

Scheduling of operations in HLS

1 Exercise 1

Starting from the following piece of C code:

```
int temp = 0;
for( int i=0 ; i<100 ; i++ ) {
    temp = (a[i] + b[i]) * temp + (b[i] + c[i]);
}
```


and assuming the following conditions:

- $t_A = 6 \text{ ns}$
- $t_M = 9 \text{ ns}$
- $t_R = 0 \text{ ns}$
- Timing model: $T_L = \#iterations \times II \times T_{clk}$
- Resources model: $C_R = 2 \times \#ADDs + 3 \times \#MULs + 1 \times \#REGs$

Perform the scheduling and allocation of the following settings (with the same format as in the slides):

- ASAP II=2 II=3
- ALAP II=2 II=3
- $T_{clk} = \text{min}$
- $T_{clk} = 15 \text{ ns}$

Put these solutions into the design space and respond to the following:

► **Question:** What solution(s) are in the Pareto optimal curve?

► **Question:** Can you tell which scheduling solution is better independently of the source code: ASAP or ALAP?

Additionally, create one binding scheme and an FSM table (as in the slides) for any of the ASAP or ALAP (II=2 or II=3) with $T_{clk} = \text{min}$.