:
 Processors
 Memory controllers
 I/O peripherals: UARTs, GPIOs, SPI, I²C, …
 Some form of internal memory, e.g., SRAM or eDRAM
 Accelerators for specific functions

 SoC design is normally modular
 Based on intellectual property (IP) blocks

3

What is a SoC?

RAM1 RAM2 RAM3

RAM4 RAM5 RAM6 RAM7

CPU

CGRA
Bit-line
comp.

PERIPH

ALWAYS-ON

2m
m

3mm

 Tiny RISC-V CPU: Core-V1

 Memory: 256 KiB of SRAM (8 banks)
 Max frequency: up to 470 MHz
 Power: ~100 µW/MHz (at 1.2 V)
 Accelerators

 Coarse-grained reconfigurable array (CGRA)
 In-memory (bit-line) computing

4

Example of SoC: ESL’s HEEPocrates

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/
1 OpenHW group github: https://github.com/openhwgroup

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/

 In a HW-only (e.g., VHDL) design, modules interface via direct ports:

 However, SoCs are typically processor-based…
… and normally processors cannot directly access peripheral ports!

 How do we communicate processors with the rest of the system?

 Processor-based systems use buses
5

Access to peripherals in a SoC

 A bus is a set of wires that allows system components to communicate with each other
 E.g., a bus allows a processor to read/write from/to a memory

 In general, a bus connects two types of devices:
 Masters initiate transactions. Example: A processor initiates reads/writes towards a memory
 Slaves respond to transactions. Example: A memory returns the contents of a position or stores a new

value

 Generalizing the concept, a bus may connect multiple slaves and multiple masters
 For example, an accelerator can be a master
 In principle, all masters can initiate transactions towards any of the slaves

6

Buses & types of peripherals

7

Example of communication in a bus-based system

(CPU & caches)
Processor

Memory
controller

UART
controller

GPIO
controller

SPI
controller

External DRAM
RS232 (USB)

LEDs

Switches
ADC

BUS

How does an application running on
the processor change the LEDs to
reflect the status of the switches? The GPIO module offers the

processor access to the LEDs and
buttons via a bus

How does the processor contact the
peripherals over the bus? Key idea: memory-

mapped IO (MMIO)

Which are the masters and
which the slaves in this system?

8

Example of communication in a bus-based system

(CPU & caches)
Processor

Memory
controller

UART
controller

GPIO
controller

SPI
controller

External DRAM
RS232 (USB)

LEDs

Switches

BUS Read

 The processor reads the status of the switches
1. Proc. sends a read command over the bus

to the general purpose I/O controller (GPIO)
2. The GPIO replies with a transaction on the

bus containing the status of the switches

 The processor writes the new status to the
LEDs

1. Proc. sends a write command over the bus
to the GPIO controller

2. The GPIO updates the outputs to the LEDs
3. The GPIO confirms with a transaction on the

bus that the write operation was completed
successfully

Answer

ADC

9

Example of communication in a bus-based system

(CPU & caches)
Processor

Memory
controller

UART
controller

GPIO
controller

SPI
controller

External DRAM
RS232 (USB)

LEDs

Switches

BUS Write

 The processor reads the status of the switches
1. Proc. sends a read command over the bus

to the general purpose I/O controller (GPIO)
2. The GPIO replies with a transaction on the

bus containing the status of the switches

 The processor writes the new status to the
LEDs

1. Proc. sends a write command over the bus
to the GPIO controller

2. The GPIO updates the outputs to the LEDs
3. The GPIO confirms with a transaction on the

bus that the write operation was completed
successfully

ACK

ADC

This is how a system with a
processor, buttons and LEDs

looks like in Vivado

10

Multiple masters in a bus-based system

(CPU & caches)
Processor

Memory
controller DMA SPI

controller

External DRAM

BUS Write

 The processor programs a direct memory
access (DMA) module to copy an area of
memory into another

1. Proc. sends the transfer parameters to the
DMA over the bus

 The DMA sends read/write commands to the
memory over the bus

1. DMA sends read command to the memory
2. Memory replies with the value in the requested

address
3. DMA sends write command to the memory

ADC

11

Multiple masters in a bus-based system

(CPU & caches)
Processor

Memory
controller DMA SPI

controller

External DRAM

BUS Read

 The processor programs a direct memory
access (DMA) module to copy an area of
memory into another

1. Proc. sends the transfer parameters to the
DMA over the bus

 The DMA sends read/write commands to the
memory over the bus

1. DMA sends read command to the memory
2. Memory replies with the value in the requested

address
3. DMA sends write command to the memory

Answer

ADC

12

Multiple masters in a bus-based system

(CPU & caches)
Processor

Memory
controller DMA SPI

controller

External DRAM

BUS Write

 The processor programs a direct memory
access (DMA) module to copy an area of
memory into another

1. Proc. sends the transfer parameters to the
DMA over the bus

 The DMA sends read/write commands to the
memory over the bus

1. DMA sends read command to the memory
2. Memory replies with the value in the requested

address
3. DMA sends write command to the memory

ACK

Interrupt!

ADC

The DMA is both:
- a slave (with respect to the processor)
- a master (with respect to the memory controller)

 A bus represents an address space
 All the slaves connected to the bus respond to a range of addresses
 Memories are mapped on a range of addresses

 A 512 MiB DRAM will occupy a range of 536 870 912 bus addresses

 Peripherals offer a set of control/status registers on the bus
 Each register is typically mapped as a word in the bus address space
 The set of registers of a slave constitutes its register file
 This schema is known as memory-mapped input-output (MMIO)
 Processors can read and write to/from the peripheral registers

 Exactly in the same way they access memories

13

Address space & memory-mapped I/O

R.F. slave 2

0x4120-0000R.F. slave 1

(empty)

Not
memory

(empty) 0x2000-0000

0x4400-0000

0x8000-0000
to

0xFFFF-FFFF

How does a C program access
a variable in RAM?

With a pointer, such as:
uint32_t * p = new int;
*p = 33;

How does a C program access
a peripheral register?

With a pointer, such as:
uint32_t * p = 0x41200000;
*p = 33;

DDR
(512 MB)

0x0000-0000

System
RAM for
OS, apps

0x1FFF-FFFF

 A memory-mapped peripheral contains a register file
 And a slave interface accessible to the processor thru the bus

 The processor can read and write the register file
 To control the peripheral and retrieve its status

 The peripheral has some control logic
 The controller is connected to the registers and reacts to

commands
 The registers can be connected to the FSM as wires

 The controller can write into the registers, which will be read by
the processor in the future

 The controller implements the task of the peripheral
 Using a master interface to access memories or other peripherals

 A peripheral that sums the elements of a vector could have
registers for:
 The starting address of the vector, its length, and the result
 A bit for the processor to start a computation
 A bit to signal the end of the computation

14

Anatomy of a bus-based peripheral

Bus
master

interface

Bus
slave

interface

FSM
controller

Register file

Index Name Direction

0 Address Input

1 Length Input

2 Result Output

3 Start Input

4 Done Output

(0x4120-0000)

(0x4120-0004)

(0x4120-0008)

(0x4120-000C)

(0x4120-0010)

 Accelerators are a type of peripheral that synchronize with a processor to execute specific tasks
 Often they present a slave and a master interface on the bus
 The slave interface allows the processor to send commands to the accelerator (e.g., start a task with this data)
 The master interface allows the accelerator to access the resources required for its computation

 For example, an accelerator may access data in the memory without processor intervention

 Accelerators speed up specific tasks and/or reduce energy consumption

15

Accelerators as a special type of peripheral in a SoC

(CPU & caches)
Processor

Memory
controller

FFT
accelerator

Convolution
accelerator

External DRAM

BUS
1. Processor sends command to FFT

accelerator

2. Accelerator sends read/write
requests to the memory

3. The memory responds to the
queries from the accelerator

4. The accelerator signals to the
processor the end of the task (via
interrupts or a status register)

Performance and energy
efficiency challenges

 End of Moore’s law
 End to 50 years of exponential density increase

 Density will still increase at least into early 2030s

 End of Dennard’s scaling (power density)
 We can integrate more transistors than we can

afford to power!
 (Dark silicon era)

17

Current performance and energy efficiency challenges:
An opportunity for domain-specific architectures (DSAs)

Source: [1] “A new golden age for computer architecture”
https://dl.acm.org/doi/10.1145/3282307

Plus billions of connected devices!

swissinfo.ch, January 8, 2023

Significant cost of manufacturing

More and larger data centers!

Approximation of CO2eq emissions cost (rough):
• For servers: ~50 % manufacturing, ~50 % use
• For user devices: ~75 % manufacturing, ~25 % use

18

What can be done to reduce the cost of computation?
• Migrate tasks to DCs with lower carbon

emission factor (CEF)
• Multi-scale computing systems

 Distribute workload from terminals to cloud
 Improved latency
 Better privacy
 Avoiding CO2 peaks in the DC

Cloud layer

Edge
layer

Terminal
layer

• Use accelerators for each specific workload (GPUs, FPGAs, ASICs)

Consider shifting from “time-to-completion”
to “energy-to-completion”!

How much overhead from
data/task migration?

Source: Dr. Xavier Ouvrard, EcoCloud1

• Improve DC efficiency

EPFL’s new DC in the CCT building with PV generation, water
cooling and heat recovery for heating of the campus

1 “Special session: Challenges and opportunities for sustainable multi-scale computing systems,” X. Ouvrard, et al. ESWeek, 2023.
2 “VWR2A: A Very-Wide-Register Reconfigurable-Array Architecture for Low-Power Embedded Devices,” B. Denkinger, et al. DAC, 2022.

Complex-valued FFT
(1D)

ARM Cortex-M4
(cycles)

VWR2A*

(cycles)
Speed-up

512 47926 7125 6.7 x

1024 84753 12405 6.8 x

2048 219667 30217 7.3 x

ARM Cortex-M4
(uJ)

VWR2A*

(uJ)
Energy
Savings

App 1 0.74 0.26 64.7 %

App 2 0.74 0.13 82.9 %

App 3 1.1 0.47 56.0 %

Example of accelerator for ultra-low power
biomedical devices

 Why can DSAs improve performance and energy efficiency? From [1]:

1. DSAs can exploit most efficient forms of parallelism for each domain.
 E.g., SIMD for vector code or VLIW for DSP algorithms.

2. DSAs can use memory hierarchies more efficiently.
 E.g., for known memory patterns, software-controlled memories can be more energy efficient than caches.

3. DSAs can use less precision when adequate.
 E.g., for DNN inference, often small bit-widths and FxP numbers are enough.
 In contrast, general-purpose CPUs offer a limited set of numeric formats that may not be optimal for each

case.

4. DSAs can benefit from programs written in domain-specific languages (DSLs).

19

Domain specific architectures

20

Results of the final projects of last year

3.6 x faster than an 80-thread dual-socket server
At least 726 times less energy

8.6 x faster than a 20-thread i9-10900K workstation
1092 times less energy

The slowest submitted solution is more efficient
than most CPU-based solutions

An experiment on genomic sequence alignment

HW-SW co-design flow with the
Zynq 7000 SoC

 SoC design demands careful partition between SW and HW tasks
 To improve performance
 To lower energy consumption

22

HW-SW co-design flow for SoCs

Functional
specification

Profiling

Task partition
(mapping)

Processor
selection

Accelerator
design

Software
development

Kernel
mapping

The main challenge is dividing
tasks between SW and HW

SW and HW interact
continuously at run-time

23

High-level synthesis (HLS) design flow for HW accelerators

C++ description of
HW

RTL HDL modules
(manual)

SoC-level design
(block diagram)

Integration with SW
(C++, Python, …)

Compiling

Scheduling

Allocation

Binding

RTL description
(generated)

Synthesis &
implementation

Bitstream

DESIGN FLOW VALIDATION FLOW

C++ functional
simulation

C++/RTL
co-simulation

HDL testbench RTL simulation

HW execution
on FPGA

RTL generation

Vivado

Vitis HLS
Golden reference

 SoC:
 2x ARM Cortex-A9

 L1 (32 KiB / 32 KiB)
 L2 512 KiB

 256 KiB additional on-chip RAM
 High-performance AXI4 buses

between processors and
programmable logic

 On-chip programming of FPGA logic
 SPI, I²C, ADC, etc.

 Board:
 512 MiB DDR3-SDRAM
 Serial port + JTAG
 LEDs, switches and push buttons

24

Example of SoC: Xilinx Zynq-7000

Tul Pynq-Z2 Zynq 7000 Board
FPGA: xc7z020clg400-1

DDR3

ButtonsDIP
switches

Power
switch

RGB LEDs
LEDsSD card

CPU

IRAM DRAM

Zynq xc7z020
MPSoC

HDMI I/O

UART over USB +
JTAG Programming + Power

During our labs: power,
programming and serial port
through the single USB port

25

Architecture of the Zynq-7000 SoC

Source: Xilinx UG585

I/O slow
peripherals

Interconnection
PS-PL

Additional on-chip-
memory

Programmable logic
(FPGA)

Integrated DDR
memory controller

Dual-core ARM Cortex-A9
Independent L1 caches

Shared L2 cache

Interconnection
PS-PL

(high-performance)

Our HDL/HLS designs go here!

The processors use these
ports to access the

registers of our peripherals Our peripherals use these ports
to access the system RAM

PS: Processing system
PL: Programmable logic

26

(Physical) Address map of the Zynq-7000 SoC

System main
memory for use

by OS and
applications

Mapping of
peripherals from the

PS side

Source: Xilinx UG585

Our HDL/HLS designs go here!

When we create our first
peripheral, check that the

address assigned by Vivado
belongs to this range

 AXI4 is the native bus for the ARM cores in the Zynq SoCs
 AXI  Advanced extensible interface

 AXI4 is supported by a large catalog of IP cores:
 Flexible interconnections
 Ready-to-use peripherals

 Suitable for high-bandwidth and low-latency applications
 Multiple outstanding transactions are possible, e.g., to hide high

initial latencies

 Synchronous bus
 All the transactions happen at the rising edge of the clock
 Separate address/control and data phases

 Separate read and write channels
 An AXI4 bus can be seen as two independent unidirectional

channels linked together
 Physically: 5 independent channels

 Vitis HLS can generate slave/master peripherals directly from
a C/C++ specification

27

Introduction to the AXI4 bus

Master
interface

Slave
interface

Address
and

control

Read address channel
ARADDR, ARVALID, ARREADY

Read
data

Read
data

Read
data

Read data channel

Address
and

control

Write address channel
AWVALID, AWREADY, AWDATA

Write
data

Write
data

Write
data

Write data channel

Write
response

Write response channel
BVALID, BREADY, BRESP

RVALID, RREADY, RDATA

WVALID, WREADY, WDATA, WSTRB

It is possible to have devices that share address
channels, but with dedicated data buses!

 All the channels use a two-way handshake mechanism:
 Based on ready/valid pairs of signals
 Destination: Assert ready when data can be accepted
 Source: Assert valid when the information is available

 The transaction ends when both, ready and valid, are HIGH

28

Designing AXI4 peripherals

TRANSACTION CHANNEL HANDSHAKE PAIR

Write address channel AWVALID, AWREADY

Write data channel WVALID, WREADY

Write response channel BVALID, BREADY

Read address channel ARVALID, ARREADY

Read data channel RVALID, RREADY

Read-transaction handshake
dependencies

ARVALID RVALID

ARREADY RREADY

Write-transaction handshake
dependencies

Points to signals that can be asserted before or after
the signal at the start of the arrow

Points to signals that must be asserted only after
assertion of the signal at the start of the arrow

AWVALID WVALID

AWREADY WREADY

BVALID

BREADY

 Both masters and slaves can be designed as:
 Lite peripherals: Low-throughput, memory-mapped

 Single-access transactions  lower complexity
 Full peripherals: High performance, memory-mapped

 Burst transactions. Configurable and flexible
 Stream peripherals: Point-to-point communication, high-speed streams

 No explicit memory addresses
 E.g., an audio stream, a video stream, filter-chain architectures with multiple cascaded devices

 Additional characteristics of AXI4
 Burst transfers: Only the initial address needs to be issued

 This saves latency, energy in the lines, and simplifies the logic
 Multiple outstanding transactions

 Out of order completion: multiple transaction IDs, completion in-order for each ID
 Data channels can be 8, 16, 32, 64, 128, 256, 512 or 1024 bits wide

 This may be useful to compensate for different device frequencies
 E.g., FPGA device working at 100 MHz, memory controller at 800 MHz

29

Flavors of AXI4 peripherals

 One single AXI4 Interconnect IP core can create independent paths

 If the design has several high-bandwidth devices:
 Use several high-performance ports from the PS side
 Consider using multiple AXI4 Interconnect instantiations to dissect the bandwidth

 Each AXI Interconnect can have multiple slave and master ports
 Multiple master ports can be connected to multiple slave ports at the PS side
 But it is (likely) more efficient to instantiate several interconnects
 If there are more masters than slave ports  shared bandwidth
 If multiple masters access the same slave  arbitration

30

AXI4 bus hierarchies

 Pynq-Z2 Reference Manual v1.1

 Zynq-7000 SoC Data Sheet Overview (DS190)

 Zynq-7000 SoC: Technical Reference Manual (UG585)

 AMBA AXI and ACE - Protocol Specification

 Vivado Design Suite – AXI Reference Guide – UG1037 (v4.0)

 Recommended reading:
 [1] “A new golden age for computer architecture,” John L. Hennessy, David A. Patterson. 2019.

Communications of the ACM 62, 2, 48–60 https://dl.acm.org/doi/10.1145/3282307

31

Bibliography (in Moodle)

https://dl.acm.org/doi/10.1145/3282307

Prof. David Atienza
EPFL – Embedded Systems Laboratory

david.atienza@epfl.ch

Questions?

	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	���Introduction to the concept of SoC���	
	What is a SoC?
	Example of SoC: ESL’s HEEPocrates
	Access to peripherals in a SoC
	Buses & types of peripherals
	Example of communication in a bus-based system
	Example of communication in a bus-based system
	Example of communication in a bus-based system
	Multiple masters in a bus-based system
	Multiple masters in a bus-based system
	Multiple masters in a bus-based system
	Address space & memory-mapped I/O
	Anatomy of a bus-based peripheral
	Accelerators as a special type of peripheral in a SoC
	���Performance and energy efficiency challenges���	
	Current performance and energy efficiency challenges:�An opportunity for domain-specific architectures (DSAs)
	What can be done to reduce the cost of computation?
	Domain specific architectures
	Results of the final projects of last year
	���HW-SW co-design flow with the Zynq 7000 SoC
	HW-SW co-design flow for SoCs
	High-level synthesis (HLS) design flow for HW accelerators
	Example of SoC: Xilinx Zynq-7000
	Architecture of the Zynq-7000 SoC
	(Physical) Address map of the Zynq-7000 SoC
	Introduction to the AXI4 bus
	Designing AXI4 peripherals
	Flavors of AXI4 peripherals
	AXI4 bus hierarchies
	Bibliography (in Moodle)
	Prof. David Atienza ��EPFL – Embedded Systems Laboratory�david.atienza@epfl.ch

