E P F L ¢§¥s“ﬁ'u'§MHIIHM[lRY

Lab on HW-SW digital systems codesign Final Project
SEL B.Sc. Curriculum (Spring Semester) Out: 2025-04-17
Embedded Systems Laboratory Due: 2025-05-22
EPFL-STI-IEL Last git commit: 11:59 am

“The Hunger Games, Pareto Chapter:
The galactic speed”

1 Introduction

The goal of this project is to generate Pareto-optimal accelerator designs to process radio signals
received by the Very Elegant Galactic Antenna (VEGA) radio telescope [1]. This student-led radio
telescope project at EPFL aims to detect the 21 cm neutral hydrogen line and measure the galactic
rotation curve. The VEGA radio telescope is currently installed on the roof of one of EPFL’s build-
ings. It can detect radio emissions from space even in cloudy conditions, as radio waves can pass
through the atmosphere with minimal absorption.

Why hydrogen? Hydrogen is the most abundant element in our galaxy. When pointing the radio
telescope toward the Milky Way, we can observe 21 cm wavelength radio emissions from hydrogen
atoms located in its spiral arms.!

In this project, we receive 10s of raw radio-signal data. Our task is to transform these data into
a spectrogram and identify peaks corresponding to the 21 cm hydrogen emission line (see Fig. 1).
Interestingly, the detected peaks are not located exactly on the 21 cm line. Why? This is due to the
Doppler effect —a phenomenon where the observed frequency shifts depending on the motion of the
source relative to the observer. If the gas is moving toward us, the signal is blueshifted to a slightly
higher frequency; if it is moving away, then it is redshifted to a lower frequency. In this project, we
will detect three such frequency shifts, each corresponding to a different galactic arm. Based on the
direction of the shift, can you determine whether those arms are approaching or receding?

Our mission is to process these data and detect the peaks both quickly and efficiently, using an
FPGA accelerator.

1.1 Problem definition

Today, researchers count on many algorithms, organized as “processing pipelines,” to process radio-
astronomy signals. These algorithms are designed to be extremely efficient since the amount of
data to be processed in real time is often on the order of GiB or even TiB. Thus, execution time has
traditionally been the sole optimization target. However, recent concerns about energy consumption
in data centers, both from the environmental and technological points of view, have motivated the
switch from “time-to-completion” to “energy-to-completion” [4].

"How does hydrogen emit radio waves? This is a fascinating and complex topic! In short, it has to do with the spin-flip
transition of hydrogen atoms. If you are curious to learn more, check out these excellent resources: Wikipedia [2] and the
Cosmos Encyclopedia of Astronomy [3].

1.2 Project requirements and evaluation 1 INTRODUCTION

Power Spectral Density

——- 21cm Hydrogen Line
1.000 A i »x Detected Peaks

0.975 1
0.950 4
0.925

0.900 4

Relative power

0.875 4

0.850 4

0.825

0.800 T T T T T T T ‘ T
1.41900 1.41925 1.41950 1.41975 1.42000 1.42025 1.42050 1.42075 1.42100

Frequency (GHz)

Figure 1: Plot of the signal with the 21 cm neutral-hydrogen band peaks shifted.

The current implementation is performed on a power-hungry server. Our task is to design a set
of hardware accelerators that save both time and energy while computing the pipeline for radio
signal processing described in Section 2. With this, we will demonstrate that the process can be
carried out in a low-power device saving lots of energy while matching the performance required.

As a starting point, we have received the original non-accelerated —pure software— version of
the code. The software package includes also a “Makefile” that can be used in the development of
the project, and an input dataset consisting of:

¢ A 9.728s input signal from the actual telescope.
* The gains applied during the processing to calibrate the spectrum.
* The output references to compare against when developing an accelerator.

1.2 Project requirements and evaluation

This exercise can be solved in multiple ways. Each of them will produce a system that executes in
a given time, using a number of hardware resources, and consuming a certain amount of energy.
Your task is to design solutions that lay on the Pareto front. Each group will produce one or sev-
eral solutions, which will be evaluated according to the following metrics, described in detail in
Section 3.2:

e LATENCY — Total execution time.

¢ HW RESOURCES — Resource usage in the FPGA (consult the resource cost below).

¢ ENERGY — Energy measured on the board.

e RESOLUTION — More frequency points in the spectrum produce more accurate tracking of
the movement of the galaxy.

* FLEXIBILITY — Different resolutions are useful for different types of analysis. Covering sev-
eral resolutions (see Table 1) allows astronomers to use your solution in more science cases.

e SNR — Strength of signal relative to noise, which quantifies the amplitude quality of the
spectrum emitted.

e TTS — Time-to-solution based on the date and time of solution submission (astronomers
would like to have a solution ASAP).

2 VEGA RADIO TELESCOPE PIPELINE

We are looking for solutions that are optimal in at least one of these metrics. With all the submitted
solutions, we will generate a graph with the Pareto front of solutions.
Only those teams that produce solutions on the Pareto front will be hired by the astronomers :-)

During the period granted to implement this project, you will have the opportunity to submit
multiple solutions, tagging 2 the corresponding commits in your repository. It is very important
to tag and submit the solutions during the project, so that they can be taken into account for
the time-to-solution metric. Such commits have to include the bitstream and the source code for
the Pynq board to allow us to execute the proposed solutions ourselves. We will verify the output
of the accelerated pipelines to validate their correctness using the same output reference that you
have in the files. The signal to noise ratio (SNR) must be greater than 70dB for a solution to be
considered as valid.

Every time a new solution is submitted, we will update the Pareto front of accelerator solutions.
The current set of Pareto points will be accessible in a live web-site —the entries will be anonymized.
On the day of the final presentation, we will show the complete (anonymized) Pareto front of
solutions to the entire class.

2 The processing pipeline of the VEGA radio telescope

° L J
[]
.'] ‘ .. Preprocessing & Windowing

Splitinto N FFT-sized FFT Power Spef:trum Winc.low. Signa} Calibrat_ion Pealf
10 s input °® segments, apply overlapping For each Averaging Normalllzatlon Smoot.hlng Normallze Detecthn Velocity
signal & Hann‘ingwindow @ reduced Average squared FFT Normalize by Moving frequencies 3 peaks in of galaxy
® antenna gains dred t segment magnitudes per Hanning window median + by antenna final arms
segments), and reduceto one g frequency (1024 bins) magnitude Gaussinan gain spectrum

. . . . [by sample-wise sum
LN]

Figure 2: Signal processing pipeline for VEGA. The pipeline replicates the GNURadio advanced
spectrometer described in [5].

After the signal is received by the antenna, it is amplified and filtered by the radio frequency
(RF) components of the system, and, finally, digitized. The subsequent digital signal processing
(DSP) aims to calculate the power spectrum of the signal and highlight the peak that corresponds
to the wavelenght of 21 cm [5]. Figure 2 shows the different steps of the DSP pipeline:

* Load the 10s of the input signal and the antenna gains from the files.

* Split input into segments of the size of the spectrum (NFFT).

* Apply a Hanning window to four consecutive segments and shift one segment every time.
There is an overlap of 3 segments in each of two consecutive windows.

* Reduce the four segments to one after applying the Hanning window by adding them sample
by sample.

e Compute the fast Fourier transform (FFT) of the resulting segment. Windowing, reduction
and FFT are called (#samples)/(FFT size) = 40000 times.

* Compute the averaged power spectrum. For each frequency (1024) averaging the square of
the FFT coefficients magnitudes over the all segments.

¢ Spectrum normalization. Normalize the signal with respect to the magnitude of the Hanning
window.

¢ Apply a moving average to the spectrum.

¢ Smooth the spikes of the signal by applying a moving median to the points in the spectrum
above a threshold.

* Apply a moving Gaussian window to the spectrum.

* Calibrate the signal by normalizing each frequency with the antenna’s gain.

Zhttps:/ / git-scm.com /book/en/v2/Git-Basics-Tagging

2.1 Running the pipeline 2 VEGA RADIO TELESCOPE PIPELINE

* Detect the three peaks in the spectrum.
¢ Considering that each peak corresponds to one spiral arm of the galaxy, compute their relative
velocity according to the Doppler effect.

The output of the results is the number of detected galactic arms and their relative speed with
respect to us.

The parameters of each functional block of the pipeline (e.g., the FFT size and the average
window) can vary depending on the scientific needs. Your solution will be evaluated according to
Table 1.

Table 1: Configuration table for different parameter sets

Config ID FFT size Freq. resolution Window size®> Peak Detection Gain file Golden reference file
(Hz) Window Size
0 1024 2000.00 12 3 gain_0.bin ref_0.bin
1 2048 1000.00 24 10 gain_1l.bin ref_1.bin
2 4096 500.00 48 10 gain_2.bin ref_2.bin
3 8192 250.00 96 10 gain_3.bin ref_3.bin
4 16384 125.00 192 200 gain_4.bin ref_4.bin
5 32768 62.50 384 10 gain_5.bin ref_5.bin
6 65536 31.25 768 10 gain_6.bin ref_6.bin
7 131072 15.62 2304 200 gain_7.bin ref_7.bin
8 262144 7.81 3072 200 gain_8.bin ref_8.bin
9 524288 3.91 6144 200 gain_9.bin ref_9.bin

IMPORTANT! It is not mandatory to deliver a solution for each configuration, nor one single
solution to cover all! The number of configurations covered by your solution(s) is considered in the
flexibility metric. This means that it is possible to have a very good solution for only one configura-
tion or a less efficient but more flexible design that covers several solutions. Similarly, solutions that
cover configurations with larger FFT sizes are harder to implement; this is taken into account with
the resolution metric. The decision is up to you.

2.1 Running the pipeline

The application can be executed for an individual configuration with the following command line:
./radioastro -s <signal_file> -c <config_id> [-0 <output_file> -p <profile_file>]

Alternatively, the application can be executed consecutively for all the configurations with the
following command line:

./run_all.sh

The version that only profiles time can be executed both in a Linux PC and in the Pynq board.
However, the version with energy measurement works exclusively on the Pynq board. This version
requires programming the “adc_bit.bit” bitstream and execution with sudo.

The execution of the initial software version on the Pynq board for the configuration 0 produces
the following output:

Running with:

Configuration ID: O

Signal file: ../data_bin/signal_data.bin

Gain file: ../data_bin/gain_0.bin

Frequency resolution: 2000 Hz

Velocity resolution: 422.414 m/s
o o +
+ Config Table +

3The same window size applied to the moving average, spike smoothing, and Gaussian filtering.

2.2 Recreating the execution graphs

2 VEGA RADIO TELESCOPE PIPELINE

i o
| LOG2 FFT SIZE | 10
| FFT SIZE | 1024
| Window MA | 12
| Window PS | 12
| Window GF | 12
o o

Arm O: Peak Frequency = 1.42042e+09Hz, Velocity =
Arm 1l: Peak Frequency = 1.42064e+09Hz, Velocity =
Arm 2: Peak Frequency = 1.42079e+09Hz, Velocity =
SNR: 128.387 dB

3.8389 km/s
49.4732 km/s
80.3196 km/s

o o o
+ Time Profiling Table
o o o
| Task | Time (s) | Time (ns)
o o o
| Total processing time | 19.180 | 19179674839
| + Power Spectral density | 19.178 | 19178064480
| + Compute Hanning Gen | 0.003 | 2666560
| + Compute Hanning Window | 2.650 | 2650323188
| + Compute Window Reduct | 1.266 | 1265660745
| + Compute FFT | 14.099 | 14098600891
| + Compute Magnitude | 1.061 | 1060661333
| + Compute Normalization | 0.000 | 26412
| + Compute Reordering FFT | 0.000 | 4677
| + Compute Frequency Gen | 0.000 | 78889
| + Moving average result | 0.000 | 53656
| + Peak smoothing result | 0.001 | 1106477
| + Gauss smoothing result | 0.000 | 370376
| + Calibration result | 0.000 | 34655
| + Detect peaks | 0.000 | 26369
| + Compute velocity | 0.000 | 1661
o o o
o o o +
+ Energy Profiling Table +
B e it o o +
| Task | Energy (J) | Percentage (%)
fo—————_———_—————— o o +
| Total processing energy | 27.518 | 100.0 |
| + Power Spectral density | 27.518 | 100.0 |
| + Compute Hanning Gen | 0.000 | 0.0 |
| + Compute Hanning Window | 3.898 | 14.2 |
| + Compute Window Reduct | 1.933 | 7.0 |
| + Compute FFT | 20.193 | 73.4 |
| + Compute Magnitude | 1.494 | 5.4 |
| + Compute Normalization | 0.000 | 0.0 |
| + Compute Reordering FFT | 0.000 | 0.0 |
| + Compute Frequency Gen | 0.000 | 0.0 |
| + Moving average result | 0.000 | 0.0 |
| + Peak smoothing result | 0.000 | 0.0 |
| + Gauss smoothing result | 0.000 | 0.0 |
| + Calibration result | 0.000 | 0.0 |
| + Detect peaks | 0.000 | 0.0 |
| + Compute velocity | 0.000 | 0.0 |
Fom o o +

2.2 Recreating the execution graphs

__________________ +
+
__________________ +
Percentage (%) |
,,,,,,,,,,,,,,,,,, +
100.0 |

100.0 |

0.0 |

13.8 |

6.6 |

73.5 |

5.5 |

0.0 |

0.0 |

0.0 |

0.0 |

0.0 |

0.0 |

0.0 |

0.0 |

0.0 |
,,,,,,,,,,,,,,,,,, +

To recreate the graphs after execution, the following prerequisites are needed:

pip install matplotlib numpy pandas

If the Pynq board cannot be connected to the Internet, the graphs can be generated on a PC

using the metrics generated on the Pynq board.

The spectrum graph can be plotted with the following command, which will generate the file

“” 7
spectrum.png :

python plot_res.py —-—-file out.bin

Finally, the results can be plotted with the following command, generating “profiles.png”:

python plot_timings.py —-f metrics.csv

3 INSTRUCTIONS TO IMPLEMENT THE PROBLEM

Table 2: Proportion of execution time and energy consumed in each step for different configurations

Conf. Task Subtask Time Time Proportion Energy Proportion

(s) (ns) (%) J) (%)
0 TOTAL 19.288 19287960183 100.0 27.703 100.0
0 Power spectral density 19.286 19286412455 100.0 27.692 100.0
0 Hanning Gen 0.003 2725960 0.0 0.000 0.0
0 Hanning window 2.656 2655878599 13.8 3.848 13.9
0 Window reduct 1.089 1088858943 5.6 1.534 5.5
0 FFT 14.367 14366852786 74.5 20.689 747
0 Magnitude 1.072 1071555377 5.6 1.621 5.8
0 Normalization 0.000 26428 0.0 0.000 0.0
0 Reorder FFT 0.000 4677 0.0 0.000 0.0
0 Frequency gen 0.000 59 606 0.0 0.000 0.0
0 Moving average 0.000 46 628 0.0 0.000 0.0
0 Peak smooth 0.001 1045416 0.0 0.012 0.0
0 Gauss smooth 0.000 380037 0.0 0.000 0.0
0 Calibration 0.000 30670 0.0 0.000 0.0
0 Peak detection 0.000 27840 0.0 0.000 0.0
0 Compute velocity 0.000 1596 0.0 0.000 0.0
1 TOTAL 23.200 23199529 645 100.0 33.798 100.0
1 Power spectral density 23.194 23193689673 100.0 33.786 100.0
1 Moving average 0.000 119246 0.0 0.000 0.0
1 Peak smooth 0.004 4415791 0.0 0.000 0.0
1 Gauss smooth 0.001 1100508 0.0 0.012 0.0
1 Calibration 0.000 71255 0.0 0.000 0.0
1 Peak detection 0.000 113677 0.0 0.000 0.0
1 Compute velocity 0.000 1843 0.0 0.000 0.0
9 TOTAL 714.307 714306643351 100.0 1039.419 100.0
9 Power spectral density 79.099 79099135652 11.1 132.988 12.8
9 Moving average 0.038 38431969 0.0 0.061 0.0
9 Peak smooth 540.252 540251767 570 75.6 770.153 74.1
9 Gauss smooth 94.818 94818292874 13.3 136.072 13.1
9 Calibration 0.020 20349901 0.0 0.025 0.0
9 Peak detection 0.079 78632591 0.0 0.120 0.0
0 Compute velocity 0.000 2363 0.0 0.000 0.0

3 Instructions to implement the problem

3.1 Original execution times

The pipeline is meant to work on data segments that continuously arrive from the network. Instead,
the system has a deadline to complete the processing of each segment — precisely, the length of
the segment. Therefore, in our measurements we have excluded the time required to load the data
from the SD card into the system DRAM. Table 2 shows a break-down of the execution time of each
phase of the pipeline when executing different configurations on the Pynq board. The output of this
analysis is also shown in Figure 3.

3.2 Metrics for project evaluation 3 INSTRUCTIONS TO IMPLEMENT THE PROBLEM

Timing Breakdown by Experiment

700 7 Timing Components
EEE Time Hanning Generation
Time Hanning Window
600 - Time Window Reduction
Time FFT
I Time Magnitude
500 4 Time Normalization
mmm Time Reordering FFT
Time Frequency Generation
B Time Median Averaging
= 400 1 Time Peak Smoothing
o I Time Gauss Smoothing
E Time Calibration
300 - Time Peak Detection
Time Velocity
200 A I
I
100 ~
T T T T T T T T T T
o 5 s > L 9 © A D]

Configuraion Id
Figure 3: Profiling of all configurations in the PYNQ-Z2 board.

Table 3: Resource availability and computation of the usage factor

RESOURCE AVAILABLE FACTOR
CPU cores 2 20/%utilization
BRAM 140 20/140
DSP 220 20/220
LUT 53200 20/53200
FF 106 400 20/106 400

3.2 Metrics for project evaluation

The resources available on the FPGA are limited. Specifically, our xc7z020c1g400-1 contains two
ARM Cortex-A9 cores, 140 BRAMs (560 KiB in total), 220 DSPs, 53200 LUTs, and 106400 FFs. In the
context of this exercise, we will evaluate the use of resources for each solution as shown in Table 3.

The percentage of CPU utilization is reported in the supplied baseline code. The total resource
cost value of a solution can be computed extracting the resource usage from Vivado and applying
the following formula:*

20 o . 20 20 20 20
= 700 (%Corelltilization) + Tag X (#BRAMs) + 70 % (#DSPs) + 53500 < (To6a00 ~ (

As example, Table 4 shows the use of resources and the quality of the initial SW solution when
executed on the Pynq board.

Cr #LUTS) + #FFs) (1)

4The maximum resource utilization adds up to 100, although it is generally not possible to reach such a number: As the
usage of each component increases in a design, Vivado will struggle more to find a feasible routing, thus compromising
the feasibility of finding a solution.

3.3 Optimization suggestions 3 INSTRUCTIONS TO IMPLEMENT THE PROBLEM

Table 4: Resource usage and quality of the initial SW solution when executed on the Pynq board

Solution Config. Latency HW resources Energy Resolution SNR TTS Flexibility °

(s) ()] (Hz) (dB) (days) (%)
SW 0 19.288 10 27.703 2000.000 128.4 1
SW 1 23.200 10 33.798 1000.000 130.8 1
SW 2 28.815 10 43.606 500.000 131.6 1
SW 3 32.703 10 50.376 250.000 134.2 1
SW 4 35.397 10 54.799 125.000 127.0 1
SW 5 43.174 10 68.503 62.500 126.9 1
SW 6 68.202 10 112.439 31.250 136.4 1
SW 7 121.015 10 190.884 15.625 123.0 1
SW 8 222.204 10 336.362 7812 119.7 1
SW 9 714.307 10 1039.419 3906 1263 1
SW (overall) 10 1 100
3.3 Optimization suggestions

During the design of this accelerator, it is possible to follow many different approaches. The follow-
ing is a list of ideas and hints that can be used to generate new implementations. DISCLAIMER:
These optimizations are not mandatory. You are encouraged to devise your own solutions, and there

is no

preferred order for the following suggestions:

Carefully analyze the profiling results of each configuration and select which kernels to acceler-
ate on the FPGA’s programmable logic (PL). We recommend focusing on a single configuration
or a small subset for more effective optimization.

The full input signal is 152 MiB —too large for a single contiguous physical memory allocation.
When accelerating any block within the Welch PSD (e.g., the FFT), process the data in batches
of segments.

If accelerating multiple functional blocks (e.g., Hanning windowing and FFTs), we strongly
recommend implementing them as tasks and connecting them via streams. This enables effi-
cient pipelining between modules.

Design a small FFT module that can be replicated to process multiple segments in parallel. A
simple design can be based on the sequential C implementation provided. Within each stage,
you can exploit intra-stage parallelism.

Sine and cosine evaluations used for computing twiddle factors in the FFT are expensive in
hardware. Pre-compute these values and store them in look-up tables (LUTs), which can be
loaded into the field-programmable gate array (FPGA) once and reused across FFTs.

The FFT size coverage is also an optimization opportunity. In the C code, a buffer is allo-
cated for the largest FFT size (512k elements). Reducing this buffer size can free up resources,
allowing more parallel workers—at the cost of reduced flexibility.

The FFT computation involves multiple stages: log, (FFT size). While the C code allocates space
for all stage buffers, hardware implementations processing one FFT at a time do not need all
of them. Ping-pong buffering can reduce memory usage.

You can pipeline the FFT module to support back-to-back processing, where different FFTs are
at different stages in the same hardware module. Note: pipelined FFT stages are incompatible
with ping-pong buffering.

The previous two options will enable you to perform some form of design-space exploration
(DSE). For example, you may consider using a pipelined FFT (higher throughput, more re-
sources) instantiated less times, versus an in-place FFT (lower throughput, less resources) in-
stantiated many times. Which solution is faster to process the entire dataset?

5E.g., if a solution supports configurations 0 and 2 out of 10, then its flexibility is 20 %.

4 TIPS

¢ The 4-block windowing strategy is similar to the convolution that we implemented in previous
sessions. Instead of loading four new segments each time, reuse three segments and shift the
window. Then, apply the Hanning window and pass the result to the FFT.

* To tackle multiple configurations, it is possible to either design one single HW system (i.e., bit-
stream) that copes with all the sizes, or to design a different HW system for each configuration
or group of configurations, and program that bitstream dynamically in the FPGA as required.

* Floating-point operations are both slow and resource-intensive. Signal degradation up to 70 dB
is acceptable in our problem. To reduce resource usage, use fixed-point (FXP) arithmetic. En-
sure the dynamic range is suitable: values can be as small as 107°. To preserve precision, scale
up the data before computation (e.g., multiplying by a constant) and scale it down afterward
by dividing by the same factor.

* It is also possible to consider using the xilinx FFT IP core. If using FXP inputs, ensure the
data is rescaled to match the format expected by the IP. This includes scaling before and after
the computation.

* All functional blocks are connected through SW buffers. If these buffers are allocated on non-
cacheable memory to ease the processing with the hardware, then adjacent SW blocks can
suffer large slowdowns since the processors are much less efficient when working with non-
cacheable memory. Be mindful of memory placement.

4 Tips

4.1 Using the project “Makefile”

The included “Makefile” is equivalent to the one provided in Session 8. You will have to adapt
it to the specifics of your final project and update the associated TCL files. As a reminder, this
“Makefile” contains the following targets:

e Vitis HLS targets

hls_project: Just creates the Vitis HLS project
hls_sim: Creates the Vitis HLS project and runs the C++ simulation
ip: Creates the Vitis HLS project, synthesizes the design and exports the IP core

* Vivado targets

vivado_project: Just creates the Vivado project
bitstream: Creates the Vivado project and runs synthesis up to bitstream generation
extract_bitstream: If the Vivado bitstream has already been generated, extracts it to this folder

* Generic targets

clean: Deletes log files and Vitis HLS and Vivado projects; deletes the files in the IP catalog,
but keeps the IP catalog ZIP file

cleanall: Additionally, deletes the bitstream files and the IP catalog ZIP file

help: Displays a short help message

4.2 Disabling the swap file before taking measurements

Since this project uses a significant amount of RAM memory; it is convenient to disable the swap file
before taking time and energy measurements on the Pynq board. To do this, the following command
can be used every time the board is started:

sudo swapoff -a

Alternatively, the swap file can be permanently disabled commenting the corresponding line in
the “/dev/fstab” file:

4.3 Time & energy measurements 4 TIPS

>sudo nano /dev/fstab

/dev/mmcblk0Opl /boot vfat defaults 0 2
#/var/swap none swap sw 0 0

The presence of the swap space can be confirmed using either the ht op or the free commands.
It is also possible to increase the amount of available memory by stopping the Jupyter server.

4.3 Characterization of execution time and energy consumption

Figure 4: View of the “Pynq Power Ranger” board to measure energy consumption in the Pynq
board. Ensure at all times that the two switches are on the position “USB” and “ADC,” respectively
(as shown in the picture).

To measure the energy consumption of our designs running on the Pynq board, we can use the
“Pynq Power Ranger” extension board, shown in Figure 4. The design of the board is available in:
https://github.com/esl-epfl/pyng-power—ranger.

The initial source files for the project include an example design that can be used to monitor in
real time the energy consumption of any software running on the Pynq board. To use this example,
program the bitstream, compile the example (with make) and run the “PowerRanger” executable in
one terminal window. In a different terminal window, run any program whose energy consumption
you want to monitor. Alternatively, leave the board idle to see the baseline consuption of your board.
This simple example does not allow us to monitor any different HW design.

To monitor the energy consumption of our HW designs, we need to include the XADC module
in our own Vivado design.

4.3.1 Adding the XADC interface in Vivado

To add the analog-to-digital converter (ADC) module and configure it in a way that is compatible
with our drivers, follow these steps:

1. Create a Vivado project in the normal way.
2. Paste the following piece of TCL code in Vivado’s TCL console to instantiate and configure
the “XADC Wizard IP” from Xilinx:

set xadc_wiz_0 [create_bd_cell -type ip -vlnv xilinx.com:ip:xadc_wiz:3.3 xadc_wiz_0]

set_property -dict [list \
CONFIG.ACQUISITION_TIME {10} \
CONFIG.ADC_CONVERSION_RATE {39} \
CONFIG.ADC_OFFSET_AND_GAIN_CALIBRATION {false} \
CONFIG.CHANNEL_AVERAGING {256} \
CONFIG.CHANNEL_ENABLE_VP_VN {false} \
CONFIG.ENABLE_CALIBRATION_AVERAGING {false} \
CONFIG.ENABLE_EXTERNAL_MUX {false} \
CONFIG.ENABLE_RESET {false} \
CONFIG.ENABLE_VCCDDRO_ALARM {false} \
CONFIG.ENABLE_VCCPAUX_ALARM {false} \
CONFIG.ENABLE_VCCPINT_ALARM {false} \
CONFIG.EXTERNAL_MUXADDR_ENABLE {false} \
CONFIG.EXTERNAL_MUX_CHANNEL {VAUXPO_VAUXNO} \
CONFIG.INTERFACE_SELECTION {Enable_AXI} \
CONFIG.OT_ALARM {false} \
CONFIG.POWER_DOWN_ADCB {false} \
CONFIG.SENSOR_OFFSET_AND_GAIN_CALIBRATION {false} \

10

https://github.com/esl-epfl/pynq-power-ranger

4.4 Programming a bitstream at run-time 4 TIPS

3.

CONFIG.SEQUENCER_MODE {Off} \
CONFIG.SINGLE_CHANNEL_ACQUISITION_TIME {true} \
CONFIG.SINGLE_CHANNEL_SELECTION {VP_VN} \
CONFIG.TIMING_MODE {Continuous} \
CONFIG.USER_TEMP_ALARM {false} \
CONFIG.VCCAUX_ALARM {false} \
CONFIG.VCCINT_ALARM {false} \
CONFIG.XADC_STARUP_SELECTION {single_channel} \
] $xadc_wiz_0

Execute the following TCL line to create a top-level port that will connect the ADC ports to
the analog signals coming from the Pynq Power Ranger board:

set Vp_Vn_0 [create_bd_intf_port -mode Slave -vlnv xilinx.com:interface:diff_analog_io_rtl:1.0 Vp_Vn_0]

. Use the following TCL line to connect the input port of the XADC IP to the external port of

the FPGA:

connect_bd_intf_net -intf_net Vp_Vn_0_1 [get_bd_intf_ports Vp_Vn_0] [get_bd_intf_pins xadc_wiz_0/Vp_Vn]

Finally, add the supplied constraints file (“constraints.xdc”) to specify the physical FPGA
pin to which the Vp_vn_0 design port should be connected.

The above TCL fragments are available in Moodle in the file “recreate_xadc.tcl”.

4.3.2 Using the XADC in a SW application

Measuring times with the XADC module is very similar to measuring times with the standard
function clock_gettime (). We need to follow the following steps:

1.

@

Add the source files to the project and update the Makefile if necessary. The necessary files
are: “CAccelProxy.hpp”, “CAccelProxy.cpp”’, “CXADCProxy.hpp” and “CXADCProxy.cpp” .
Declare the base address of the XADC peripheral in the C program as usual. The default
address may be 0x43C00000.

Instantiate an object of the CXADCProxy class and initialize it as usual.

At the beginning of the C program, call the method StartMeasurements (). The proxy
class generates a background thread that reads values from the ADC with a frequency of ap-
proximately 123 Hz. The ADC acquires samples at a higher frequency (31.57 kHz), averaging
256 acquired samples. In other words, the ADC produces samples at a frequency of approxi-
mately 123 Hz, each of which is the average of 256 samples acquired over 8 130 ps. This helps
to smooth our measurements and avoids generating a large overhead on the ARM cores.
Before and after the section of code that needs to be profiled, call the method GetEnergy ().
This method returns a monotonically increasing value of consumed energy, in J. Therefore, it
is possible to simply subtract two measurements taken before and after the section of interest.
At the end of the program, the method StopMeasurements () should be called to stop the
background thread.

The source files available in Moodle contain two different applications that can serve as exam-
ple for your own measurements. First, the PowerRanger app is the simple monitoring application
described above. Second, a time- and energy-instrumented version of the pipeline for this project is
also included.

4.4

Programming a bitstream at run-time

It is possible to generate different bitstreams, each optimized for a specific problem size. In that case,
the software can load the correct bitstream at run-time before using the accelerators. Programming
the bitstream can be done from the C application itself, and it takes less than a second. If you are
interested in this possibility for your project, contact us directly for more information.

11

REFERENCES

5 Acknowledgments

We would like to acknowledge the help of Mr. Aurélien Thomas Mathieu Verdier (EPFL LASTRO),
Mr. Léonard Georges Théodore Lebrun, Mr. Matteo Veneziano, Mr. Tom Vadot, and the Callista As-
tronomy Association from EPFL, for introducing us to the VEGA radio telescope and the challenges
they are facing in their pipeline design.

We would also like to acknowledge the work of Dr. Taraneh Aminosharieh Najafi, Mr. Alejandro
Lopez-Rodriguez and Mr. Rubén Rodriguez, from EPFL, in the design and production of the “Pynq
Power Ranger” PCB board used to measure energy consumption.

References

[1] A. Verdier, “The EPFL students radio telescope VEGA,” in Swiss SKA Days, Sep.
2024. [Online]. Available: https://indico.skatelescope.org/event/1146/contributions/10836/
attachments/9866/17292 /VEGA_SKACH_DAYS.pdf

[2] Wikipedia. Hydrogen line. [Online]. Available: https:/ /en.wikipedia.org/wiki/Hydrogen_line#
Cause

[3] C. E. of Astronomy. Spin-flip transition. [Online]. Available: https://astronomy.swin.edu.au/
cosmos/S/Spin-flip+Transition

[4] SEAMS. Seams: Sustainable & energy aware methods for SKA observatory. [Online]. Available:
https:/ /seams-project.com/

[5] PhysicsOpenLab. GNURadio software for the 21 cm neutral-hydrogen line. [Online].
Available: https://physicsopenlab.org/2020/07 /26 /gnuradio-software-for-the-21-cm-neutral-
hydrogen-line/

12

https://indico.skatelescope.org/event/1146/contributions/10836/attachments/9866/17292/VEGA_SKACH_DAYS.pdf
https://indico.skatelescope.org/event/1146/contributions/10836/attachments/9866/17292/VEGA_SKACH_DAYS.pdf
https://en.wikipedia.org/wiki/Hydrogen_line#Cause
https://en.wikipedia.org/wiki/Hydrogen_line#Cause
https://astronomy.swin.edu.au/cosmos/S/Spin-flip+Transition
https://astronomy.swin.edu.au/cosmos/S/Spin-flip+Transition
https://seams-project.com/
https://physicsopenlab.org/2020/07/26/gnuradio-software-for-the-21-cm-neutral-hydrogen-line/
https://physicsopenlab.org/2020/07/26/gnuradio-software-for-the-21-cm-neutral-hydrogen-line/

