E P F L c%%‘s“ﬁ'u's“LAHIIHM[lRY

Lab on HW-SW digital systems codesign Exercises Session 6
SEL B.Sc. Curriculum (Spring Semester) Out: 2025-03-27
Embedded Systems Laboratory

EPFL-STI-IEL

Device drivers for FPGA AXI peripherals in Linux

In this session, we will create a device driver in kernel space to control the peripherals, in
contrast to the user-space classes we were using up to now to control them. We will also detect the
completion of the peripheral work with an interrupt service routine (ISR) by setting up an interrupt
request (IRQ). First, we will see how to interact with a timer peripheral (developed in VHDL). Then,
we will see how to interact with the vector adder developed in Session 2 and how to capture the
interrupt generated by the accelerator upon completion of its task.

1 Board setup for Linux

Before we can start developing our device drivers, we need to build the module system for the
Xilinx image in Linux. In the Pynq (image version 2.6), connect by ssh and execute the following
commands:

$ sudo 1n -s /lib/modules/5.4.0-xi1inx-v2020.1/build/include/asm-generic/ \
/lib/modules/5.4.0-x11inx-v2020.1/build/include/asm

$ cd /lib/modules/5.4.0-x1i1inx-v2020.1/build

$ sudo make

The build process will not fully complete. This is normal:

UPD include/generated/compile.h
make[1l]: x*%x No rule to make target ’init/main.o’, needed by ’init/built-in.a’. Stop.
Makefile:1652: recipe for target ’'init’ failed
make: *%* [init] Error 2

2 Exercise 1: Timer with interrupts

In this example, we build an AXI4 slave peripheral that implements a timer of one second. Every
time that one second passes, the peripheral generates one interrupt. As the frequency of the pe-
ripherals is by default 100 MHz in our system, the peripheral simply counts 100 000 000 cycles and
generates the interrupt each time it reaches the maximum.

Build a Vivado project with the structure shown in Figure 1, observing how the interrupt signal
is connected to the Zynq processors. Before connecting interrupt lines to the Zyng, we need to
enable them as shown in Fig. 2.

Inspect the HDL file of the timer module (HDL/TimerInterrupt.vhd). The interrupt needs to
be enabled and cleared (acknowledged) from the software side through the slave registers of the
peripheral interface. The peripheral activates the interrupt line (i.e., interruptout in Figure 1 be-
comes high) once the maximum count is reached. However, the peripheral does not deactivate the

2 EXERCISE 1: TIMER WITH INTERRUPTS

ps7_0_axi_periph

.
-+ S00_AXI
rst_ps7_0_100M ACLK Timerinterrupt_0
—— ARESETN .Y.
slowest_sync_clk mb_reset S00_ACLK H—HN MO0 AXl + + S_AXI
ext_reset_in bus_struct_reset[0:0] p— S00_ARESETMN .Z. S_AXI_ACLK RTL interruptOut
@ aux_reset_in peripheral_reset[0: 0] MOO_ACLK S_AX|_ARESETN
= mb_debug_sys rst interconnect_aresetn[0:0] b—— MOO_ARESETN
= dem_locked peripheral_aresetn[0:0] Timerinterrupt vl 0
Jr AX| Interconnect
Processor System Reset

processing_system7_0

DDR +1:: > DDR
xlconcat_0 FIXED_IO +|]| > Fixeo_o
\ M_AXI_GPO_ACLK - useIND_0 +|||
+ In0[:0] dout(0:0] IRQ_F2P[0:0] ZYNQ M_AXI_GPO + i
) FCLK_CLKO H
Concat FCLK_RESETO_N

ZYNQ7 Processing System

Figure 1: Block diagram of Example 1. The “concat” module converts a bit signal into a vector, e.g.,
from std_logic to std_logic_vector (0:0). Do NOT remove the concat module: it is neces-
sary to use the programming script in the Pynq board.

Re-customize IP (on eslpc25) X

ZYNQ7 Processing System (5.5) [

@ Documentation %} Presets IP Location &} Import ¥PS Settings

Page Navigator -

Zyng Block Design

Interrupts Summary Repart

PS-PL Configuration Search:
Penpheral 10 Pins Interrupt Port D Description .
v« Fabric Interrupts Enable PLInterrupts to PS and vice versa

MIO Configuration w PL-PS Interrupt Ports

¥ IRQ_F2P[15:0] [91:84], [68:61] Enables 16-bit shared interrupt port from the PL. MSE is assigned the highest Interrupt ID of 91
Clock Configuration () coreo_nFiQ 28 Enables fast private interrupt signal for CPUO from the PL

(] coreo_nIRQ 31 Enables private interrupt signal for CPUO from the PL
DOR Configuration () corel_nFig 28 Enables fast private interrupt signal for CPUL from the PL

(] corel_nRQ 31 Enables private interrupt signal for CPUL from the PL

SMC Timing Calculation
> PS-PLInterrupt Ports

Interrupts

Figure 2: Enabling interrupts in the Zynq block.

2.1 testTimer: Counting seconds in software 2 EXERCISE 1: TIMER WITH INTERRUPTS

Table 1: Registers presented by the slave interface of the peripheral used in Example 1.

Offset Direction Name

0x00 R Count

0x04 \%Y Enable

0x08 W Enable interrupt
0x0C \%Y Clear interrupt

interrupt line until the software writes into the ClearInterrupt register. If the software does not
clear the interrupt on time, the processor will not detect the next interrupt as there will be no
transition in the interrupt signal.

The peripheral presents a slave interface with the register map described in Table 1:

* The count register allows the software to read the current count value.
¢ The Enable register starts the count of the timer peripheral.

* The Enable interrupt register enables activation of the Interruptout signal when the con-
dition is met in the timer.

® The Clear interrupt which allows the software the acknowledge the interrupt and lower
the interrupt signal, so that the next event can trigger a new transition.

Generate the bitstream, extract the files and copy them to the Pynq board.! Copy also the soft-
ware files available in Moodle to the board (from the sw/ folder). The Makefile will generate two
programs, testTimer and testTimerInterrupt.

2.1 testTimer: Counting seconds in software

Inspect the source code of the application testTimer.cpp . In this example, we try to detect when
the peripheral counter passes by zero in software. Every time the peripheral counter passes by zero,
we know that one second has elapsed.

The application code can be compiled normally with make. In this first experiment, we are
going to use only the testTimer application. To test the design, program the FPGA and execute the
program. As usual, both operations require sudo:

$ sudo ../programOverlay.py Examplel_TimerInterrupt.bit
$ sudo ./testTimer
» Question: What do you expect the behavior of the application to be?

» Question: What is the actual behavior of the software?

» Task: Explain what you observe and propose an explanation. Use htop or top to find the CPU
utilization of the application. Is this method efficient? Does it work properly?

To verify your conclusions, modify the main condition of the application (line 55) as follows, and
explain the newly observed behavior:

if ((lastCounter > 100) && (newCounter < 100)) {

IThe bitstream (files .bit and .hwh) are also available in Moodle in case you encounter issues regenerating them.

2.2 testTimerInterrupt: Using a device driver with interrdptE£XERCISE 1: TIMER WITH INTERRUPTS

2.2 testTimerInterrupt: Using a device driver with interrupts

Instead of having the CPU poll continuously the values in the peripheral registers, we can ask
the peripheral to generate an interrupt every time it reaches its maximum value. We can then
create a device driver that automatically manages the interrupt notifications and clears the interrupt
line. The driver/ folder contains an example of the device driver that implements this behavior.
Read the driver code carefully to understand all its operations. Finally, on the user application side
(testTimerInterrupt.cpp), we can simply call the device driver to obtain the number of times
that the interrupt has happened —check the variable count in the device driver.
The device driver exports the operations init (), exit(), open(), read(), release(),which

correspond to the loading and unloading of the kernel module, and the system calls open (),
read() and close (). These functions can be called from user space:

* init () is called by the kernel when loading the driver. This process can be started with this
command line: sudo ./load in the driver folder.

* exit () is called by the kernel when unloading the driver. This process can be started with
this command line: sudo ./unload in the driver folder.

* open () corresponds to the system call open. From C, it is called with the standard open ()
function: int open (const char *_ _path, int _ _oflag, ...)

® read() corresponds to the system call read. From C, it is called with the standard read()
function: ssize_t read (int __fd, void x__buf, size_t _ nbytes)

® release() corresponds to the system call close. From C, it is called with the standard
close () function: int close (int __ fd)

The driver associates one ISR with the IRQ line connected to the peripheral. Our peripheral is
connected to the global interrupt controller (GIC) of the ARM processors through its IRQ line 61.
However, the Linux kernel remaps the IRQ to the virtual IRQ number 48 —the determination of the
correct number is beyond the scope of this exercise.

» Task: Complete the code of the interrupt handler to count the number of interrupts and clear
the interrupt in the device.

Tip: Read the code of testtimer_open () to know how to write to the peripheral registers from
kernel space.

The driver is loaded and unloaded from the command line (in the driver folder):

$ make
$./load

. Use the driver ...
$./unload

The driver prints informative and error messages to the kernel log. Once the driver is loaded,
the command dmesg can be used to read these messages. It is also possible to see the association of
the driver to the IRQ line:

$ cat /proc/interrupts

CPUO CpPU1

16: 0 0 GIC-0 27 Edge gt

17: 515255 658262 GIC-0 29 Edge twd

47: 0 0 GIC-0 41 Edge £8005000.watchdog
48: 139 0 GIC-0 61 Edge testtimer_driver
IPI1: 0 0 Timer broadcast interrupts

IPI2: 193965 536737 Rescheduling interrupts

IPI3: 2516 2489 Function call interrupts

IPI4: 0 0 CPU stop interrupts

IPI5: 1 0 IRQ work interrupts

IPIG6: 0 0 completion interrupts

Err: 0

3 EXERCISE 2: DEVICE DRIVER FOR MASTER

Table 2: Registers presented by the slave interface of the peripheral used in Example 2, including
the registers for interrupt control. “Toggle on write” (TOW) bits toggle their value when a “1” is
written to that specific bit in the register.

Offset Direction Name

0x00 R/W Control and status

0x04 R/W Global Interrupt Enable (bit 0)

0x08 R/W Interrupt Enable Register (IER)
R/W bit 0: enable done interrupt
R/W bit 1: enable ready interrupt

0x0C R/W Interrupt Status Register (ISR)
R/W bit 0: done (toggle on write)
R/W bit 1: ready (toggle on write)

0x10 R/W input 1 address

0x1C R/W input 2 address

0x28 R/W output address

0x34 R/W length

0x3C R/W bias

Columns “CPUQ” and “CPU1” correspond to the number of interrupts of each IRQ line that
have been attended by each CPU in the system. Use this information to verify later that the driver
is working correctly.

Once the driver is loaded, inspect the source code of the file testTimerInterrupt.cpp . What
do you expect that will be the behavior of the application? Execute it and verify your hypothesis.
Use again htop or top to determine the CPU utilization of the application.

Applications interact with device drivers using file operations. Typically, a driver gets one node
under /dev/ for each instance (peripheral) that it controls. In our case, the application opens
/dev/testtimer. The application can use all the file operations exported by the driver; in our
case, they are open (), close () and read (). The read () operation of our driver returns the count
of interrupts that the peripheral has produced, e.g., the number of seconds since it was activated.
The operation returns exactly 4 bytes (one uint32_t) every time it is called, and requires that the
user-supplied buffer is at least as large as this.

The driver is executed in kernel space, whereas the application resides in user space. That means
that none of them can directly access the variables of the other. Therefore, the driver uses the
functions raw_copy_to_user () and raw_copy_from_user () to copy to/from user buffers.

The interrupt handler can be executed at any time, preempting the user application or other
functions of the driver itself. Therefore, any operations it performs on data must be atomic.

The application does not need to read the counter of interrupts with any specific frequency. The
peripheral and the driver continue counting the interrupts in the background, and the application
can check the value whenever it needs. The example shows this independence by sleeping a random
time every time it reads the counter.

3 Exercise 2: Implementing a device driver and interrupt handling for
the vector adder

In this example, we see how to build a device driver for a master peripheral that takes advantage
of the interrupt mechanism to allow the calling thread to go to sleep until the peripheral completes
its operation. Use the files in the folder Exer02_vectoraAdder for this example. The peripheral
is the same vector adder from Session 2. Therefore, we can reuse the same files for the hardware
generation used in that session. While generating the block diagram in Vivado, remember to connect

3.1 The device driver 3 EXERCISE 2: DEVICE DRIVER FOR MASTER

the interrupt of the peripheral to the PS block as done with the timer in the previous example.
The map of peripheral registers should look like Table 2. In particular, in this example we will
use the interrupt control registers of the peripheral.

3.1 The device driver

First, program the bitstream into the FPGA. Then, enter the folder driver, make the driver, and
load it. Use dmesg to verify that the driver is correctly loaded (the name of this driver is “adder”).
Inspect the user application in VectorAdder.cpp . The Open() function and the destructor
CAccelDriver.cpp have changed: They are not aware anymore of the register mapping of the pe-
ripheral. Instead, this structure has been moved to adder. c in the device driver code. Additionally,
in CVectorAdderDriver.cpp the call to the accelerator has also changed: It is not configuring the
slave registers of the accelerator anymore, since this configuration is now done by the device driver

in adder.c.
The driver and the application communicate through the read () system call. We have defined
a structure (user_message) with the same fields both in the driver and in the application:

struct user_message {
uint32_t inputl;
uint32_t input2;
uint32_t output;
uint32_t length;
uint32_t accum; // => "bias"

The application passes a buffer of this type to the driver with the parameters for the accelerator.
In this way, the code of the driver, which interacts directly with the peripheral, is isolated from the
user code. This can improve the stability of the system and can also make changes in the peripheral
implementation transparent for the applications —as long as the driver interface remains unaltered.

Once the application calls the driver, the execution passes to the driver until it returns. Now, in-
spect the code of the driver in driver/adder.c . In particular, go to the function adder_read () and
observe how the device registers are programmed. The driver uses the function raw_copy_from_user ()
to read the user-space buffer into a kernel-space one. Then, it programs the peripheral registers in

the same way that we were doing previously from the user space.
Finally, the driver instructs the peripheral to start and waits until the “done” flag is signaled:

do {
status = ioread32 (adder_mem.baseAddr + REG_STATUS) ;
} while (((status & 2) != 2)) ;

» Question: What do you think will happen while the driver is waiting? Will the CPU be busy?
Use htop or top to observe the system behavior.?

» Question: Do you observe any difference between the system occupation report of the previous
examples and this one? Use top and look into the summary at the beginning of the report to see
the user, system, and idle times.

The execution is mostly focused inside the driver function, yet the time is accounted to the applica-
tion. This is because system time is accounted for the process that asked for the kernel services.

2The application has been modified to repeat the computation ten times so that there is enough time to observe the
system behavior. The total execution time should be around 9s. If the system cannot allocate enough direct memory
access (DMA) memory, try to reduce the length of the vectors and increase the number of iterations proportionally.

3.2 Manage the interrupt and sleeping REFERENCES

3.2 Manage the interrupt and sleeping

We can use a driver not only to isolate user applications from the peripheral interface and increase
the system robustness, but we can also use the interrupt mechanism to free the processors. While
the task is performed by the accelerator, the processors are free to run other tasks, or they can be
put to sleep to save energy and reduce their temperature.

The peripheral can generate an interrupt signal when it finishes its work. Therefore, we can
program it to start processing a set of vectors, and wait until the interrupt is signaled. One mech-
anism to allow the process to sleep is to use a “wait queue.” Check the function adder_read() in
driver/adder.c to see how it works.

The calling thread (which is running in kernel space, inside the device driver, and on behalf of
the application) gives back the use of the processor to the scheduler until it is signaled by an external
source to execute again. When the peripheral interrupt arrives, the interrupt handler signals the
driver task to be activated again, which makes it resume its original execution. Once the wait ends,
the driver knows that the peripheral has completed its execution and can return the results to the
application (check the additional tests in the source code to verify that the thread is not awakened
by other signals).

To execute this example, first generate the bitstream of the vector adder (with the interrupt
line connected to the PS) and program it into the FPGA. Then, enter into the driver folder, run
make and, if there are no errors, ./load. Finally, run make to build the applications and execute
sudo ./VectorAdder. When the experiment is finished, do not forget to unload the driver with
./unload. dmesg can be used at any time to inspect the messages sent by the driver to the kernel
log.

As we are still using the Xilinx-provided interface to allocate DMA buffers and obtain their
physical addresses, rather than kernel functions inside the driver, the application has to be executed
with sudo in this case.

» Question: After running the application, what do you observe in the timings?

» Question: Check the CPU utilization with htop. What do you see compared to the
version of Session 2? Consider that, while the peripheral is processing the vectors, the processor
is free to execute other tasks; in a sense, it is as if our system now had three processors, two
general-purpose CPUs, and one specific-purpose CPUL

IMPORTANT NOTE: Never allow an application to pass a physical address to a peripheral in
a production environment. The reason is that the application can fabricate a non-valid address
and crash the complete system, or use it to inspect/modify the memory contents with malicious
intentions. Instead, the driver must perform the memory allocation and pass a virtual address to
the application and the physical address to the peripheral as necesary.

References

[1] The kernel development community, “The Linux Kernel 5.12.0,” Apr. 2021. [Online]. Available:
https:/ /www.kernel.org/doc/html/latest/admin-guide/index.html

[2] S. Venkateswaran, Essential Linux Device Drivers, 3rd ed. Prentice Hall, Dec. 2008.

https://www.kernel.org/doc/html/latest/admin-guide/index.html

