=Pr-L

D

EcoCloud

L ABURATORY

Lab. On HW-SW Digital Systems Codesign

EE-390(a)

Session 1
Concept of HW-SW co-design for SoCs

Prof. David Atienza
Dr. Denisa Constantinescu , Dr. Miguel Peén-Quirds
Mr. Rubén Rodriguez-Alvarez, Ms. Stasa Kostic, Mr. Karan Pathk

EPFL What is a SoC?

&

= SoC = System-on-Chip

= A computing system that includes all its components in a single integrated circuit:
= Processors
= Memory controllers = I B ElE B EIET RN
= |/O peripherals: UARTs, GPIOs, SPI, I°C, ... D
= Some form of internal memory, e.g., SRAM or eDRAM ‘
= Accelerators for specific functions

-

[&

" Bitline RAM1I RAM2 RAM3
* . comp.

2mm

TU=96.7%) TU=96.7%) ALWAYS-ON

= SoC design is normally modular
= Based on intellectual property (IP) blocks

|RAM6 | RAM7

ot I
ot |
-
-
ot
o
.
-
-
ot 1
-
s
ot |
-

fo._mem_cut0

4 0 Wil ol
Risk am_you¥ fancysheep covers L5 ke Lt ile : : 8is
5 ; ¥

3mm

EPFL Example of SoC: ESL's HEEPocrates

.

= Tiny RISC-V CPU: Core-V?

= Memory: 256 KiB of SRAM (8 banks)
= Max frequency: up to 470 MHz

= Power: ~100 pW/MHz (at 1.2 V)

= Accelerators
= Coarse-grained reconfigurable array (CGRA)
" In-memory (bit-line) computing

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/
1 OpenHW group github: https://github.com/openhwgroup 4

https://www.epfl.ch/labs/esl/research/2d-3d-system-on-chip/x-heep/

=PrL

&

Access to peripherals in a SoC

=" [n a HW-only (e.g., VHDL) design, modules interface via direct ports:

Buttons2leds 0

btns[3:0] D—-{bms[azt}] RTL |eds[3:n]]-— >

Buttons2Leds v1 O

= However, SoCs are typically processor-based...

... and normally processors cannot directly access peripheral ports!
= How do we communicate processors with the rest of the system?

microblaze 0

I+ INTERRUPT
Clk
Reset

MicroBlaze ® waxer +:

MicroBlaze

" Processor-based systems use buses

—+ INTERRUPT
Clk
Reset

MicroBlaze ®

M_AXI DP —
M_AXI_DP_ARADDR[31:0] b
M_AXI_DP_ARPROT[2:0] B
M_AXI_DP_ARREADY <
M_AXI_DP_ARVALID p
M_AXI_DP_AWADDR[31:0]
M_AXI_DP_AWPROT[2:0]
M_AXI DP_AWREADY <
M_AXI_DP_AWVALID p
M_AXI_DP_BREADY b
M_AXI DP_BRESP[1:0] «
M_AXI_DP_BVALID <
M_AXI DP_RDATA[31:0] <
M_AXI_DP_RREADY p
M_AXI DP_RRESP[1:0] 4
M_AXI_DP_RVALID <4
M_AXI_DP_WDATA[31:0]
M_AXI_DP_WREADY <
M_AXI_ DP_WSTRB[3:0] b
M_AXI_DP_WVALID W

MicroBlaze

Ul

EPFL Buses & types of peripherals

&

= A bus is a set of wires that allows system components to communicate with each other
= E.g., a bus allows a processor to read/write from/to a memory

= [n general, a bus connects two types of devices:
= Masters initiate transactions. Example: A processor initiates reads/writes towards a memory

= Slaves respond to transactions. Example: A memory returns the contents of a position or stores a new
value

= Generalizing the concept, a bus may connect multiple slaves and multiple masters
= For example, an accelerator can be a master
" |n principle, all masters can initiate transactions towards any of the slaves

EPFL Example of communication in a bus-based system

.

Processor
(CPU & caches)
Memory UART GPIO SPI [Which are the masters and]
controller controller controller controller which the slaves in this system?
External DRAM LEDs
RS232 (USB) — ADC
Switches

How does an application running on)

the processor change the LEDs to

reflect the status of the switches?(The GPIO module offers the
Lprocessor access to the LEDs and

buttons via a bus
'How does the processor contact the

L peripherals over the bus?

btns[3:0]

(Key idea: memory-
L mapped 10 (MMIO)

=PFL Example of communication in a bus-based system

Processor
(CPU & caches)

= The processor reads the status of the switches

1. Proc. sends a read command over the bus
to the general purpose 1/O controller (GPIO) BUS

2. The GPIO replies with a transaction on the
bus containing the status of the switches

~

Answer

* The processor writes the new status to the Memory UART GPIO SPI
LEDs controller controller controller controller
1. Proc. sends a write command over the bus
to the GPIO controller
The GPIO updates the outputs to the LEDs
The GPIO confirms with a transaction on the -
bus that the write operation was completed External DRAM RS232 (USB) LERq L ¥ i ADC

successfully Switches

EPFL Example of communication in a bus-based system

Processor
= The processor reads the status of the switches (CPU &/C“hes)
1. Proc. sends a read command over the bus
to the general purpose 1/O controller (GPIO) BUS
2. The GPIO replies with a transaction on the

bus containing the status of the switches

* The processor writes the new status to the Memory UART GPIO SPI
LEDs
. ; b controller controller controller controller
1. Proc. sends a write command over the bus
to the GPIO controller
2. The GPIO updates the outputs to the LEDs) /
The GPIO confirms with a transaction on the
bus that the write operation was completed External DRAM LEDs
! P P RS232 (USB) — ADC
successfully Switches
processing_system7 0
nxe:::; * EE o 8 Ell))(:[)_lo
——=t M_AXI_GPO_ACLK ZYNO‘ "U::g;z 1 : ps7.0_axi_periph
—rc».;_cuo -j— 9soo_»u
This is how a system with a e T [Hwsen wsem S
processor, buttons and LEDs ZYWYY Processing Syswen Tt D CE s oo sl s
looks like in Vivado st 7.0 100M] o e |F:““ : ;
1
- dom_locked peripheral_aresetn{0.0] @ m——

EPFL Multiple masters in a bus-based system

= The processor programs a direct memory
access (DMA) module to copy an area of
memory into another

1. Proc. sends the transfer parameters to the
DMA over the bus

= The DMA sends read/write commands to the
memory over the bus
1. DMA sends read command to the memory

2. Memory replies with the value in the requested
address

3. DMA sends write command to the memory

BUS

Processor
(CPU & caches)

Memory
controller

}

External DRAM

DMA

SPI
controller

ADC

10

EPFL Multiple masters in a bus-based system

= The processor programs a direct memory
access (DMA) module to copy an area of
memory into another

1. Proc. sends the transfer parameters to the
DMA over the bus

= The DMA sends read/write commands to the
memory over the bus
1. DMA sends read command to the memory

2. Memory replies with the value in the requested
address

3. DMA sends write command to the memory

Memory
controller

}

External DRAM

Read

4 Answer

Processor
(CPU & caches)

DMA

i

controller

ADC

11

EPFL Multiple masters in a bus-based system

= The processor programs a direct memory
access (DMA) module to copy an area of
memory into another

1. Proc. sends the transfer parameters to the
DMA over the bus

= The DMA sends read/write commands to the
memory over the bus
1. DMA sends read command to the memory

2. Memory replies with the value in the requested
address

3. DMA sends write command to the memory

Processor
(CPU & caches)

Interrupt!

BUS

Write

« ACK

/i
M
emory DMA SPI
controller controller
External DRAM
ADC

The DMA is both:
- a slave (with respect to the processor)
- a master (with respect to the memory controller)

12

EPFL Address space & memory-mapped I/0

.

= A bus represents an address space

= All the slaves connected to the bus respond to a range of addresses
= Memories are mapped on a range of addresses
= A 512 MiB DRAM will occupy a range of 536 870 912 bus addresses

= Peripherals offer a set of control/status registers on the bus
= Each register is typically mapped as a word in the bus address space
= The set of registers of a slave constitutes its register file
= This schema is known as memory-mapped input-output (MMIO

= Processors can read and write to/from the peripheral regi
= Exactly in the same way they access memories

DDR
(512 MB)

(empty)

R.F. slave 1

R.F. slave 2

How does a C program access How does a C program access
a variable in RAM? a peripheral register?
; /_/ w
With a pointer, such as: With a pointer, such as:
uint32_t * p = new int; —_— uint32_t * p = 9x41200000;
*p = 33; *p = 33;

(empty)

0x0000-0000

OX1FFF-FFFF
0x2000-0000

0x4120-0000

0x4400-0000

0x8000-0000

to
OXFFFF-FFFF
13

EPFL Anatomy of a bus-based peripheral

&

= A memory-mapped peripheral contains a register file
= And a slave interface accessible to the processor thru the bus

= The processor can read and write the register file
= To control the peripheral and retrieve its status

= The peripheral has some control logic

= The controller is connected to the registers and reacts to
commands

= The registers can be connected to the FSM as wires

= The controller can write into the registers, which will be read by
the processor in the future

= The controller implements the task of the peripheral
= Using a master interface to access memories or other peripherals

= A peripheral that sums the elements of a vector could have
registers for:
= The starting address of the vector, its length, and the result
= A bit for the processor to start a computation
= A bit to signal the end of the computation

interface

interface

—
R L
-

Register file

-
———
-
-
-
-

(0x4120-0000) Address
(0x4120-0004) 1 Length
(0x4120-0008) 2 Result
(0x4120-000C) 3 Start
(0x4120-0010) 4 Coe

«-7

Input
Input
Output
Input
Output

14

= Accelerators are a type of peripheral that synchronize with a processor to execute specific tasks
= Often they present a slave and a master interface on the bus
= The slave interface allows the processor to send commands to the accelerator (e.g., start a task with this data)

= The master interface allows the accelerator to access the resources required for its computation
= For example, an accelerator may access data in the memory without processor intervention

= Accelerators speed up specific tasks and/or reduce energy consumption

Processor
(CPU & caches)

1. Processor sends command to FFT
accelerator

2. Accelerator sends read/write
requests to the memory

3. The memory responds to the
queries from the accelerator
Memory FFT Convolution 4. The accelerator signals to the
processor the end of the task (via
controller accelerator accelerator interrupts or a status register)

}

External DRAM

=PFL Accelerators as a special type of peripheral in a SoC

15

EPFL Current performance and energy efficiency challenges:
c An opportunity for domain-specific architectures (DSAs)

=" End of Moore’s law
= End to 50 years of exponential density increase
= Density will still increase at least into early 2030s
= End of Dennard’s scaling (power density)

= We can integrate more transistors than we can
afford to power!

= (Dark silicon era)

Figure 3. Transistors per chip and power per mm?2.

— —— 2
200 I Technology (nm) Power/nm e

4

| 3.5
[3
[2.5
[2
[1.5
1
| 0.5
0

Relative Power per nm?

Innovations like domain-specific hardware,
enhanced security, open instruction sets, and
agile chip development will lead the way.

‘ BY JOHN L. HENNESSY AND DAVID A. PATTERSON

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Source: [1] “A new golden age for computer architecture” A New GOIden

https://dl.acm.org/doi/10.1145/3282307

Age for
Computer
Architecture

More and larger data centers!

Data centres account
for 4% of Swiss
electricity usage

swissinfo.ch, January 8, 2023

Significant cost of manufacturing

Plus billions of connected devices!

e
(=

Approximation of CO,eq emissions cost (rough):
* For servers: ~50 % manufacturing, ~50 % use
* For user devices: ~75 % manufacturing, ~25 % use

17

=PrL

e Migrate tasks to DCs with lower carbon
emission factor (CEF)

Carbon intensity of electricity, 2022 m

Carbon intensity is measured in grams of carbon d emitted per kilowatt-hour of electricity.

0gCOze 20 gCOze 100 gCOze 500 gCOze
No data 10 gCOze 50 gCOze 200 gCOze

Source: Ember's Yearly Electricity Data; Ember's European Electricity Review; Energy Institute Statistical Review of World Energy
OurWorldinData.org/energy CC BY

How much overhead from
data/task migration?

e Improve DC efficiency

EPFL’s new DC in the CCT building with PV generation, water
cooling and heat recovery for heating of the campus

What can be done to reduce the cost of computation?

e Multi-scale computing systems
= Distribute workload from terminals to cloud

Cloud layer

= |mproved latency
= Better privacy
= Avoiding CO2 peaks in the DC

Edge
layer

A

v Terminal

layer

Source: Dr. Xavier Ouvrard, EcoCloud?

e Use accelerators for each specific workload (GPUs, FPGAs, ASICs)

Example of accelerator for ultra-low power
biomedical devices

512 47926 7125 6.7

1024 84753 12405 6.8x

2048 219667 30217 7.3x
Consider shifting from “time-to-completion"] App L 0.7 il
to “energy-to-completion”! AR o e | W
App 3 1.1 047 56.0%

1 “Special session: Challenges and opportunities for sustainable multi-scale computing systems,” X. Ouvrard, et al. ESWeek, 2023.
2 “YWR2A: A Very-Wide-Register Reconfigurable-Array Architecture for Low-Power Embedded Devices,” B. Denkinger, et al. DAC, 2022.

PFL Domain specific architectures

= Why can DSAs improve performance and energy efficiency? From [1]:

1. DSAs can exploit most efficient forms of parallelism for each domain.
= E.g., SIMD for vector code or VLIW for DSP algorithms.

2. DSAs can use memory hierarchies more efficiently.
= E.g., for known memory patterns, software-controlled memories can be more energy efficient than caches.

3. DSAs can use less precision when adequate.
= E.g., for DNN inference, often small bit-widths and FxP numbers are enough.

= |n contrast, general-purpose CPUs offer a limited set of numeric formats that may not be optimal for each
case.

4. DSAs can benefit from programs written in domain-specific languages (DSLs).

19

EPFL Results of the final projects of last year

An experiment on genomic sequence alignment

time vs energy

2250
xeon-6242R_x10
2000 |
i9-10900 x4
1750 -
i9-10900_x8
[2
1500 7 9-10900_X10
Xeon/6242R_x20
< .
2 1250 - :
g i. 13-10p00_x20 8.6 x faster than a 20-thread i9-10900K workstation
2 o ~ ! 1092 times less energy
S ! on-6242R_x40 . T T
& 1000 4
2 1 1 | ’ | | | | |
18] | i
P jxeon_ 6249R X80 The slowest submitted solution is more efficient
750 - . than most CPU-based solutions
i h f n
= RPi4 x4
500 44
3.6 x faster than an 80-thread dual-socket server
At least 726 times less energy
250 4 :’.I - —,—,—, e _
1 4 B e EE
\ : s EE
0 e — --_im‘_‘_‘__'__' . T EE— E— q f f T
0 5 10 15 20 25 30 35 40

Execution Time (s)

20

ith the

design flow w

Zyng 7000 SoC

:
%
=
L

EPFL HW-SW co-design flow for SoCs

= SoC design demands careful partition between SW and HW tasks
= To improve performance

= To lower energy consumption Functional
specification

A

Profiling
The main challenge is dividing ; Task partition)
tasks between SW and HW | (mapping))
(Processor Accelerator
| selection | | design)
Software | R [Kernel

| development [| mapping

SW and HW interact
continuously at run-time 22

=PFL High-level synthesis (HLS) design flow for HW accelerators

DESIGN FLOW VALIDATION FLOW
vitisHLs | [C++ description of | P C++ functional
oo HW J simulation

T y

Comi)iling

Scheguling C++/RTL

Allocation co-simulation
¥

Binding

¥

RTL generation

l

Vivado
[RTL description] éRTL HDL modules

(generated) (manual)

SoC-Ieve.I design HDL testbench RTL simulation
(block diagram)

Synthesis &

implementation
[Biksksaams =1 Integration with SW\ HW execution
(C++, Python, ...)) on FPGA >3

N

EPFL Example of SoC: Xilinx Zyng-7000

&

= SoC:
Zynq xc7z2020
= 2x ARM Cortex-A9 MPSoC HDMI /O DDR3
= |1 (32 KiB /32 KiB) VAV
= 2512 KiB

256 KiB additional on-chip RAM

High-performance AXI4 buses
between processors and

. Power
programmable logic switch
. i . .
On-chip programming of FPGA logic UART over USB +
= SPI, I12C, ADC, etc. JTAG Programming + Power
[] . RGB LED
Board: > DIP SD card LEDs Buttons
: switches
- 512 MIB DDR3_SDRAM Tul Pyng-Z2 Zynq 7000 Board
= Serial port + JTAG FPGA: xc72020clg400-1

= LEDs, switches and push buttons :
During our labs: power,

programming and serial port
through the single USB port

24

=PrL

Architecture of the Zyng-7000 SoC

The processors use these

ports to access the

registers of our peripherals

PS: Processing system
PL: Programmable logic

Zyng-7000 SoC
i) Processing System ____
ipher, ion F
ph | A c|0c|:j Rosel plication Processor Unit
/ UsB Serion " FPU and NEON Engine | | FPU and NEON Enginé)
1T
uss (|2xUSB c uyy | ARM CortexcA9 | | | ARM Cortex-A9
GigE 2x GigE Syste CPU o CPU
GigE 2x SD Level N 32KB 32KB 32KB 32KB /
SD Control Mﬁache I-Cache e
S0I0 RQ Regs | ———
SD > GIC Snoop Controller, AWDT, Timer
SDIo [Y
GPIO ¢} DMAB 512 KB L2 Cache & Controller,
9] UART Channel
1/0 slow 2 UART ! | — n
peripherals g:: oCM e(256K —
Be > Interconn @AM /“
2C
|
SPI Central / Memory
Sl Interconnect Interfaces
CoreSight DDR2/3,3L,
i Ir:“l‘:rrfgge% Components LPDDR2
\ SRAW B Controller
NOR
= DAP | \k
ONFI1.0 ‘
NAND < DevC|| Pyerammable Logic to Mem
Q-SPI 5 Interconnect
v (LX) | L1 1| I
Interconnection —EHID YT General-Purpose DMA IRQ | Config High-Performance Ports
PS-PL . Ports Sync AES/ .
12bit ADC SHA rogrammable Logic
e | SEHECHO
f 1 |Resour
I e
| Our HDL/HLS designs go here! .
|

Dual-core ARM Cortex-A9
Independent L1 caches
Shared L2 cache

Additional on-chip-
memory

Integrated DDR
memory controller

e L L L L L L L L

Interconnection
PS-PL
(high-performance)

Programmable logic
(FPGA)

Source: Xilinx UG585 uasss c1.01 060616

Our peripherals use these port
to access the system RAM

)

25

i

PrL

(Physical) Address map of the Zyng-7000 SoC

When we create our first
peripheral, check that the
address assigned by Vivado
belongs to this range

2ynq-7000 SoC

0
Peripherals Clock
i Reset -

Processing System

Application Processor Unit

FPU and NEON Engine
2x USB ARM Cortex-A9 VMU ARM Cortex-A9
2x GigE System CPU o CPU

28D Level 32KB 32KB 32KB 32KB
Control | | |-Cache | D-Cache |-Cache | D-Cache

FPU and NEON Engine

MMU

IRQ

o <[DMAG
: Channel

-

Snoop Controler, AWDT, Timer ‘4--

512 KB L2 Cache & Controller
OCM | 256K
| SRAM P

Central Memory
Interconnect Interfaces

[e |

Memory
Interfaces

Q-SPI

CoreSight DDR2/33L,
< Components LPDDR2

\ Controller

immable Logic to Mem
Interconnect

P 1414

EMIO

AN 8§ N & & N N § % N 8 % § 8 % % N % % N %)

CTRL
(General-Purpose] DMA IRQ | Config
XADC
Ports Syne AES/
12bit ADC SHA

P ————— T
Resources|
Our HDL/HLS designs go here! :

High-Performance Ports ACP

rogrammable Logi

UGSSS 101060618

FFFC 0000 to FFFF_FFFF(2)

CPUs and Other Bus
Address Range ACP AXI_HP Masters!L) Notes
ocM OCM OCM Address not filtered by SCU and OCM is
mapped low
DDR OCM OCM Address filtered by SCU and OCM is
mapped low
0000_0000to 0003 FFFF(@)
N - Address filtered by SCU and OCM is not
DDR
mapped low
Address not filtered by SCU and OCM is
not mapped low
DDR Address filtered by SCU
0004 0000to 0007 FFFF
- - Address not filtered by SCU
DDR DDR DDR Address filtered by SCU
0008 0000 to 000F FFFF
- - DDR DDR Address not filtered by SCU®)
(0010 0000 to 3FFF_FFEF DDR DDR DDR | Accessible to all interconnect masters
= General Purpose Port #0 to the PL,
4000 0000 to 7FFF_FFEF PL PL M AX| GPO
- General Purpose Port #1 to the PL,
8000 0000 to BFFF_FFEF PL PL M. AXI GP1
E000_0000 to EQ2F FFFF I0P IOP I/0 Peripheral registers, see Table 4-6
E100 0000 to ES5FF_FFFF SMC SMC SMC Memories, see Table 4-5
F800 0000 to F800_OBFF SLCR SLCR SLCR registers, see Table 4-3
F800_1000 to F880_FFFF PS PS PS System registers, see Table 4-7
F890_0000 to F8F0_2FFF CPU CPU Private registers, see Table 4-4
FCO0_0000 to FDFF_FFFF(® | Quad-SPI Quad-SPI | Quad-SPI linear address for linear mode
OCM ocM OoCcM OCM is mapped high

OCM is not mapped high

System main
memory for use
by OS and
applications

Mapping of
= peripherals from the
PS side

Source: Xilinx UG585 26

Introduction to the AXI4 bus

AXl4 is the native bus for the ARM cores in the Zynq SoCs
= AX| - Advanced extensible interface

AXl4 is supported by a large catalog of IP cores:

= Flexible interconnections
= Ready-to-use peripherals

Suitable for high-bandwidth and low-latency applications
= Multiple outstanding transactions are possible, e.g., to hide high

initial latencies

Synchronous bus

= All the transactions happen at the rising edge of the clock
= Separate address/control and data phases

Separate read and write channels
= An AXIl4 bus can be seen as two independent unidirectional

channels linked together

= Physically: 5 independent channels

Vitis HLS can generate slave/master peripherals directly from

a C/C++ specification

It is possible to have devices that share address
channels, but with dedicated data buses!

Master
interface

Read address channel

Address ARADDR, ARVALID, ARREADY
and
control
—
Read data channel
Read Read Read
data data data
RVALID, RREADY, RDATA
Write address channel
Address AWVALID, AWREADY, AWDATA
and
control
—

Write data channel

Write Write Write
data data data

WVALID, WREADY, WDATA, WSTRB

Write response channel

BVALID, BREADY, BRESP

Write
response

G —

Slave
interface

27

EPFL Designing AXI4 peripherals

&

= All the channels use a two-way handshake mechanism:
= Based on ready/valid pairs of signals
= Destination: Assert ready when data can be accepted
= Source: Assert valid when the information is available

Read address channel ARVALID, ARREADY

= The transaction ends when both, ready and valid, are HIGH Read data channel RVALID, RREADY

Points to signals that can be asserted before or after

ARVALID =—> RVALID — :
\ / \ the signal at the start of the arrow
ARREADY RREADY — Points to signals that must be asserted only after

assertion of the signal at the start of the arrow
Read-transaction handshake

dependencies

-~

§
AWVALID WVALID —> BVALID

AWREADY WREADY

Write-transaction handshake
dependencies

BREADY

28

PFL Flavors of AXI4 peripherals

= Both masters and slaves can be designed as:
= Lite peripherals: Low-throughput, memory-mapped
= Single-access transactions = lower complexity
" Full peripherals: High performance, memory-mapped
= Burst transactions. Configurable and flexible
= Stream peripherals: Point-to-point communication, high-speed streams
= No explicit memory addresses
= E.g., an audio stream, a video stream, filter-chain architectures with multiple cascaded devices

= Additional characteristics of AXl4

= Burst transfers: Only the initial address needs to be issued

= This saves latency, energy in the lines, and simplifies the logic
= Multiple outstanding transactions

= Qut of order completion: multiple transaction IDs, completion in-order for each ID
= Data channels can be 8§, 16, 32, 64, 128, 256, 512 or 1024 bits wide

= This may be useful to compensate for different device frequencies
= E.g., FPGA device working at 100 MHz, memory controller at 800 MHz

29

EPFL AXI4 bus hierarchies

.

= One single AXI4 Interconnect IP core can create independent paths

= |f the design has several high-bandwidth devices:
= Use several high-performance ports from the PS side
= Consider using multiple AXI4 Interconnect instantiations to dissect the bandwidth

= Each AXI Interconnect can have multiple slave and master ports
= Multiple master ports can be connected to multiple slave ports at the PS side
= But it is (likely) more efficient to instantiate several interconnects
= |f there are more masters than slave ports = shared bandwidth
= |If multiple masters access the same slave = arbitration

30

PFL Bibliography (in Moodle)
" Pyng-Z2 Reference Manual v1.1

= Zyng-7000 SoC Data Sheet Overview (DS190)

= Zyng-7000 SoC: Technical Reference Manual (UG585)

= AMBA AXI and ACE - Protocol Specification

= Vivado Design Suite — AXI| Reference Guide — UG1037 (v4.0)

= Recommended reading:

= [1] “A new golden age for computer architecture,” John L. Hennessy, David A. Patterson. 2019.
Communications of the ACM 62, 2, 48—60

31

https://dl.acm.org/doi/10.1145/3282307

-

| Prof Dawd Atlenzé

EPFL—Embedded Systems Laboratory
david.atienza@epfl.ch

	Lab. On HW-SW Digital Systems Codesign�EE-390(a)
	���Introduction to the concept of SoC���	
	What is a SoC?
	Example of SoC: ESL’s HEEPocrates
	Access to peripherals in a SoC
	Buses & types of peripherals
	Example of communication in a bus-based system
	Example of communication in a bus-based system
	Example of communication in a bus-based system
	Multiple masters in a bus-based system
	Multiple masters in a bus-based system
	Multiple masters in a bus-based system
	Address space & memory-mapped I/O
	Anatomy of a bus-based peripheral
	Accelerators as a special type of peripheral in a SoC
	���Performance and energy efficiency challenges���	
	Current performance and energy efficiency challenges:�An opportunity for domain-specific architectures (DSAs)
	What can be done to reduce the cost of computation?
	Domain specific architectures
	Results of the final projects of last year
	���HW-SW co-design flow with the Zynq 7000 SoC
	HW-SW co-design flow for SoCs
	High-level synthesis (HLS) design flow for HW accelerators
	Example of SoC: Xilinx Zynq-7000
	Architecture of the Zynq-7000 SoC
	(Physical) Address map of the Zynq-7000 SoC
	Introduction to the AXI4 bus
	Designing AXI4 peripherals
	Flavors of AXI4 peripherals
	AXI4 bus hierarchies
	Bibliography (in Moodle)
	Prof. David Atienza ��EPFL – Embedded Systems Laboratory�david.atienza@epfl.ch

