
Lab on HW-SW digital systems codesign Exercises Session 3
SEL B.Sc. Curriculum (Spring Semester) Out: 2025-03-06
Embedded Systems Laboratory
EPFL-STI-IEL

Accelerating a CNN-based application to discriminate dogs
and cats

1 Introduction

Convolutional neural networks (CNNs) are commonly used to perform tasks such as image classi-
fication. In this example, we work with a CNN that classifies images of dogs and cats, that is, the
application will read an input image and process it using a CNN that will assign a probability of it
being a photograph of a dog or a cat. The output of the CNN is a value in the range [0, 0.5) for the
label “cat,” and a value in the range (0.5, 1.0] for the label “dog.”

The execution of the application to perform one single inference on the Pynq board takes about
28 s. The goal of this and the following sessions is to reduce the execution time of the application
developing one or more hardware accelerators using HLS.

1.1 Basics of convolutional neural networks

A CNN is a type of artificial neural network that relies on convolution operations to identify “fea-
tures” in the input data. In a typical CNN structure, one convolution operation is followed by an
activation function (e.g., a ReLU1) and, optionally, a pooling layer to reduce the dimensionality of
the data. Multiple layers of convolution-ReLU-pooling operations are chained one after the other.
At the end of the process, the final activation map can be used, for example, with a fully connected
layer to implement a classifier based on probabilities. Figure 1 shows a typical CNN structure.

Figure 1: Typical CNN structure with three convolutional layers. Each pooling layer reduces the
dimensionality (e.g., width and height) of the data.

1The rectified linear unit (ReLU) function returns x if x > 0; otherwise, it returns 0.



1.2 CNN layer structure 1 INTRODUCTION

Hin

Cin

Win

Skernel

Hout

Cout

Wout

Input feature map Convolution kernel Output feature maps

Figure 2: Example of convolutional layer. The input feature map can contain multiple channels (3
in this figure, one for each R, G, B color channel). Each filter, trained to detect specific features, has
a set of coefficients for each channel in the input — in this example, there are 3 × 3 coefficients for
each input feature map, for a total of 27 coefficients per filter. Each filter produces one output feature
map after it is slided over the complete input feature maps.

The input to a convolutional layer consists of one or several channels. For example, a color image
may have three channels (e.g., R, G and B). The layer has a set of filters, each of which is designed
to detect specific features in the input. Typical filter sizes are 3 × 3, 5 × 5, 7 × 7 or 11 × 11. A filter
of size 3 × 3 has 9 coefficients. If the input data has multiple channels, the filter is applied to each
of the channels in the same position. Therefore, if the input data has N channels, then the filter may
contain 3 × 3 × N coefficients — that is, the filter is applied over a region of each channel, using
different coefficients for each of the channels.

During processing, the filter is slided over the input data with a certain stride (e.g., 1, 2, ...). Every
time the filter is applied to all the channels of the input, the results computed for each channel are
accumulated to produce the value of the output data at the current position.

Additionally, a convolutional layer can consist of multiple parallel filters, each of them trained to
identify specific features in the input. For example, one filter can be trained to detect curved shapes,
one for straight lines, other to detect adjacent red-blue pixels, . . . If a layer has M different filters, it
will produce M output feature maps that will be interpreted as M input channels by the following
layer. In that way, the number of output filters (i.e., output feature maps) of layer i is the number of
input channels (i.e., input feature maps) of layer i + 1. Figure 2 shows the complete process.

Convolutional layers typically account for the major part of computation time in a CNN. There-
fore, they are often the prime target for acceleration.

1.2 CNN layer structure

The proposed CNN consists of five convolutional layers, each followed by a max pooling layer. Then,
it has two fully connected layers (“dense”) and a final sigmoid function to produce a single output
classification value.

The following figure shows the CNN structure and the different parameters of each layer:

2



1.2 CNN layer structure 1 INTRODUCTION

Conv0 (x32)

MaxPool (%2)

Conv1 (x64)

MaxPool (%2)

Conv2 (x128)

MaxPool (%2)

Conv3 (x256)

MaxPool (%2)

Conv4 (x64)

MaxPool (%2)

Dense0 (512)
(ReLU)

Dense1 (1)
(Sigmoid)

256x256x3 – 196 608 elem
inputImageFxP

0

1

2

3

4

5

6

7

8

9

11

12

Flatten
(2304)

10

254x254x32 – 4 129 024 elem
buffer0

127x127x32 – 1 032 256 elem
buffer1

125x125x64 – 2 000 000 elem
buffer0

62x62x64 – 492 032 elem
buffer1

60x60x128 – 921 600 elem
buffer0

30x30x128 – 230 400 elem
buffer1

28x28x256 – 401 408 elem
buffer0

14x14x256 – 100 352 elem
buffer1

12x12x64 – 18 432 elem
buffer0

6x6x64 – 4608 elem
buffer1

2304 – 4608 elem
buffer0

512 – 1024 elem
buffer1

1 – 2 elem
buffer0

buffer0  4 129 024 TFXP elements
Buffer1  1 032 256 TFXP elements

“Conv0” is a convolutional layer with 32 (output) filters, each of them operating on the 3 (input)
channels (R, G, B) of the image. “Conv1” has 64 (output) filters, each of them processing its 32 (input)
channels.

“Dense0” is a fully-connected layer with 512 neurons and 2304 inputs; it includes a ReLU acti-
vation function. On its side, “Dense1” has 1 neuron with 512 inputs; it uses a sigmoid activation
function to produce the final result of the CNN. The “Flatten” layer is used in TensorFlow simply
to reorder the parameters for the dense layers.

The C++ implementation of the CNN uses two buffers in a ping-pong manner, alternating them
as input or output of successive layers. Each buffer has to be large enough to accommodate its largest
possible contents. The previous figure shows the maximum size of each buffer in the proposed

3



1.3 Running the code 1 INTRODUCTION

structure, in terms of number of elements of type TFXP — i.e., since TFXP is defined as int32_t in
the code, multiply by 4 to know the actual size of the buffers in bytes.

1.3 Running the code

The files for the complete SW implementation of the project are available in Moodle. Download
and use them as starting point of your work. The project includes the parameters of the complete
CNN model in the model/ folder. The CNN has been trained using TensorFlow with Keras and
using a dataset of dog and cat images from kaggle.com. A set of sample images is provided in
images/, with 100 images of dogs and 100 images of cats, labeled by filename. In the main folder
of the project, there are also two individual test images for a cat and a dog, both in the planar
RGB format2 used by the application and in a PNG that can be opened with any standard tool. The
planar images can also be visualized in GIMP if they are renamed to *.data. GIMP will show a
pop-up window asking for the image format. In this case, the image is in “Planar RGB” format with
a dimension of 256 × 256 pixels:

The accuracy of the original classification application, and later on of the developed accelera-
tor(s), can be verified using the script runAll.sh . This script runs the CNN-based application on
all the images in the images/ folder and outputs global statistics. The original execution in SW,
which the execution with our accelerator(s) must match, produces this output:

xilinx@pynq:~/dogs_cats/cnnSolver$ ./runAll.sh
images/dog.9400.jpg.rgba.planar
...
images/dog.9499.jpg.rgba.planar
images/cat.9400.jpg.rgba.planar
...
images/cat.9499.jpg.rgba.planar

Positive dogs: 87
Negative dogs: 13

Positive cats: 84
Negative cats: 16

We can also represent this information as a “confusion table”:

2In planar RGB format, all the R values of the pixels are stored first, then all the G values are stored, and, finally, all
the B values are stored together; this is as opposed to a “normal” RGB, RGB, ... distribution in which the three channel
values for each pixel are stored one complete pixel after the other. The pixel values are stored in the range [0, 255].

4

kaggle.com


1.4 Code organization 2 PROFILING: WHAT FUNCTIONALITY SHOULD BE ACCELERATED?

Real Real
Dog Cat

Inferred Dog 87 % 16 %
Inferred Cat 13 % 84 %

The result of each inference is stored in the files outputDogs.txt and outputCats.txt, for
dogs and cats respectively. These files can be used to verify the execution on different images during
the debugging process of the accelerator.

1.4 Code organization

The CNN-based application for classification of dog and cat images is structured into five files:

1. cnn.h, cnn.cpp These files implement the software version of each of the CNN layers. It
contains the functions Conv2D(), AddBiases(), ReLU(), MaxPool(), Sigmoid(), Dense(),
and Flatten().
To integrate, for example, a convolution accelerator into the application code, substitute Conv2D()
with your implementation of Conv2D_HW(). Additionally, since a convolution accelerator will
very likely also include the implementation of the bias and ReLU operations, these two func-
tions will have to be removed from the SW version.
All these functions work on fixed-point (FxP) values based on the user-defined type TFXP.

2. model.h, model.cpp These two files provide the required data types and auxiliary functions
to load the model and the input image into memory.
The model is stored on disk in the folder model/, in two separate files for each convolutional
layer: one for the convolution coefficients (weights), another for the bias (one single value per
output filter). All the weights are stored in floating-point (FP); hence, they have to be converted
to FxP before they can be used in the application. The main application loads the model using
LoadModelInFxp().
Input images are stored in planar RGB format, with pixel values in the range [0, 255]. The
application loads the images and converts the pixel values to FxP values in the range [0, 1].

3. cnnSolver.cpp This is the main file of the SW CNN-based classification application. It loads
the model and the input images, converts them into FxP, and calls the inference function.
The application uses one buffer to store the pixel values in [0, 255] format (inputImage) and
one buffer to store the pixel values in [0, 1] FxP format (inputImageFxp()). Since the size of
the input image is fixed (to 256 × 256 pixels), these buffers are allocated statically. In contrast,
the model weights are stored in an array of vectors (weights[] and biases[]). These two
identifiers are a vector of pointers to dynamically allocated vectors. That is, weights[0] points
to a dynamically-allocated vector that contains the weights of layer 0, weights[1] points to a
dynamically-allocated vector that contains the weights of layer 1, etc. In that way, the size of
each vector can be adjusted to the exact length of the vector itself.
Intermediate results, i.e., activations, which are the output of one layer and become the input
of the next layer, are stored using just two vectors. We use them in a ping-pong fashion, i.e.,
they switch the role of output and input for each consecutive layer. Therefore, their size has
to be enough to accommodate the largest possible input or output that will be assigned to
each of them. Refer to the figure in Section 1.2 to see how their respective maximum sizes are
calculated.

2 Profiling: What functionality should be accelerated?

The source code of the C++ application is instrumented to show the execution time of every CNN
layer. On the Pynq board, a typical execution looks like this:

5



2 PROFILING: WHAT FUNCTIONALITY SHOULD BE ACCELERATED?

xilinx@pynq:~/dogs_cats/cnnSolver$ ./cnnSolver dog.9499.jpg.rgba.planar
OUTPUT: 0.93905449 --> DOG
Conv 0 --> 1747935637 ns (1.748 s)
Conv 1 --> 8891987938 ns (8.892 s)
Conv 2 --> 8470657030 ns (8.471 s)
Conv 3 --> 7931560320 ns (7.932 s)
Conv 4 --> 794392039 ns (0.794 s)
MaxPool 0 --> 24272126 ns (0.024 s)
MaxPool 1 --> 10338197 ns (0.010 s)
MaxPool 2 --> 5494031 ns (0.005 s)
MaxPool 3 --> 2519431 ns (0.003 s)
MaxPool 4 --> 91973 ns (0.000 s)
Dense 5 --> 25825898 ns (0.026 s)
Dense 6 --> 12707 ns (0.000 s)
Total Conv time: 27836532964 ns (27.837 s) 99.8 %
Total MaxPool time: 42715758 ns (0.043 s) 0.2 %
Total Dense time: 25838605 ns (0.026 s) 0.1 %
Total Flatten time: 13662 ns (0.000 s) 0.0 %
Total Sigmoid time: 140661 ns (0.000 s) 0.0 %
Total time: 27905241650 ns (27.905 s) 100.0 %

The execution takes 27.9 s and the result is that the image is identified as a dog. Since all the
input images have the same dimensions and the computation is data-independent, the execution
time for any given image is approximately the same.

▶Question: Given the profiling results obtained by you, which parts of the application should
be optimized using a hardware accelerator?

The goal of this exercise is to reduce the inference time down from the original ∼ 28 s per image
using a HW accelerator implemented on the PL side of the FPGA.

6



3 TASK: DESIGN A CONVOLUTION ACCELERATOR

3 Task: Design of a convolution accelerator and integration in the com-
plete application

The convolution operation is computationally intensive and offers opportunities for parallelism.
These two characteristics make it a good candidate for acceleration.

3.1 Operations

3.1.1 Convolution

For the implementation of the convolution accelerator, let’s assume that the filter size is always 3× 3,
and that the filter stride (the sliding step) is 1. Since the filter size is fixed to 3 × 3 and the stride is
1, the width and height of the output images will be 2 pixels less than for the inputs.

The accelerator will receive as parameters (in registers):

• The input data, as a set of 2D images, organized in multiple channels.
• A pointer to the output buffer, organized in multiple channels.
• The filter coefficients. For N input channels and M output filters, the coefficients will be orga-

nized in an array of M × N × 3 × 3.
• Scalar parameters to indicate the input width and height, the number of input channels and

the number of output filters.

The following fragment of code is used to implement the convolution functionality in the soft-
ware application:

const uint32_t DECIMALS = 20;
typedef int32_t TFXP; // Parameters and activations
typedef int64_t TFXP_MULT;// Intermmediate results of multiplications

inline TFXP FXP_Mult(TFXP a, TFXP b, uint32_t decimalBits = DECIMALS)
{

//return a*b;
TFXP_MULT res = (TFXP_MULT)a * (TFXP_MULT)b;
res = res >> decimalBits;
return res;

}

void Conv2D(TFXP *input, TFXP * output, TFXP * filters,
uint32_t numFilters, uint32_t numChannels,
uint32_t inputWidth, uint32_t inputHeight,
uint32_t convWidth, uint32_t convHeight)

{
for (uint32_t iFilter = 0; iFilter < numFilters; ++ iFilter) {
for (uint32_t y = 0; y < (inputHeight-2); ++y) {

for (uint32_t x = 0; x < (inputWidth-2); ++ x) {
TFXP acc;
acc = 0;
for (uint32_t iChannel = 0; iChannel < numChannels; ++ iChannel) {
for (uint32_t cy = 0; cy < convHeight; ++ cy) {

for (uint32_t cx = 0; cx < convWidth; ++cx) {
//acc += filters[iFilter][iChannel][cy][cx] * input[iChannel][y+cy][x+cx];
TFXP v, f;
f = *(filters + iFilter*numChannels*convHeight*convWidth + iChannel*convHeight*convWidth + cy*convWidth + cx);
v = *(input + iChannel*inputWidth*inputHeight + (y+cy)*inputWidth + (x+cx));
acc += FXP_Mult(f, v, DECIMALS);

}
}

}
//output[iFilter][y][x] = acc;

7



3.1 Operations 3 TASK: DESIGN A CONVOLUTION ACCELERATOR

*(output + iFilter * (inputHeight-2)*(inputWidth-2) + y*(inputWidth-2) + x) = acc;
}

}
}

}

This implementation uses FxP numbers — check Appendix A for more details about using FxP
arithmetic in HLS descriptions. To test the peripheral initially, isolated from the rest of the appli-
cation, it is possible to use an input buffer with random data and compare the outputs produced
by the SW implementation and by your accelerator. This implementation also transforms the multi-
dimensional arrays of the input data into pointers to flattened (contiguous) buffers of data. For
reference, the original definition of the input vectors could have been like this:

void Conv(TFXP input[NUM_CHANNELS][INPUT_HEIGHT][INPUT_WIDTH],
TFXP output[NUM_FILTERS][OUTPUT_HEIGHT][OUTPUT_WIDTH],
TFXP filters[NUM_FILTERS][NUM_CHANNELS][CONV_HEIGHT][CONV_WIDTH],
...

The primary goal of this exercise is to focus on the correct functionality of the peripheral and
integration on the complete application — it is not necessary to obtain an efficient implementation
yet.

▶Question: Compare the execution time of the algorithm running as SW on the ARM Cortex-
A9 processors with the execution time of your peripheral. Using Table 1 as reference, create a table
with the execution time of each of your solutions with their respective use of resources.

Description Width Height Channels Filters Time (ms) LUTs FFs BRAMs DSPs

SW 256 256 16 32 x n/a n/a n/a n/a
Initial solution 256 256 16 32 x x x x x

Table 1: Example of results table: “Execution time and use of resources of each of our solutions for
the CNN accelerator.” (n/a stands for “not applicable”)

3.1.2 Bias

The bias is a value, defined per output filter, that is added to every output pixel. After the value of
the pixel is calculated via the convolution operation, the bias is added to the result to produce the
final pixel value. A convolutional layer with 32 output filters has 32 bias values, one associated to
each output filter. Implementing this operation as the output values are computed saves significant
memory bandwidth, since otherwise every output pixel produced by a convolutional layer has to
be read and updated after the convolution.

To implement the bias, the accelerator has to receive a pointer to the weights of the layer, plus
another pointer to the bias values.

3.1.3 ReLU

Convolutional layers are usually followed by a non-linear activation function. A common function
is the ReLU, which simply copies positive values, and sets to zero any negative values:

f (x) =
{

x if x ≥ 0
0 otherwise

8



3.2 Testing the accelerator 3 TASK: DESIGN A CONVOLUTION ACCELERATOR

The ReLU operation is applied to every output pixel, after adding the bias of the corresponding
filter. Similarly to the previous case, implementing this operation in the accelerator before the pixels
are written to the DRAM saves one read and one write of the complete output data. To flexibly
incorporate the ReLU function, the accelerator needs an additional parameter that indicates whether
the function should be applied or not.

3.1.4 FxP 32-bit vs. 16-bit

FxP is often faster and uses less resources than FP arithmetic. For that reason, CNNs are often
quantized to use FxP arithmetic during inference. Our software CNN application uses a FxP repre-
sentation of 32 bits with 20 decimal bits, as shown in the following fragment of code from model.h:

const uint32_t DECIMALS = 20;
typedef int32_t TFXP; // Model parameters and activations
typedef int64_t TFXP_MULT;// Intermmediate results of multiplications
typedef int32_t TFXP_ACC; // Convolution accumulators

In order to obtain the correct results, the multiplications have to be performed in double the
bitwidth than the parameters and activations.3 In cases in which the number of input channels is
large, the accumulators used during the computation may also require a larger bitwidth; however,
in our case, 32 bits are enough.

▶Observation: You can explore different implementations and use of resources: Inference on the
provided version of the trained CNN can also be done using a width of 16 bits for the parameters,
activations and accumulators, with 14 decimal bits; and 32 bits for the multiplications. However,
since the model has been trained directly with floating point numbers (without quantization
during training), the accuracy of the network will be severely reduced.

3.2 Testing the accelerator

3.2.1 Testing in HLS before synthesis

Building a testbench for use with Vitis HLS before synthesis will speed up enormously the debug-
ging process, since correct algorithmic behavior can be verified before starting the lengthy synthesis
process. The testbench can be integrated in the Vitis HLS work flow so that, every time that we
introduce any modification in the HW description, its correct functionality will be verified before
the synthesis process.

In Moodle, you will find the skeleton for the simulation process. During C simulation, we can
take advantage of the fact that the HW description is actually written in C++ and can hence be
compiled and executed on the host PC. Our testbench has to define a main() function that will be
the entry point of the testbench. Then, it can call the top function of the accelerator, just as if it were
a normal function call in a software program. The result of the accelerator function, which may
contain complex transformations to create an efficient architectural description in hardware, can
be compared with the result of the original software function from the initial application. Figure 3
shows how the pieces of the example (from Moodle) fit together in Vitis HLS.

3.2.2 Testing in the Pynq board after bitstream generation

Once the bitstream is generated, we can test the functionality of the accelerator in a simplified
testbench, rather than in the complete CNN application. The Conv2D() function is executed by the
processors using FxP arithmetic, which is actually implemented using integer arithmetic (addition
and multiplication with shift). This is our ground truth.

3The activations are the outputs of each layer, which become the inputs of the next layer.

9



3.3 Integration in the application 3 TASK: DESIGN A CONVOLUTION ACCELERATOR

Figure 3: Example.

We can compare the output of the accelerator with the output of the SW function, for the same
input vectors. To do this, we can create a function named Conv2D_HW(), which calls the accelerator,
and compare the results generated by both versions. There is an example in Moodle that can serve
as guide in this task.

3.3 Integration in the application

The model itself is solved in the function Inference(), which returns a value in the range [0, 1]. To
introduce your HW accelerator, substitute the calls to Conv2D() inside the Inference() function in the file
model.cpp, using instead a function CConv2DDriver::Conv2D_HW() provided by your accelerator driver
class. Then, modify the memory allocation functions to use the DMA-compatible functions provided
by the driver class of your accelerator (see Section 3.3.1).

Filter bias and ReLU activation functions are normally subsumed in the convolutional layers.
In this way, additional movements of data between the memories and the processing elements are
avoided. Therefore, remove the calls to AddBiases() and ReLU() when your accelerator implements
these additional operations.

The accelerated application using the accelerator must produce the same classification over the
200 images than the original software-only implementation. That is, the confusion matrix for the
software and accelerated versions must be identical. This applies to the classification outcome itself,
into the “dog”/“cat” categories; the actual output values of the network (after the sigmoid function)
can vary slightly. This will likely happen if the rounding modes for FxP arithmetic are not exactly
the same in HLS than in the C++ implementation.

3.3.1 Memory allocation for use with the accelerator

The application loads the weights in two steps: First, it loads the FP weight values into memory;
then, it converts the weights into FxP format. The FP values are only processed by SW in the CPU
and their memory is immediately freed upon conversion. Since these values are never shared with
the accelerator, they are allocated and freed using the normal malloc() and free() functions. In
contrast, the FxP values are used by the accelerator during the computation of the different layers.

10



3.4 Measuring performance with the accelerator A FXP IN HLS

Therefore, these vectors need to be allocated and freed in a way compatible with direct memory
access (DMA). The application allocates memory space for the FxP weights in the functions Convert
WeightsToFxp() and ConvertBiasesToFxp() using malloc(). We need to substitute these calls to
malloc() and free() by calls to the method AllocDMACompatible() from the accelerator driver
class.

▶Observation: In the next sessions of the course we will explore how these functions work and
why they are necessary.

▶Question: Why don’t we use AllocDMACompatible() to allocate all the vectors, avoiding
the distinction between normal and DMA-compatible memory allocations?

Input images are stored in disk in RGB planar format, i.e., all the R values of the pixels are stored
first, then all the G values are stored, and, finally, all the B values are stored together (in contrast
with a “normal” RGB, RGB, ... distribution). However, the values are stored in the range [0, 255].
CNN models typically operate on values in the range [0, 1]. Therefore, the application loads the
pixel values from disk, normalizes them to the range [0, 1], and converts them into FxP format. This
is done in function LoadImageInFxp(). In the pure SW solver, both vectors are allocated statically in
cnnSolver.cpp (since the input image size is fixed to 256 × 256). When we introduce the hardware
accelerator, the vector for the FxP pixels of the input image has to be allocated and deallocated using
the DMA-compatible function of the accelerator driver.

Finally, the vectors used to store intermediate activations in cnnSolver.cpp (buffer0 and
buffer1) are also used by the accelerator to store the output of a layer and to read the input of
the next layer (i.e., they hold the layer activations). Therefore, these two vectors also have to be
allocated using DMA compatible memory.

As a final note, do not forget to free all the DMA vectors allocated by your application, since they
are global-system resources and are not freed automatically at the end of your application. If any
vector remains allocated at the end of the execution, the application will display an error message
as a reminder and it will still automatically free the vectors for you. However, if your application
crashes, the DMA memory will not be freed and eventually the complete system will need to be
rebooted.

3.4 Measuring performance with the accelerator

Using the parameters included in Table 1, calculate (approximately) the total amount of data that
the accelerator would need to transfer to/from the main memory (reads and writes), and the total
amount of multiply-accumulate (MAC) that your accelerator would need to compute. Adding a Sys-
tem ILA module to the design will help to analyze the data transfers performed by the accelerator.
How many transactions does it perform? What data is being transferred in each transaction (the
size in each dimension)? How can this transaction pattern to/from memory be improved?

In Vitis HLS, open the Synthesis Summary Report and look at the latency and iteration interval
(II) of each loop. Use these numbers together with the parameters given in Table 1 to estimate the
total number of cycles it takes to perform a convolution. How many cycles does the system take to
perform a MAC operation? This number can be approximated by taking the total amount of cycles
calculated before and dividing it by the total number of MACs performed. How many MACs do
you think can be parallelized and what would be the impact on performance?

A FxP in HLS

CNNs are usually trained using FP numbers. However, FP arithmetic is expensive in terms of hard-
ware area, latency and energy. Therefore, it is common to convert all the CNN parameters to some
type of FxP representation in a process that is commonly known as “quantization.” For example, we

11



A.1 FxP support in Xilinx HLS A FXP IN HLS

can quantize the weights into 8 bit FxP, and the values of the intermediate feature maps (activations)
into 16 bit FxP. Furthermore, in many cases it is possible to obtain more aggressive quantizations
without significant impact on accuracy. One important consideration is that, to ensure that the FxP
representations maintain enough accuracy, the intermediate accumulators are typically stored in a
larger datatype (e.g., a 32-bit FxP number).

▶Question: Why is a larger datatype normally used for the accumulation of intermediate results
when computing convolutional layers using FxP arithmetic?

For the execution in C++, we could use a specialized FxP library such as fixmath (http:
//www.nongnu.org/fixmath/doc/). However, since we only perform basic operations (addi-
tions, multiplications and comparisons), we can implement the arithmetic directly using macros
and operating on native types. For example, using uint16_t, the addition of two fixed-point num-
bers can be performed with a normal addition operator, whereas the multiplication requires an
additional shift-right step of the number of decimal bits in the representation.

A.1 FxP support in Xilinx HLS

Xilinx HLS includes support for FxP data types through the template classes ap_ufixed<> and
ap_fixed<>:

#include “ap_fixed.h”

ap_[u]fixed<W,I,Q,O,N>
ap_fixed<16, 9> cnnWeights[SIZE];

Where the parameters W, I, Q, O and N are defined as in Table 2.

Value Meaning

W Word length in bits
I Integer bits to the left of the (binary) point
Q Quantization mode. Can be AP_RND, AP_RND_ZERO, AP_RND_MIN_INF, AP_RND_INF,

AP_RND_CONV, AP_TRN, AP_TRN_ZERO – Check the documentation!
O Overflow mode: AP_SAT, AP_SAT_ZERO, AP_SAT_SYM, AP_WRAP, AP_WRAP_SM
N Number of saturation bits in overflow wrap modes

Table 2: Meaning of the parameters of the classes ap_fixed<> and ap_ufixed<>.

For example, if we have a FxP representation of Q15.7, that is, 16 bits divided into sign bit, 8 bits
for the integer part, and 7 bits for the decimal part. In HLS, we can use the type ap_fixed<16, 9>.4

A.2 Converting values between FxP and FP in HLS

The ap_fixed<> data type has an overloaded assignment operator and a method to convert to float:

ap_fixed<4,2> a = 1.25;
printf(“%lf\n”, a.to_float());

In addition, the binary representation in memory is equivalent to the one we would use in SW
— at least, for standard sizes as int8_t, int16_t, int32_t. This is not documented as far as we
know, so take this carefully! Using the conversion functions is a safer option.

4In the HLS type ap_fixed<W, I>, W represents the total number of bits, while I represents the number of
integer bits (including sign bit, if applicable), whereas in Qt.d, d represents the number of decimal bits. Therefore, Q15.7
is equivalent to ap_fixed<16, 9>.

12

http://www.nongnu.org/fixmath/doc/
http://www.nongnu.org/fixmath/doc/


B DATA FORMATS AND LAYOUT USED IN THE APPLICATION

B Data formats and layout used in the application

A CNN solver needs to load the model data, i.e., the weights of the coefficients for each filter. Then,
it has to load the input image, which can be composed of multiple channels (e.g., one for each R,
G, B component of a color image). Every layer in the network has an input and an output buffer.
Since the models we are using are sequential, we can use just two buffers in a ping-pong manner,
alternating the role of input and output for each buffer at each layer. The size of the buffers has to be
enough to accommodate the input and output data for the largest layer. The following pseudo-code
illustrates how buff[0] and buff[1] alternate roles for each consecutive layer:

1.- Allocate buff[2][...]
2.- Load layer 1 coeffs
3.- Load input image into buff[0]
4.- Call Conv(buff[0], buff[1], coeffs)
8.- Load layer 2 coeffs
9.- Call Conv(buff[1], buff[0], coeffs)
10.- ...

B.1 Layout of coefficients

To simplify the work, we can assume that the model coefficients are stored in the file and in memory
as coeffs[FILTERS][CHANNELS][KSIZE], where KSIZE is the number of coefficients in the kernel,
linearized (i.e., 3 × 3 = 9 coefficients in our case):

F0C0k0, F0C0k1, F0C0k2, F0C0k3, F0C0k4, F0C0k5, F0C0k6, F0C0k7, F0C0k8,
F0C1k0, F0C1k1, F0C1k2, F0C1k3, F0C1k4, F0C1k5, F0C1k6, F0C1k7, F0C1k8,
...
F0Cn−1k0, F0Cn−1k1, F0Cn−1k2, F0Cn−1k3, F0Cn−1k4, F0Cn−1k5, F0Cn−1k6, F0Cn−1k7, F0Cn−1k8,

F1C0k0, F1C0k1, F1C0k2, F1C0k3, F1C0k4, F1C0k5, F1C0k6, F1C0k7, F1C0k8,
...
F1Cn−1k0, F1Cn−1k1, F1Cn−1k2, F1Cn−1k3, F1Cn−1k4, F1Cn−1k5, F1Cn−1k6, F1Cn−1k7, F1Cn−1k8,

Fm−1C0k0, Fm−1C0k1, Fm−1C0k2, Fm−1C0k3, Fm−1C0k4, Fm−1C0k5, Fm−1C0k6, Fm−1C0k7, Fm−1C0k8,
...
Fm−1Cn−1k0, Fm−1Cn−1k1, ..., Fm−1Cn−1k8,

where Fi is the (output) filter index, Ci is the input channel index, and ki is the kernel coefficient.
In this way, we can read all the coefficients together from disk — converting them from FP to FxP
format — and call the accelerator passing a portion of the array, such as in coeffs[iFilter].

B.2 Layout of image data

Similarly, we can assume that the images are stored in order [CHANNEL][HEIGHT][WIDTH] — i.e.,
the image of each channel is stored entirely and channels are consecutive. If we store the output
of every filter consecutively, such as [FILTER][HEIGHT][WIDTH], then we can chain layers directly
without reshaping our arrays.

This memory organization is convenient for our exercise, but may not be the most efficient in all
cases. In particular, for narrow input feature maps with many channels, it may be better to store the
data in a different order.

13


