E P F L c%%‘s“ﬁ'u's“LAHIIHM[lRY

Lab on HW-SW digital systems codesign Exercises Session 8
SEL B.Sc. Curriculum (Spring Semester) Out: 2025-04-10
Embedded Systems Laboratory

EPFL-STI-IEL

Dynamic job scheduling across multiple accelerators

1 Introduction

The goal of this exercise is to explore different techniques to improve the performance of our accel-
erators by parallelizing the work over multiple units in the FPGA. As a target, we will consider the
problem of alignment of genomic sequences.

1.1 Problem definition

“In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA, or
protein to identify regions of similarity that may be a consequence of functional, structural, or
evolutionary relationships between the sequences.” [1]

Sequence alignment is a critical tool in bioinformatics that allows researchers to study the sim-
ilarity between genomes of different species or to trace possible evolutionary paths. When two
sequences for the same protein are aligned, it may be possible to find out individual mutations be-
tween them, represented by nucleotide changes. Sequence alignment also exposes possible deletions
or insertions of nucleotides in the sequence, by shifting one sequence with respect to the other. An
intermediate point in sequence alignment is the determination of the similarity score between two
sequences. In this project, we will focus on the generation of the similarity score.

Today, researchers count on many algorithms to perform sequence alignment. These algorithms
are designed to be extremely efficient since the amount of data to be processed is often in the order
of GiB or even TiB. Thus, execution time has always been an optimization target. However, recent
concerns about energy consumption in data centers, both from the environmental and technological
points of view, have motivated the switch from “time-to-completion” to “energy-to-completion.”

In this exercise, we want to design a set of hardware accelerators that save time and energy
while performing the alignment of a large number of sequences. To simplify, we will assume that
the sequences of the database and of the specimen fit in the DRAM memory of the Pyngq.

As a starting point, you will receive the original non-accelerated —pure software— version of the
code. This version uses OpenMP to process the data using the two ARM cores of the Zynq FPGA at
the same time. In addition, you will receive an initial basic implementation of the hardware acceler-
ator, including both a complete Vitis HLS project, a Vivado project and the software application that
uses this initial accelerator in the Pynq board. Unfortunately, the designers assigned to this project
were fired due to budget cuts before finishing its optimization, so this version is much slower on
the Pynq board than the original software version.

The file package includes also a “Makefile” to help in the development of the project, and an
input dataset consisting of:

1.2 Size of the problem and execution time 2 SMITH-WATERMAN

¢ A database with 40 000 genomic sequences.

* A file containing 1000 sequences from a given specimen.

¢ A binary file containing the score of each comparison (i.e., the output of the algorithm). This
is the ground truth for your implementation. To save space, we include an MD5 checksum of
the file rather than the complete file.

The exercise consists on completing the source code for the two additional versions:

* A version that improves on the basic HW by caching the current database and specimen lines
in an internal (BRAM) buffer.

* A version that uses HLS streams and tasks to distribute the comparison work across multiple
workers in the FPGA, keeping the same interface with the SW.

1.2 Size of the problem and execution time

With the purpose of bounding the execution time of the tests, the input files supplied contain a
database with 40 000 sequences and a specimen with 1000 sequences. These sizes create the follow-
ing execution scenario:

PARAMETER VALUE SIZE (B)
MAX_SEQ_LENGTH 32 32
DB entries 40000 40000 x 32 = 1280000
Specimen entries 1000 1000 x 32 = 32000
DB lengths 40000 40000 x 1 = 40000
Specimen lengths 1000 1000 x 1= 1000
Num of comparisons 40000 x 1000 = 40000000
Scores 40000000 x 1 = 40000000
Total RAM 41353000

The strings have a variable size of up to 32 nucleotides. Since they are stored in the files con-
secutively (i.e., according to their variable size), we need to create a list of string sizes, both for the
database and for the specimen strings.

The following table shows the execution times and use of resources of each version:

NAME Time LUTs FFs BRAMs DSPs Performance

(s) (comps/s)
00_SW 321.7s - - - - 124 333
01_Basic_. HW 5192.0s 3380 4113 1.5 4 7705
03_CacheLines 379.6s 3470 4299 1.5 4 105362
05_Workers_x2 179.2s 5759 8532 12 5 223174
05_Workers_x4 90.4s 8293 12426 15 7 442 441
05_Workers_x8 56.7s 13472 20452 21 14 705471
05_Workers_x10 54.4s 16100 24495 14 13 734630
05_Workers_x16 54.4s 23714 36476 33 19 735597
05_Workers_x24 54.4s 34007 52208 45 27 735727

2 Background: The Smith-Waterman algorithm for sequence alignment

The Smith-Waterman algorithm employs dynamic programming to find the optimal local alignment
score of two genomic sequences. Additionally, it allows producing all optimal local alignments —we
will skip this part in this exercise. In this context, local means that the sequences have already been
shifted to match the correct comparison positions. Other algorithms, such as the one proposed by
Needleman-Wunsch, can be used to compute global alignment. In that case, the reconstruction of
the aligned sequences includes ‘holes’ that shift one sequence with respect to the other.

2

2.1 Step 1: Building the scores matrix 2 SMITH-WATERMAN

2.1 Step 1: Building the scores matrix

Given two sequences, A="ACCATGA’ and B="ACCAGA’, of lengths n and m, respectively, the al-
gorithm starts to build a matrix M of size (n + 1) x (m + 1). Sequence A is written on top of the
tirst row, whereas sequence B is written along the left border of the table. The first row and the first
column of the table are filled with zeros:

—j= Alj]

0 0o 0o o 0o o0 0 0 O
i A O
I c o
c 0
Blii A 0
G 0
A 0

The table is filled from top to bottom, and from left to right, using the following formula:

0
M|i—1,j—-1]+ S(A]j|,B|i
M{i i — max MU~ 1 =11+ (AL BI) "
M[i—1,j]—1
Mli,j—1] -1
where:
1, ifa=0b
Sla,p] = T A @
-1, ifa#b
Applying formula 1, we can start filling in the first row, from left to right.
—j— Alj]
A C C AT G A
T 0 0 O 0 0 0 0 O
i A 0 1 0 0 1 0 0 1
1 c o
c o
Blij A 0
G 0
A 0
The final configuration of the table is as follows:
(A)
A C C AT G A
0 0o 0o 0 0 0 0 O
A0 1 0 0 1 0 0 1
c 0 0 2 1 0 0 0 O
¢ 0 0 1 3 2 1 0 0
A 0 1 0 2 4 3 2 1
G 0 0 0 1 3 3 4 3
A0 1 0 0 2 2 3 5

The algorithm has to track the maximum value in the table — we will assume in this example
that we keep the first appearance of this maximum value, in the order in which the values are
calculated:

3 ADDITIONAL INSTRUCTIONS
(A)
A C C AT G A
0 0o o 0 0 0 0 O
A0 1 0 0 1 0 0 1
c o0 0 2 1 0 0 0 O
¢ 0 0 1 3 2 1 0 0
A 01 0 2 4 3 2 1
G 0 0 0 1 3 3 4 3
A0 1 0 0 2 2 3

In this simplified version of the problem, the result (“score”) is the maximum value found while
building the table.

3 Additional instructions

3.1 Structure of the provided project

The project provided contains several folders:

3.2

“00_segMatcher_SW_oOpenMpP/” Original implementation of the sequences in SW using OpenMP.
Works in any Linux machine. Change the number of threads in the Makefile to the number of
cores in your machine. The Pynq board has two ARM cores.

“01_segMatcher_HW_Basic/” Baseline implementation of the HW accelerator. Contains the
Vitis HLS, Vivado and Pynq Linux (SW) projects. Use the Makefile inside to generate the
different parts of the project.

“03_SegMatcher_ HW_Basic_CacheLines/” Baseline HW version with caching of the current
line from the database and from the specimen in an internal BRAM buffer. This version has to
be completed.

“05_SegMatcher_HW_Workers/” HW version with HLS streams and tasks to distribute the
comparisons across multiple workers inside the FPGA. This version has to be completed.
“testdata/” Contains the main database and specimen files, with the scores output generated
with the original SW version.

Using the project “Makefile”

The included “Makefile” contains the following targets:

e Vitis HLS targets

hls_project: Just creates the Vitis HLS project
hls_sim: Creates the Vitis HLS project and runs the C++ simulation
ip: Creates the Vitis HLS project, synthesizes the design and exports the IP core

* Vivado targets

vivado_project: Just creates the Vivado project
bitstream: Creates the Vivado project and runs synthesis up to bitstream generation
extract_bitstream: If the Vivado bitstream has already been generated, extracts it to this folder

Generic targets

clean: Deletes log files and Vitis HLS and Vivado projects; deletes the files in the IP catalog,
but keeps the IP catalog ZIP file

cleanall: Additionally, deletes the bitstream files and the IP catalog ZIP file

help: Displays a short help message

3.3 File formats REFERENCES

The project can be recreated from scratch using the bitstream target. If previous steps are already
completed, make will construct only the subsequent steps.

Inside the sw_ folder for the Pyng, there is another Makefile intended to build the software in
the Pynq board. In this case, the flag — 32 is passed to make to parallelize the compilation across the
two ARM cores of the board, which saves some time.

3.3 File formats

Each sequence in the database and specimen files is stored as an ASCII string with letters rep-
resenting the nucleotides ("A’, ‘C’, ‘G’, ‘T"). Each sequence can have a length between 16 and 32
nucleotides, both inclusive. In the files, each sequence terminates with a new-line character. The
strings are loaded into memory in consecutive form, that is, without line breaks or NULL markers.
Additionally, to save memory, the sequences are stored in memory with their actual length (i.e., the

application does not reserve the maximum space for each string).

Therefore, the application creates two additional vectors to store the lengths of each of the strings:
one for the database entries and one for the specimen entries, respectively. Since the length of each
sequence is limited to a maximum of 32 nucleotides, the lengths are stored as uint8_t values. For
example, the following data in a file:

ACCGACGTGACGTACTTIC
GACGTGACGTACTTGA

would be represented in memory as: “ACCGACGTGACGTACTTCGACGTGACGTACTTGA” and the vector of
lengths would contain the values: {18, 16}. The accelerator implementation must respect the format
of the files, but it is free to modify the representation of the sequences in memory.

Scores are usually limited to small positive or negative values. In this example, we will represent
them as int8_t values. The scores are stored consecutively in the file. The accelerator implementa-
tion must respect the format of the output file.

3.4 Faster execution during debugging

The database file can be shortened to reduce execution times, particularly while working with
the initial (slower) versions of the accelerator. To produce a golden reference, execute the original
SW version indicating a smaller number of entries in the DB. Save the scores file with a different
name and use that file as a reference to compare the correctness of your implementations during
debugging.

4 Acknowledgments

We would like to acknowledge the help of Maria Elena Espinosa, from the University of Malaga, for
introducing us to the challenges posed by the problem of sequence alignment during her Ph.D. stay
at ESL-EPFL, and for providing hints in the choice of algorithms for this exercise.

References

[1] Wikipedia. Sequence alignment. [Online]. Available: https://en.wikipedia.org/wiki/Sequence_
alignment

https://en.wikipedia.org/wiki/Sequence_alignment
https://en.wikipedia.org/wiki/Sequence_alignment

