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Setting up Linux on the Pynq board. Basic peripherals in a
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1 Basic board and PC setup

During this course, we will use the TUL Pynq-Z2 board, shown in the figure below. Before using
the board for the first time, check that the jumpers are in the correct position:

The position of the jumpers for boot selection and power source is indicated with green circles.
The ports for the micro USB and Ethernet cables are indicated by blue circles.

• The boot selection jumper must be in the position “SD”.
• The power source jumper must be in the position “USB”.

During this course, we will use Xilinx Vivado 2022.2 on Linux computers. To start Vivado 2022.2,
turn on the computer and select the option “Ubuntu Network boot” in the boot menu:



2 EXERCISE 1: SIMPLE VHDL PERIPHERAL

Log into the machine with your Gaspar credentials, open a terminal and start Vivado with the
following command:
$ /scrap/users/Xilinx2022.2/Vivado/2022.2/bin/vivado &
The & at the end of the command opens the program in the background so that you can continue
using the terminal.

2 Exercise 1: Simple VHDL peripheral

This example serves the purpose of verifying that the board is in correct state and that it can be
correctly programmed. We will create a simple design that connects the board switches directly to
the LEDs.

→ Please, ensure that the SD card is not in the slot
for this experiment.←

2.1 Building the HW project

Create a new project and select the destination folder. Name the project “Vivado” and select the
option “Create project subdirectory,” as seen in the figure:1

We will create a structure for the projects with separated folders for HDL and HLS sources, test
benches, and for the Vivado project itself. In future sessions we will see how to export the Vivado
project to a TCL script and recreate it from that file. This will allow us to reduce significantly the
size of the projects when we want to save or upload them to a repository. We will have a folder
structure similar to this:

1Do not use spaces in the path or name of your projects.
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2.1 Building the HW project 2 EXERCISE 1: SIMPLE VHDL PERIPHERAL

/Exercise01

*build_project.sh --- Bash script to call the TCL script

*Exercise01.tcl --- TCL script to recreate the Vivado project
|-->HDL --- Contains your VHDL/Verilog sources
|-->HLS --- Contains your HLS sources
|-->SW --- Contains the sources for the SW project in Linux
|-->Vivado --- Contains the Vivado project and can be deleted

In the next dialog box, select “RTL project” and clear the mark “Do not specify sources at this
time.” This will allow us to select any HDL sources that we might have already written.

In the following dialog, select VHDL as target language. If this step is omitted, it is still possible
to add both VHDL or Verilog files to the project. However, the tool uses this selection to determine
the language in which it will produce automatically generated files (e.g., wrapper and simulation
files). It is also possible to change the default project language in the project settings dialog.

Now, we can select the board for our project. First, select the option “Board” rather than “Parts”
in the dialog. The first time that Vivado is started by a user, it is necessary to refresh the board
catalog to download the files for our board. Simply press the button “Refresh” and wait for the
refresh process to complete. Then, write the name “pynq” or scroll in the updated list to select the
“pynq-z2”. Also only the first time that Vivado is started, it is necessary to download the specific
files for the board. Click on the download arrow in the “Status” column and wait for the download
to complete. Finally, select the row and click “Next.”
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2.1 Building the HW project 2 EXERCISE 1: SIMPLE VHDL PERIPHERAL

The main project window will appear. On the left pane, we have a list of actions that we can
perform during the project lifetime. Click on the line “Create Block Design” to create the main
schematic of the project:

Once the schematic is created, we have an empty block diagram in which we can add com-
ponents. First, we are going to add our HDL sources to the project. Create a folder named “HDL”
according to the mentioned folder structure and create inside a file named “buttons2leds.vhdl”
with the VHDL code for this example:2

library ieee;
use ieee.std_logic_1164.ALL;
use ieee.numeric_std.ALL;

2The source code can be downloaded from Moodle.
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entity Buttons2Leds is
port (
btns : in std_logic_vector(3 downto 0);
leds : out std_logic_vector(3 downto 0)

);
end Buttons2Leds;

library ieee;
use ieee.std_logic_1164.ALL;
use ieee.numeric_std.ALL;

architecture rtl of Buttons2Leds is
begin

leds <= btns;
end rtl;

Create also a constraints file named “pynqz2.xdc”. We will use it to specify the physical location
of the design ports:

## This file is a general .xdc for the PYNQ-Z2 board
## To use it in a project:
## - uncomment the lines corresponding to used pins
## - rename the used ports (in each line, after get_ports) according to the top level signal names
## in the project

## Clock signal 125 MHz
#set_property -dict { PACKAGE_PIN H16 IOSTANDARD LVCMOS33 } [get_ports { sysclk }];
#create_clock -add -name sys_clk_pin -period 8.00 -waveform {0 4} [get_ports { sysclk }];

#LEDs
set_property -dict { PACKAGE_PIN R14 IOSTANDARD LVCMOS33 } [get_ports { leds[0] }];
set_property -dict { PACKAGE_PIN P14 IOSTANDARD LVCMOS33 } [get_ports { leds[1] }];
set_property -dict { PACKAGE_PIN N16 IOSTANDARD LVCMOS33 } [get_ports { leds[2] }];
set_property -dict { PACKAGE_PIN M14 IOSTANDARD LVCMOS33 } [get_ports { leds[3] }];

#Buttons
set_property -dict { PACKAGE_PIN D19 IOSTANDARD LVCMOS33 } [get_ports { btns[0] }];
set_property -dict { PACKAGE_PIN D20 IOSTANDARD LVCMOS33 } [get_ports { btns[1] }];
set_property -dict { PACKAGE_PIN L20 IOSTANDARD LVCMOS33 } [get_ports { btns[2] }];
set_property -dict { PACKAGE_PIN L19 IOSTANDARD LVCMOS33 } [get_ports { btns[3] }];

Then, click on the plus sign in the sources pane to add our sources. Select “Add or create design
sources” first to add the VHDL file and repeat the operation selecting “Add or create constraints”
to add the constraints file.

Once the sources have been added to the project, right-click on the schematic and select the
option “Add Module.” A new dialog box will open with a list of RTL modules in the project. Select
the component Buttons2Leds from our VHDL file:
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The schematic will be updated to contain our new component. Click on each of the ports and
select “Make external.” Vivado will automatically insert the I/O symbols to connect the ports to the
FPGA pins at the location specified in the constraints file. However, Vivado renames the pins and
they will not match the definition in the constraints file. To solve this problem, click on the external
pins and modify their names:

In order for Vivado to be able to synthesize a block diagram schematic, we need to create an
HDL wrapper for it. Right-click on the schematic name and select the option “Create HDL wrapper.”
Then, allow Vivado to manage the updates to the HDL wrapper itself, so that we do not need to
update the wrapper manually each time we change the schematic:

Once the HDL wrapper for the schematic is completed, Vivado will generally recognize correctly
the project hierarchy by itself and select the correct top module. If this is not the case for your project,
select manually the top module:
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2.2 Programming the FPGA and testing the design 3 CONNECTING TO PYNQ

Once the design is complete, click on the line “Generate bitstream” to start and complete the
bitstream generation process.

2.2 Programming the FPGA and testing the design

Please, ensure that the SD card is not in the slot before programming the FPGA.

Once the bitstream is correctly generated, connect the board to the PC using the USB cable and
turn on its power switch. Click on the line “Open Hardware Manager.” Select the option “Open
target” and allow the tool to select automatically a local device. After a few seconds, the hardware
manager will show the list of detected devices. Select the FPGA of the Pynq board (xc7z020) and
program the device.

Once the design is loaded into the FPGA, the status of the four push buttons will be automati-
cally reflected into the green LEDs of the board.

3 Connecting to the Pynq board for the first time

When using an SD card with an appropriate operating system (OS) image, the ARM cores boot from
it and start running as soon as power is applied, without needing any design in the programmable
logic. In that aspect, they behave as a stand-alone dual-core computer with 512 MiB of RAM memory.
In our case, we are booting the system with an image based on Ubuntu 18.04 prepared by Xilinx
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3 CONNECTING TO PYNQ

(Pynq v2.6). The system is a complete Linux computer with most of the functionality expected
in this type of systems. In particular, we can use ssh to log into the board. The Pynq OS can
be used to test overlays (HW designs) directly from Python using Jupyter notebooks. For more
information on how to use the Pynq Python environment, refer to the official documentation at
https://pynq.readthedocs.io/ . In this course, we are going to interact with our peripherals
in a Linux environment using C/C++ applications.

In the event of file system corruption in your SD card, you can write a fresh image into it. For
this, you can use any usual tool for programming SD cards, including the command dd in Linux or
the free software Balena Etcher (https://www.balena.io/etcher/). Our experiments will not
work with version 2.7 or higher of the Pynq Linux image. The image can be downloaded from:
https://dpoauwgwqsy2x.cloudfront.net/Download/pynq_z2_v2.6.0.zip
MD5 checksum: 1e836bed78c3ddeb2c69a074925df8fe
SHA256 checksum: 88c86412188cfb878217eb3d0a7ab5898ec52dfbc881a7f4f7d3526a55ba3978
Manufacturer web: https://www.tulembedded.com/FPGA/ProductsPYNQ-Z2.html

3.0.1 Setting up the Ethernet connection

The Pynq board has a wired Ethernet interface that we can use to connect it directly to a computer
or to a router. An Ethernet cable is included in the board box. By default, dual virtual interfaces
are configured for the Ethernet interface. Therefore, it will use any address received through DHCP
during boot (e.g., from a router) and also the address 192.168.2.99 . If the board is connected directly
to the computer, we need to set up the Ethernet configuration of the computer to use the subnet of
the board:

Board IP address: 192.168.2.99
Subnet mask: 255.255.255.0
Computer IP address: 192.168.2.x , where x is any number between 3 and 254.

The computers in the lab are already configured. The Ethernet cable of the board can be attached directly
to the lower right port (the ones in horizontal) of the PC:

If the board is connected to a router, it uses DHCP to obtain its IP address automatically from
the router. In this case, we can use the serial terminal to obtain its IP address. Use the ifconfig
command to retrieve the inet address of the eth0 interface:
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3.1 Programming bitstreams 3 CONNECTING TO PYNQ

[ OK ] Started Serial Getty on ttyPS0.
[ OK ] Reached target Login Prompts.

PYNQ Linux, based on Ubuntu 18.04 pynq ttyPS0
pynq login: xilinx (automatic login)

Welcome to PYNQ Linux, based on Ubuntu 18.04 (GNU/Linux 4.19.0-xilinx-v2019.1 armv7l)

The programs included with the PYNQ Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

PYNQ Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

xilinx@pynq:~$ ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.1.14 netmask 255.255.255.0 broadcast 192.168.1.255
...

eth0:1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.2.99 netmask 255.255.255.0 broadcast 192.168.2.255
...

In the previous example, the board has the IP address 192.168.1.14, which should be directly
accessible from our computer if it is connected to the same router.

The serial interface is always available and can be reached using picocom, minicom, screen or any
other serial console software in Linux, or Putty in Windows. The ttyUSB number of the peripheral
can be determined seeing the kernel messages with dmesg.

sudo picocom -b 115200 -f n -p n -d 8 /dev/ttyUSB2

If no messages are being displayed on the serial terminal, press enter. The default user is already
logged in. This terminal can be used (with the same configuration that we normally use for all the
exercises) in case we have problems to identify the IP address of the network interfaces, or if we
need to modify the network configuration in the board. Connecting the terminal immediately after
powering up the board allows inspecting the boot messages of the Linux kernel.

To connect to the board, simply use any SSH client (e.g., putty or command-line ssh on Windows,
or ssh on Linux/Mac):

ssh xilinx@192.168.2.99

The default user name and password are “xilinx”/“xilinx”. This user has sudo permissions, in
case you need to install any additional packages. The Ubuntu repositories are correctly configured
in the SD card image; therefore, you can install any additional packages needed for your final project.
For this, the board needs to be connected directly to a router or the computer has to be configured
to share its Internet connection.

Change the default password of the xilinx board, particularly if you plan on connecting it to
a network. Even better, configure it to accept only authentication via SSH keys.

3.1 Programming bitstreams

After booting the board, wait about one minute before reprogramming it with your own bitstream
because the boot script programs it with an example overlay that flashes the LEDs to show that the
board is active. You can know that the board is ready when the RGB LEDs flash in blue three times.
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3.1 Programming bitstreams 3 CONNECTING TO PYNQ

We can use two methods to program the bitstreams into the FPGA once the board is running
Linux:

1. After copying the bitstreams to the board (using scp), use the script “programOverlay.py”
provided in Moodle:

sudo ./programOverlay.py design_1.bit

This script requires the bitstream file (.bit) and the hardware description file (.hwh). Both
files need to have the same name; rename them manually if necessary. Read the contents of
the script “extractBitstream.sh” to learn where to find both files inside the Vivado project.

2. Program the FPGA from Vivado using the Hardware Manager. In this case, the board has to
be connected to the computer using the USB programming cable (the same used to power it).
Open the Vivado project and then use the Hardware Manager to connect to the board locally.
You can program the board directly as many times as required. Make sure that the processors
(PS) are not using the FPGA side before programming, or the board will crash.

Once the bitstream is programmed, we can interact freely with it. The bitstream does not need
to be reloaded unless the board is rebooted, the PL side (FPGA design) is in an unrecoverable state
due to design errors, or a change of bitstream is desired.

The board programming scripts check the configuration of the PS-generated clocks in the bit-
stream and correctly configure the PS. However, exert care when using clocks different than the
default one (100 MHz).

3.1.1 Additional notes on the Pynq board

The board does not have a battery to maintain a real-time clock. If the board does not have an
Internet connection, you will need to set up its clock manually for make to work correctly with files
copied from a computer, every time you power on the board:

xilinx@pynq:~$ sudo date -s "2024-02-19 13:39:00 UTC+1"
[sudo] password for xilinx:
Mon Feb 19 12:39:00 UTC 2024

Once connected to the board, verify the characteristics of the system using standard commands:

xilinx@pynq:~$ lscpu
Architecture: armv7l
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Thread(s) per core: 1
Core(s) per socket: 2
Socket(s): 1
Vendor ID: ARM
Model: 0
Model name: Cortex-A9
Stepping: r3p0
BogoMIPS: 650.00
Flags: half thumb fastmult vfp edsp neon vfpv3 tls vfpd32

xilinx@pynq:~$ free -h
total used free shared buff/cache available
Mem: 494M 124M 215M 1.2M 154M 359M
Swap: 1.0G 0B 1.0G
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4 EXERCISE 2: ACCESSING HW FROM LINUX

Table 1: Registers presented by a hypothetical AXI4 peripheral.
Offset Direction Description

0x00 R/W Control & status register (write 1 to start, read 0 when done)
0x04 R/W Parameter 1
0x08 R/W Parameter 2
0x0C R Result

xilinx@pynq:~$ df -hT
Filesystem Type Size Used Avail Use% Mounted on
/dev/root ext4 15G 7.1G 6.8G 52% /
devtmpfs devtmpfs 183M 0 183M 0% /dev
tmpfs tmpfs 248M 0 248M 0% /dev/shm
tmpfs tmpfs 248M 1.3M 247M 1% /run
tmpfs tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs tmpfs 248M 0 248M 0% /sys/fs/cgroup
/dev/mmcblk0p1 vfat 100M 6.5M 94M 7% /boot
tmpfs tmpfs 50M 0 50M 0% /run/user/1000
tmpfs tmpfs 50M 0 50M 0% /run/user/1001

You can also use htop or top to check the processor and memory usage of the system in real
time.

4 Exercise 2: Accessing HW peripherals from a Linux application

In this exercise we will learn how to interact with a HW peripheral from a Linux application running
on the ARM cores of the Zynq system-on-chip (SoC).

During this course we will always use memory-mapped peripherals. These peripherals present
a set of registers on the address map of the system that the applications running on the processors
can use to interact with them. In general, the applications only need to create a pointer to the base
address of the peripheral register file and access the individual registers using offsets. An example
of a hypothetical peripheral that takes two parameters and produces a result operating on them is
shown in Table 1. With that register file, the application could use the following code to interact
with the peripheral:

volatile uint32_t * regs = (uint32_t *)0x41200000; // Base address in Vivado

*(leds+1) = 23; // First parameter

*(leds+2) = 25; // Second parameter

*(leds) = 1; // Signal start
while ( *(leds) != 0); // Wait for completion
return *(leds+2); // Read the result

The main obstacle when accessing memory-mapped peripherals in an operating system with
virtual memory, such as Linux, Android, Windows or macOS, is that applications cannot access
the physical address map of the system. Instead, each application is confined into its own virtual
address space, which prevents it from accessing system resources directly and memory from other
applications. We will delve deeper into the concept of virtual memory in the following lessons.

To overcome this restriction, our applications have to map the physical addresses of our periph-
erals into their own virtual address space. We use a library developed by Xilinx that offers a function
called cma_mmap() specifically for this purpose. We will encapsulate the interaction with Xilinx’s
library inside a class, named CAccelDriver.
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4.1 The GPIO peripheral 4 EXERCISE 2: ACCESSING HW FROM LINUX

Table 2: Registers presented by the Xilinx AXI4 GPIO IP core. In the 3-state registers: 0 →pin
configured as output; 1 →pin configured as input. In this system, we use only the four LSBs of
each data register, which are connected to the physical buttons and LEDs.

Offset Direction Description

0x00 R/W Channel 1, data register
0x04 R/W Channel 1, 3-state register
0x08 R/W Channel 2, data register
0x0C R/W Channel 2, 3-state register

▶Observation: Download the sources for this session from Moodle and read the code of the
CAccelDriver class. For now, just look into the class declaration and the implementation of the
Open() function.

We have prepared a HW design that contains one general-purpose input/output (GPIO) periph-
eral with two channels. The first channel is connected to the Pynq’s four green LEDs. The second
channel is connected to the four push buttons. The goal of this exercise is to write an application
that maps the register file of the GPIO into its own virtual address space and interacts with the
GPIO to copy the value of the buttons to the LEDs.

4.1 The GPIO peripheral

The documentation for the AXI4 GPIO IP core is available in the following URL:
https://docs.xilinx.com/v/u/1.01b-English/ds744_axi_gpio

The GPIO core offers two independent logic channels with a width of up to 32 bits. Each bit in a
channel can be configured independently as input or output, using a tri-state gate. The core presents
two registers per channel to the processor: one to control the tri-state gates (i.e., to configure each
pin as input or output), one to access the physical pins. The processor has to write the configuration
in the tri-state control register; then, it can read the data register to know the state of the external
pins configured as inputs, or write into the data register to change the value driven towards the
outside world by the output pins. Table 2 describes the available registers.

The GPIO IP core can also be configured to generate interrupts if necessary. In this example, we
will keep the interrupts disabled.

To drive an output pin (e.g., to an LED), the processor has to configure the corresponding bit
of the 3-state register as output and then write into the data register the new output value. Since
the processor writes to the complete register, all the output pins are affected at the same time.
Conversely, to read the value of the input pins, the processor has to configure the bits of the 3-
state register as inputs and then read from the data register. In our example, all the outputs are
connected to one GPIO channel and all the inputs to another, which eases programming, but this is
not a general requirement.

To know the address of each register, we need the base address of the peripheral on the system
memory map, which we can find in the address editor of Vivado, then we add the offset of the
register we want to access. However, since Linux uses virtual memory, we cannot access the phys-
ical address directly from our application. Instead, we need to obtain a suitable virtual address in
the virtual address space of our application that maps to the same physical address. We use the
functions CAccelDriver::Open() and cma_mmap() to obtain that virtual address.

4.2 Writing SW to interact with the GPIO peripheral

Download the sources of this exercise. Copy the file “exer02.txz” to the Pynq board using scp

and uncompress it:
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5 EXERCISE 3: INTEGRATING HW IN A SOC

FROM THE PC:
scp Exer02_GPIO_SW_Exercise.txz xilinx@192.168.2.99:./

IN THE PYNQ BOARD:
tar xJvf Exer02_GPIO_SW_Exercise.txz
cd Exer02_GPIO_SW_Exercise

Read carefully the sources of the class CAccelDriver (for now, ignore the direct memory ac-
cess (DMA) allocation functions) and the sources of file “exer02.cpp”. The address of the GPIO
peripheral in the physical address map of the SoC is 0x41200000. This address is determined in
Vivado while creating the system. Complete the source code of the application (the missing parts
are marked with . . . ).

Before starting the application, the bitstream has to be programmed in the FPGA. For that, use
the script “programOverlay.py” provided in Moodle with the bitstream files of the example:

xilinx@pynq:~$ sudo ./programOverlay.py exercise02.bit

Tip: Ensure that the script has execution permissions in the Pynq board.

Execute the application — using sudo — and observe the generated messages.

▶Question: What is the physical address of the peripheral? Using the slides shown in class
during this lesson, where is the peripheral mapped in the address space of the Zynq-7000 SoC?

▶Question: What is the virtual address used by the application? How much does this address
represent in decimal (base-10)? Does this address correspond to any DRAM or peripheral range
in the address space of the Zynq-7000 SoC? Does this address make any sense for you?

▶Observation: Analyze how the program defines the base address for the peripheral and then
uses offsets to access each of the HW registers. This is pointer arithmetic, in which the offset
values are multiplied by the size of the data type.

▶Question: Use the command htop in a second terminal connected to the board to determine
the CPU utilization of our program. How much is it? What happens if you remove the sleeping
function at the end of the main loop?

▶Question: Why do we need to use sudo to execute our application? Try to execute it normally
and observe what happens. Why do you think the system does not allow normal users to execute
this type of applications?

5 Exercise 3: Designing and integrating a HW peripheral in a SoC

In this exercise, we will re-create the same SoC architecture that was used in the previous exercise.
Therefore, we will be able to use the same SW in Linux to interact with the HW peripherals.

5.1 Designing the HW in Vivado

Open Vivado and generate a new project with a new block design. Click on the “plus” sign in the
schematic view and select the ZYNQ7 Processing System:
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The ZYNQ7 Processing System represents the fixed part of the Zynq chip, that is, the two ARM
Cortex-A9 cores, their L1/L2 cache memories, the DDR memory controller, clock generators and
all the fixed peripherals. It interfaces with the programmable logic via a set of master/slave AXI4
ports. The ZYNQ7 block can also generate the reference clock and reset signal for the designs in the
FPGA.

The ZYNQ7 Processing System presents in the diagram a set of ports to communicate with the
programmable logic:

• M_AXI_GP0: This port allows the ARM cores to act as AXI4 masters with respect to the
peripherals created in the programmable logic.

• FCLK_CLK0: This is the reference clock for the logic. Its frequency can be adjusted accord-
ing to the design needs. Up to four clocks of different frequencies can be generated for the
programmable logic.

• FCLK_RESET0_N: This is the reference reset for programmable logic that uses FCLK_CLK0
as clock.

• M_AXI_GP0_ACLK: This is the clock for the AXI4 bus corresponding to port M_AXI_GP0.
Normally, it will be connected to FCLK_CLK0.

• DDR: This is the set of signals that control the DDR memory controller of the Zynq chip to
the external DDR-SDRAM. The Pynq-Z2 board has 512 MiB of DDR2-SDRAM with a bus of
16 bits. The memory controller can be configured up to 533 MHz.

• FIXED_IO: These signals connect the Zynq chip (cores and programmable logic) to external
I/O devices such as the UART pins. These signals are hardwired in the board and are inde-
pendent of whatever peripherals are instantiated in the programmable logic.

Vivado offers a wide range of automation. For every IP core, the designer can specify actions
that need to be taken in order to fully configure the peripheral. After adding an IP core, we will see
a green bar at the top of the window suggesting the type of automation available. Click on the bar
to run the block automation:
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The block automation dialog for the ZYNQ7 Processing System proposes us to apply the presets
defined in the Pynq-Z2 board support package (BSP). Among others, it will connect the DDR and
FIXED_IO ports to the external pins of the chip — these connections are hardwired and specific for
this board. Accept all the configurations with the default presets.

Now, we can add any of the components defined in the BSP of our board to the design. The board
manufacturer defines in the BSP file the peripherals of the board, their physical pin assignments,
electrical characteristics and common names for the user. Additionally, the type of connections in
the system can also be defined via automation.

Click on the “Board” tab and select the “4 LEDs”:

Once we select an I/O element to add to the design, a dialog to define the type of system
connection that we want to use will appear:
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5.1 Designing the HW in Vivado 5 EXERCISE 3: INTEGRATING HW IN A SOC

In this case, we are offered to connect the four LEDs using a GPIO, which is an IP core created
by Xilinx to connect bus masters (e.g., a processor) directly to physical pins of the FPGA chip. A
GPIO peripheral offers two logical ports (named GPIO and GPIO2), each of which can have up to
32 bits that can be connected to the corresponding 32 external pins of the chip. Select the default
option — this will create a new GPIO peripheral connected through an AXI4 bus and will connect
the LEDs to its first logical port. The script will also create an external port, which is connected to
physical pins of the FPGA as defined in the BSP.

Run the automation script. We have to select, for each of the slave ports in our design, to which
master port they are connected. In our case, we want to connect the slave port of the GPIO to the
master port of the Zynq7 block. Since we only have one AXI4 master in the system (the M_AXI_GP0
port of the fixed logic), the option to select the master interface is disabled:

Now, add the component “4 Buttons” from the board elements. In this case, we will be offered
to connect the buttons to a second port of the same GPIO IP core:
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Accept the selection and observe how the final system is connected. Double-click on the element
named axi_gpio_0 to observe its configuration.

▶Question: Observe the number of connected pins for each logical port of the GPIO module.
How many are used for the LEDs? How many for the GPIOs? Why? How does Vivado know the
number of pins to connect for each of them?

If we are using only elements defined in the BSP (i.e., from the board tab), we do not need to
add our own xdc file since the pin locations are added automatically as well.3 Otherwise, when
connecting your own peripherals, do not forget to specify their corresponding physical pins and
electrical configurations in a constraints file.

The following figure shows the final aspect of the design. The AXI buses from the processors to
the AXI4 GPIO peripherals are highlighted in green. The wires (i.e., as opposed to a bus) from the
GPIO peripherals to the physical pins are highlighted in orange.

Finally, click on the tab “Address Editor.” Here, you will find the description of the address
map of the system. Find out the address at which the GPIO peripheral is mapped, since this is the
address that we will need to use in SW to access the GPIO peripherals:

3However, it is possible to add an xdc file specifying also the location of these ports. Just verify that the names of the
external ports and the ports in the constraints file match.
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If the base address assigned to the GPIO module in Vivado does not correspond to the ad-
dress we used in the SW of the previous exercise, you have to adjust one of them for this example
to work correctly!

▶Question: Double-click on the ZYNQ7 Processing System and observe its components. Click
on the block named “32b GP AXI Master Ports” and try to find out how many independent
master ports can be created. How many clocks can be generated for the programmable logic and
how can we define their frequencies?

▶Question: Synthesize the system and generate the bitstream. Transfer the design .hwh and
.bit files to the Pynq board. Use the script “programOverlay.py” to program the bitstream
in the FPGA and test it with the SW application we developed in the previous exercise. Do you
obtain exactly the same behavior?

6 Exercise 4: In-chip debugging with the System ILA IP core

At this point, you know how to design a SoC integrating processors and IP cores, and how to write
a Linux application that accesses the peripherals. However, what happens if something goes wrong?
How can we observe the interactions between the SoC processor and the peripherals?

6.1 Preparing the HW design for debugging

In this exercise we are going to use the System ILA IP core to debug the system while it is working.
System ILA works like an oscilloscope, internal to the FPGA. It enables monitoring of individual
signals, but it can also interpret transactions in an AXI4 bus.

The System ILA uses trigger conditions to start capturing signals. It is possible to trigger the
capture based on logical conditions on the address and data lines of a bus, or on individual design
signals. It is also possible to use external signals as trigger (i.e., an external port), or even drive
the trigger condition outside. A design may contain multiple System ILA instantiations, and their
trigger conditions can be cascaded. This is useful, for example, if we want to trigger the capture
based on a small set of signals, but then we want to capture a long period in a second bus. With
two ILAs, the first one can store the minimum number of samples — and thus reduce the number
of internal BRAMs used — whereas the second ILA can have a deeper capture window. This saves
internal FPGA memory to capture the more relevant signals.

To start debugging a bus, right click on it and select the “Debug” option:

18



6.1 Preparing the HW 6 EXERCISE 4: IN-CHIP DEBUGGING

Once we have marked one or more signals (or buses) for debugging, Vivado will offer us an
automation to add the corresponding System ILA instantiations to our design. Click on the automa-
tion. Keep active (i.e., do not change) the options to treat the address and data lines as both data
and triggers. The resulting design should be similar to the following:

In the previous image, the lines of the clock tree deriving from the main 100 MHz clock are
drawn in red; the bus that is being monitored is drawn in green. The System ILA instance is con-
nected to the same clock than the bus it is monitoring. If one instance monitors multiple buses, it
will accept one clock for each.

The System ILA instantiation can be configured clicking on it:

In particular, we can change the number of buses (“interface slots”) to be debugged. We can also
select whether to monitor only buses (“interface”), independent logic signals (“native”) or both at
the same time (“mixed”). In the case of adding native signals, we can specify how many we need
to debug (number of probes). By default, Vivado will determine automatically the width of the
native probes based on the width of the signals to which they connect. The options “Trigger out
port” and “Trigger in port” activate the in/out ports to cascade triggers along a chain of System
ILA instantiations. Finally, we can select the number of samples (i.e., depth) of the capture. A higher
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depth enables the capture of more consecutive events, but it requires more BRAMs — and the time
to synthesize the resulting design will quickly increase.

Once the design is configured, synthesize and implement it, and transfer the bitstream to the
board.

6.2 Debugging the live system with System ILA

For this example, we are going to use the same software than in the previous one — after all, the
functionality of the design is exactly the same. Therefore, program the FPGA with the new bitstream
and start the software application in the board.

To connect to the System ILA, open the hardware manager in Vivado and connect to the board
— it is possible to program the bitstream from Vivado rather than from Linux; just be sure that
the application is not running before programming the bitstream or the system will hang. The
hardware manager will identify the debugging probes in our design and group the bus signals by
their corresponding channels for us.

The first step for debugging is deciding what are our trigger conditions. In the lower right pane,
configure a trigger to start capturing when the processor reads the status of the switches. We can
identify this condition when the signal ARVALID is ‘1’ and the signal ARADDR has the address of our
peripheral. In this case, we want to check when the switches are read, which corresponds to the
memory address 0x41200008.4 The capture is done over a circular buffer; therefore, it is possible to
determine in which position of the buffer the trigger should be at. For example, with 1024 samples,
we can display 512 samples before the trigger condition, and 512 samples after it. For this exercise,
configure the trigger position at 0. The following figure shows how to set the trigger based only on
the first condition (i.e., the System ILA will trigger when the processor tries to read from any GPIO
register):

The AXI4 bus has five independent channels: read addresses (prefix AR-), read data (R-), write
addresses (AW-), write data (W-) and write responses (B-). Once everything is configured, expand
the bus channels in the wave panel to see all their signals. Press and hold one button on the board
to have some distinct value to read — in the figures below, the second button was pressed. Then,
arm the trigger (by pressing the “play” button). In this example, the ILA will trigger immediately,
since our application is continuously reading the switches.

6.3 Analyzing bus transactions with System ILA

Select the signal ARVALID and go to the instant in which it gets the value ‘1’. If the trigger has been
configured at position 0 of the capture window, then the condition will be true at cycle 0 in the

4However, the AXI interconnect already decodes the upper bits of the address to determine which peripheral to
activate; therefore, we will only see the LSBs of the address. If instead we place the ILA between the processor and the
interconnect, we would see the complete addresses for all the peripherals present in the system. You can easily modify
your design to see the differences.
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capture data. Check the value of ARADDR: it should have the value 0x8, which corresponds to the
third register of our GPIO, the value read from the input pins connected to the buttons.5

The peripheral will reply to the read request of the processor some time after. In this example,
the answer arrives at cycle 5, when RVALID becomes ‘1’:

We know that the application writes into the LEDs register immediately after reading the
switches. Therefore, move forward in the capture until the signal AWVALID becomes ‘1’. Since the
five AXI4 bus channels are truly independent, it is possible that a master sends the address and the
data for a write at different times. In the figure below we can clearly see how the master sends the
data (WVALID = ‘1’) before sending the address. It is responsibility of the slave peripheral to tackle
this situation, either by blocking the first channel until the second arrives, or buffering internally
the values if one channel is faster than the other (more parallelism available in the bus at expense
of slave complexity). The figure below shows a write transaction at address 0x0 (the first register of
the GPIO) with a value of 0x00000004, which mimics the value read from the switches in this case:

5In the bus, we see 32-bit addresses, not offsets. The GPIO registers are at addresses 0 (0x0), 4 (0x4), 8 (0x8) and 12
(0xC).
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Observe how the transaction does not finish immediately. AXI4 write transactions are considered
completed when the valid-ready handshake is complete. Even if the master asserts the write data
and write address valid signals at cycles 18 and 20, respectively, the peripheral does not signal
AWREADY and WREADY until cycle 24. The master must keep all the signals stable until that moment,
which is when the slave acknowledges the transaction. Finally, at cycle 25 there is a single-cycle
transaction in the write response channel to signal that the write was correctly performed by the
peripheral.

System ILA identifies automatically the activity periods of each channel. Hovering the mouse
over the marker brings up a tooltip with a summary of the transaction, which contains among other
information its length in cycles. The following two figures show the information for the read and
write transactions captured in our example.
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6.4 Additional work

Add a second bus connection to the System ILA. In this case, debug as well the segment of the
AXI4 bus between the Zynq7 and the AXI interconnect. Synthesize the design and place a trigger
exactly as in the previous examples, but modify the trigger position to the middle of the window
(512 samples). Then, compare the addresses used in the first segment with those used in the second
segment. Try to understand the differences.

Modify the software application so that it writes to the LEDs only when the value of the switches
changes. That is, instead of writing in every while iteration, write only if the status of the switches
has changed since the previous write operation to the LEDs. Then, prepare the System ILA to trigger
at a write event at the specific address of the LEDs register (offset 0). Check that the System ILA
does not trigger until a button is pressed and the application performs a write.
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