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Inductor Design

This chapter treats the design of magnetic elements such as filter inductors, using the X, method. With
this method, the maximum flux density B, . is specified in advance, and the element is designed to attain
a given copper loss.

The design of a basic filter inductor is discussed in Sections 14.1 and 14.1.5. In the filter induc-
tor application, it is necessary to obtain the required inductance, avoid saturation, and obtain an accept-
able low dc winding resistance and copper loss. The geometrical constant K, is a measure of the effective
magnetic size of a core, when dc copper loss and winding resistance are the dominant constraints [1,2].
Design of a filter inductor involves selection of a core having a &, sufficiently large for the application,
then computing the required air gap, turns, and wire size. A simple step-by-step filter inductor design
procedure is given. Values of K, for common ferrite core shapes are tabulated in Appendix D.

Extension of the K, method to multiple-winding elements is covered in Section 14.3. In applica-
tions requiring multiple windings, it is necessary to optimize the wire sizes of the windings so that the
overall copper loss is minimized. It is also necessary to write an equation that relates the peak flux den-
sity to the applied waveforms or to the desired winding inductance. Again, a simple step-by-step trans-
former design approach is given.

The goal of the K, approach of this chapter is the design of a magnetic device having a given
copper loss. Core loss is not specifically addressed in the Kg approach, and B, is a given fixed value. In
the next chapter, the flux density is treated as a design variable to be optimized. This allows the overall

loss (i.e., core loss plus copper loss) to be minimized.

i

141  FILTER INDUCTOR DESIGN CONSTRAINTS

A filter inductor employed in a CCM buck converter is illustrated in Fig. 14.1(a). In this application, the
value of inductance L is usually chosen such that the inductor current ripple peak magnitude Ai is asmall
fraction of the full-load inductor current dc component /, as illustrated in Fig. 14.1(b). As illustrated in
Fig. 14.2, an air gap is employed that is sufficiently large to prevent saturation of the core by the peak
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(a) L

Fig. 14.1 Filter inductor employed in a CCM buck converter: (a) circuit schematic, (b) inductor current wave-

form.
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Fig. 14.2 Filter inductor: (a) structure, (b) magnetic circuit model,

current / + Ai.

Let us consider the design of the filter inductor illustrated in
Figs. 14.1 and 14.2. It is assumed that the core and proximity losses are
negligible, so that the inductor losses are dominated by the low-frequency
copper losses. The inductor can therefore be modeled by the equivalent
circuit of Fig. 14.3, in which R represents the dc resistance of the wind-
ing. It is desired to obtain a given inductance L and given winding resis-
tance R. The inductor should not saturate when a given worst-case peak

current I, .. is applied. Note that specification of R is equivalent to speci-
fication of the copper loss P, since
P,=I*R (14.1)

The influence of inductor winding resistance on converter efficiency and
output voltage is modeled in Chapter 3.

reluctance
b R, ni(r) (j) @ 32,

i(r)

Fig. 14.3 Filter inductor
equivalent circuit,
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Fig. 14.4 Filter inductor: (a) assumed geometry, (b} magnetic circuit.

It is assumed that the inductor geometry is topologically equivalent to Fig. 14.4(a). An equiva-
lent magnetic circuit is illustrated in Fig. 14.4(b). The core reluctance £, and air gap reluctance :ﬂ are

o
Ry=
HA, (14.2)
_ g
'ﬁ)g_ HoA,

where £ is the core magnetic path length, A_ is the core cross-sectional area, p_ is the core permeability,
and €, is the air gap length. It is assumed that the core and air gap have the same cross-sectional areas.
Solution of Fig. 14.4(b) yields

ni= 04 +4,) (14.3)
Usually, 4, << .9?‘, and hence Eq. (14.3) can be approximated as
ni=®4R, (14.4)

The air gap dominates the inductor properties. Four design constraints now can be identified.
14.1.1 Maximum Flux Density

Given a peak winding current /,.., it is desired to operate the core flux density at a maximum value B, ..

The value of B, is chosen to be less than the worst-case saturation flux density B,,, of the core material.

Substitution of @ = BA_ into Eq. (14.4) leads to

xat

ni= B'A'r'%’g (l45)
Upon letting I=1, , and B=B, ., we obtain

(14.6)

nl =B A K, =B

3
max max e max m

This is the first design constraint. The turns ratio n and the air gap length fg are unknowns.
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14.1.2 Inductance

The given inductance value L must be obtained. The inductance is equal to

3

b 8

_n? _ BoAn (14.7)
L= »
This is the second design constraint. The turns ratio n, core area A,., and gap length £, are unknown.
14.1.3 Winding Area

As illustrated in Fig. 14.5, the winding must fit through the window, i.e., the hole in the center of the
core. The cross-sectional area of the conductor, or bare area, is Ay, If the winding has n turns, then the
area of copper conductor in the window is

nAy (14.8)
If the core has window area W, then we can express the area available for the winding conductors as
KW, (14.9)

where K, is the window utilization factor, or fill factor. Hence, the third design constraint can be
expressed as

KW,znAy (14.10)

The fill factor K, is the fraction of the core window area that is filled with copper. K, must lie
between zero and one. As discussed in [1], there are several mechanism that cause K, to be less than
unity. Round wire does not pack perfectly; this reduces K, by a factor of 0.7 to 0.55, depending on the
winding technique. The wire has insulation; the ratio of wire conductor area to total wire area varies from
approximately 0.95 to 0.65, depending on the wire size and type of insulation. The bobbin uses some of
the window area. Insulation may be required between windings and/or winding layers. Typical values of
K, for cores with winding bobbins are: 0.5 for a simple low-voltage inductor, 0.25 to 0.3 for an off-line
transformer, 0.05 to 0.2 for a high-voltage transformer supplying several kV, and 0.65 for a low-voltage
foil transformer or inductor.

Core

| @4

Wire bare area |
A, \%

|- Core window
area W,

Fig. 14.5 The winding must fit in the core window area.
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14.1.4 Winding Resistance

The resistance of the winding is
Rplh: (14.11)

where p is the resistivity of the conductor material, £, is the length of the wire, and A, is the wire bare
area. The resistivity of copper at room temperature is 1.724s 107® Q—cm. The length of the wire compris-
ing an n-turn winding can be expressed as

£, =n(MLT) (14.12)
where (MLT) is the mean-length-per-turn of the winding. The mean-length-per-turn is a function of the
core geometry. Substitution of Eq. (14.12) into (14.11) leads to

_n(MLT) (14.13)
R_.phA -

This is the fourth constraint.

14.1.5 The Core Geometrical Constant K <

The four constraints, Egs. (14.6), (14.7), (14.10), and (14.13), involve the quantities A, W,, and MLT,
which are functions of the core geometry, the quantities {,, .. B, o, L, K, R, and p, which are given

specifications or other known quantities, and n, fg, and Ay, which are unknowns. Elimination of the
unknowns 7, £,, and Ay, leads to the following equation:

Alw, oL, 14.14
(MLT) > BZ_RK, Ui

The quantities on the right side of this equation are specifications or other known quantities. The left side
of the equation is a function of the core geometry alone. It is necessary to choose a core whose geometry
satisfies Eq. (14.14).

The quantity

AW, 14.15
Ks=Girth e

is called the core geometrical constant. It is a figure-of-merit that describes the effective electrical size of
magnetic cores, in applications where copper loss and maximum flux density are specified. Tables are
included in Appendix D that list the values of K for several standard families of ferrite cores. K, has
dimensions of length to the fifth power.

Equation (14.14) reveals how the specifications affect the core size. Increasing the inductance or
peak current requires an increase in core size. Increasing the peak flux density allows a decrease in core
size, and hence it is advantageous to use a core material that exhibits a high saturation flux density.
Allowing a larger winding resistance R, and hence larger copper loss, leads to a smaller core. Of course,
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the increased copper loss and smaller core size will lead to a higher temperature rise, which may be
unacceptable. The fill factor K, also influences the core size.

Equation (14.15) reveals how core geometry affects the core capabilities. An inductor capable
of meeting increased electrical requirements can be obtained by increasing either the core area A_, or the
window area W,. Increase of the core area requires additional iron core material. Increase of the window
area implies that additional copper winding material is employed. We can trade iron for copper, or vice
versa, by changing the core geometry in a way that maintains the K, of Eq. (14.15).

14.2 A STEP-BY-STEP PROCEDURE

The procedure developed in Section 14.1 is summarized below. This simple filter inductor design proce-
dure should be regarded as a first-pass approach. Numerous issues have been neglected, including
detailed insulation requirements, conductor eddy current losses, temperature rise, roundoff of number of
turns, etc.

The following quantities are specified, using the units noted:

Wire resistivity p (2—cm)

Peak winding current . A)

Inductance L (H)

Winding resistance R (£2)

Winding fill factor K,

Maximum operating flux density B, (D
The core dimensions are expressed in cm:

Core cross-sectional area A, (sz)

Core window area w, (cmi}

MLT (cm)

Mean length per turn

The use of centimeters rather than meters requires that appropriate factors be added to the design equa-
tions.

1. Determine core size

pLY ., .
szm 10 (em) (14.16)

Choose a core which is large enough to satisfy this inequality. Note the values of A, W,, and MLT for
this core. Theresistivity p of copper wire is 1.724 - 10 Q—cm at room temperature, and 2.3 - 10™® Q—cm
at 100°C.
2. Determine air gap length
2

Li
t,= F;?m:m 10°  (m) (14.17)

with A_expressed in em?, Mo =4m- 10~ H/m. The air gap length is given in meters. The value expressed
in Eq. (14.17) is approximate, and neglects fringing flux and other nonidealities.
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Core manufacturers sell gapped cores. Rather than specifying the air gap length, the equivalent
quantity A, is used. A, is equal to the inductance, in mH, obtained with a winding of 1000 turns. When
A, is specified, it is the core manufacturer’s responsibility to obtain the correct gap length. Equation
(14.17) can be modified to yield the required A, as follows:

- 108,42

A= 7 (mH/1000 turns) (14.18)

where A, is givenin cm?, L is given in Henries, and B, .. 1s given in Tesla.

3. Determine number of turns
n=Lluas gt (14.19)
max® "¢
4.  Evaluate wire size
Ay <X (o2 (14.20)
n

Select wire with bare copper area less than or equal to this value. An American Wire Gauge table is
included in Appendix D.
As a check, the winding resistance can be computed:

R=9-’L(A@ @ (14.21)

W

143 MULTIPLE-WINDING MAGNETICS DESIGN VIA THE K, METHOD

The K, method can be extended to the case of multiple-winding magnetics, such as the transformers and
coupled inductors described in Sections 13.5.3 to 13.5.5. The desired turns ratios, as well as the desired
winding voltage and current waveforms, are specified. In the case of a coupled inductor or flyback trans-
former, the magnetizing inductance is also specified. It is desired to select a core size, number of turns
for each winding, and wire sizes. It is also assumed that the maximum flux density B,,,, is given.

With the K, method, a desired copper loss is attained. In the multiple-winding case, each wind-
ing contributes some copper loss, and it is necessary to allocate the available window area among the
various windings. In Section 14.3.1 below, it is found that total copper loss is minimized if the window
area is divided between the windings according to their apparent powers. This result is employed in the

following sections, in which anoptimized K , method for coupled inductor design is developed.
14.3.1 Window Area Allocation

The first issue to settle in design of a multiple-winding magnetic device is the allocation of the window
area Ay, among the various windings. It is desired to design a device having k windings with turns ratios
ny i ny .. ny. These windings must conductrmscurrents Iy, 1,, ..., I, respectively. It should be noted that
the windings are effectively in parallel: the winding voltages are ideally related by the turns ratios
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n oy
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. rms current
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Fig. 14.6 It is desired to optimally allocate the window area of a k-winding magnetic element to minimize low-
frequency copper losses, with given rms winding currents and turns ratios.

vile) _vale) _ o) (14.22)

", ", =T

However, the winding rms currents are determined by the loads, and in general are not related to the turns
ratios. The device is represented schematically in Fig. 14.6.

The relevant geometrical parameters are summarized in Fig. 14.7(a). It is necessary to allocate a
portion of the total window area W, to each winding, as illustrated in Fig. 14.7(b). Let &; be the fraction
of the window area allocated towinding j, where

O<a;<l (14.23)
O+ 0yt -+ 0, =1

@ Core

L1 Window area W,
/ g S

Core mean length
per turn (MLT)

Fig. 14.7 Basic core topology, /5 Attt f
including window area W, enclosed b f

g W ared i, enclased by Fill factor K,
core (a). The window is allocated to
the various windings to minimize low-
frequency copper loss (b).

(b)

Winding 1 allocation
a,W,
Winding 2 allocation
a,W,

Total window
area WA

etc.
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The low-frequency copper loss £, ;in winding j depends on the dc resistance R;of winding j, as follows:

Pﬂ-J = IfR_; (14'24)
The resistance of winding j is
#i5p J (14.25)
iTP &y

where p is the wire resistivity, {; is the length of the wire used for winding j, and Ay; is the cross-sectional
area of the wire used for winding j. These quantities can be expressed as

¢;=n,;(MLT) (14.26)
_ Wik, (14.27)
Wy n;

where (MLT) is the winding mean-length-per-turn, and K|, is the winding fill factor. Substitution of these
expressions into Eq. (14.25) leads to

2
_ nj (MLT) (14.28)
i=P WK,
The copper loss of winding j is therefore
.2
_ n3EP(MLT) (14.29)
i WK,
The total copper loss of the k£ windings is
pMLT) & (0315 (14.30)
4 i
Pf.'ll'.lnl= Pru.l + Pru.i +ort Poy= WK, = é-—;

It is desired to choose the s such that the total copper loss P,,,, is minimized. Let us consider what
happens when we vary one of the .8, say o, between O and 1.

When ¢, =0, then we allocate zero area to winding 1. In consequence, the resistance of winding
1 tends to infinity. The copper loss of winding 1 also tends to infinity. On the other hand, the other wind-
ings are given maximum area, and hence their copper losses can be reduced. Nonetheless, the total cop-
per loss tends to infinity.

When ¢, = [, then we allocate all of the window area to winding 1, and none to the other wind-
ings. Hence, the resistance of winding 1, as well as its low-frequency copper loss, are minimized. But the
copper losses of the remaining windings tend to infinity.

As illustrated in Fig. 14.8, there must be an optimum value of ot; that lies between these two
extremes, where the total copper loss is minimized. Let us compute the optimum values of @, 0y, ..., O
using the method of Lagrange multipliers. It is desired to minimize Eq. (14.30), subject to the constraint
of Eq. (14.23). Hence, we define the function
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Copper t
loss

0 1 o
Fig. 14.8 Variation of copper losses with O.;.

S0y Oy =ey O E) = Py (00, Oy ooy ) + E (00, g, +ovy 08y) (14.31)

where

0 B vyl ',i:'. o (14.32)

is the constraint that must equal zero, and & is the Lagrange multiplier. The optimum point is the solution
of the system of equations

Af@r ap s 8) _ o
dad, -
a_f(“lv Oy = OE) =0
o
2: (14.33)
9f (@), Oy, -+, E)
do,
af(ey. ay, -, 0, 8)

=0

=0

The solution is

CHIOT

cmm(ﬁ J 3 (14.34)
=1

n, !
o, = maln (1435)

"Z.I nl;

This is the optimal choice for the s, and the resulting minimum valueof P,, ...
According to Eq. (14.22), the winding voltages are proportional to the turns ratios. Hence, we
can express the os in the alternate form
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Cf.m - —:,Nl!ﬂ!
2 Vi

n=1

(14.36)

by multiplying and dividing Eq. (14.35) by the quantity V, /n, . It is irrelevant whether rms or peak volt-
ages are used. Equation (14.36) is the desired result. It states that the window area should be allocated to
the various windings in proportion to their apparent powers. The numerator of Eq. (14.36) is the apparent
power of winding m, equal to the product of the rms current and the voltage. The denominator is the sum
of the apparent powers of all windings.

As an example, consider the PWM full-bridge transformer having a center-tapped secondary, as
illustrated in Fig. 14.9. This can be viewed as a three-winding transformer, having a single primary-side
winding of n, turns, and two secondary-side windings, each of n, turns. The winding current waveforms

i,(D), (1), and iy(1) are illustrated in Fig. 14.10. Their rms values are

oo/ L (Tr2ng M2 (14.37)
Ij= 2T,J; iy(ndr -nlfv'ﬁ
T,
T - %J- iXodt =L 1VTFD (14.38)
50 -

Substitution of these expressions into Eq. (14.35) yields

o=
. (1 . \/"TBQ_} (14.39)
dy=ay=1 L
e ) D (14.40)
1+'\/I+DJ

If the design is to be optimized at the operating point D = 0.75, then one obtains

o, = 0396
o, =0.302 (14.41)
ot =0.302

So approximately 40% of the window area should be allocated to the primary winding, and 30% should

i\(1) i(1) I
> > ’.‘:
] n, turns l
n, turns [ % $
} n, turns -I-

i5(0)
Fig. 14.9 PWM full-bridge transformer example.
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PWM full-bridge converter example. !
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be allocated to each half of the center-tapped secondary. The total copper loss at this optimal design point
is found from evaluation of Eq. (14.34):

e 1 1
P = BALTy ( EI u}-f;-)

CHL e ‘.":‘“K“ /= ( |4.42}
MLT)n31?
=&iv*; 2 (|+zn+2,,-‘pu+n)]

14.3.2 Coupled Inductor Design Constraints

Let us now consider how to design a k-winding coupled inductor, as discussed in Section 13.5.4 and
illustrated in Fig. 14.11. It is desired that the magnetizing inductance be a specified value L,,, referred to
winding 1. It is also desired that the numbers of turns for the other windings be chosen according to
desired turns ratios. When the magnetizing current iy, (1) reaches its maximum value 7, ., the coupled
inductor should operate with a given maximum flux density B,,, . With rms currents /,, /,,..., [, applied to
the respective windings, the total copper loss should be a desired value P, given by Eq. (14.34). Hence,
the design procedure involves selecting the core size and number of primary turns so that the desired
magnetizing inductance, the desired flux density, and the desired total copper loss are achieved. Other
quantities, such as air gap length, secondary turns, and wire sizes, can then be selected. The derivation
follows the derivation for the single winding case (Section 14.1), and incorporates the window area opti-
mization of Section 14.3.1.

The magnetizing current #,,(f) can be expressed in terms of the winding currents i,(t), i,(f),...,
i,(1) by solution of Fig. 14.11 (a) (or by use of Ampere’s Law), as follows:

i) = 0,0+ "2 in(0) + o + X (1) (14.43)
n n

By solution of the magnetic circuit model of Fig. 14.1 I(b), we can write
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(a) n :om (b)
ao Yooy L L0 ®,
V() L, v (f) AN
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R, 0@ o0) 34,

Fig. 14.11 A k-winding magnetic device, with specified turns ratios and waveforms: (a) electrical circuit model,
(b) a magnetic circuit model.

nyiyt) = B(r)Ac.éﬁ’R (14.44)

This equation is analogous to Eq. (14.4), and assumes that the reluctance 4, of the air gap is much larger
than the reluctance #,of the core. As usual, the total flux ®(¢) is equal to B(r)A, .. Leakage inductances
are ignored.

To avoid saturation of the core, the instantaneous flux density B(#) must be less than the satura-
tion flux density of the core material, B, . Let us define £, .. as the maximum value of the magnetizing
current i,,(f). According to Eq. (14.44), this will lead to a maximum fluxdensity B,,,. givenby

t (14.45

ny !M"Jmu = eruAc'ﬂg = Bmm u__gn )

For a value of f,, . given by the circuit application, we should use Eq. (14.45) to choose theturns #; and

gap length ty such that the maximum flux density B,,,, is less than the saturation density B,,,. Equation

(14.45) is similar to Eq. (14.6), but accounts for the magnetizations produced by multiple winding cur-
rents.

The magnetizing inductance L,,, referred to winding 1, is equal to

LYY (14.46)

This equation is analogous to Eq. (14.7).

As shown in Section 14.3.1, the total copper loss is minimized when the core window area W, is
allocated to the various windings according to Eq. (14.35) or (14.36). The total copper loss is then given
by Eq. (14.34). Equation (14.34) can be expressed in the form

5w p(MLT)nffjﬂ (14.47)
il w“K"
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where

- ﬁ :_ (14.48)

is the sum of the rms winding currents, referred to winding 1.
We can now eliminate the unknown quantities fg and n| from Egs. (14.45), (14.46), and (14.47).
Equation (14.47) then becomes

5 =|;>(MLT?L’i . (14.49)
. ﬂm‘diw‘d‘[{u

We can now rearrange this equation, by grouping terms that involve the core geometry on the left-hand
side, and specifications on the right-hand side:

AW, PLY Ll Yy (14.50)
(MLT) Blzﬂt.ll Kll Plll

The left-hand side of the equation can be recognized as the same K, term defined in Eq. (14.15). There-
fore, to design a coupled inductor that meets the requirements of operating with a given maximum flux
density B,,,, given primary magnetizing inductance L, and with a given total copper loss P,,,, we must

select a core that satisfies

2 72 42
» PLirl il bt mos (14.51)
& B K.P.,

Once such a core is found, then the winding 1 turns and gap length can be selected to satisfy Eqgs. (14.45)
and (14.46). The turns of windings 2 through k are selected according to the desired turns ratios. The
window area is allocated among the windings according to Eq. (14.35), and the wire gauges are chosen
using Eq. (14.27).

The procedure above is applicable to design of coupled inductors. The results are applicable to
design of flyback and SEPIC transformers as well, although it should be noted that the procedure does
not account for the effects of core or proximity loss. It also can be extended to design of other devices,
such as conventional transformers—doing so is left as a homework problem.

14.3.3 Design Procedure

The following quantities are specified, using the units noted:

Wire effective resistivity p (§2—cm)

Total rms winding currents, referred to winding 1 L= i .;_J I (A)
Ik

Peak magnetizing current, referred to winding 1 Lot max (A)

Desired turns ratios nyiny, nyfny, etc.
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Magnetizing inductance, referred to winding 1 Ly (H)

Allowed total copper loss L (W)

Winding fill factor K,

Maximum operating flux density B, (T)
The core dimensions are expressed in cm:

Core cross-sectional area A, (cm?)

Core window area W, (c mz}

Mean length per turn MLT (cm)

The use of centimeters rather than meters requires that appropriate factors be added to the design equa-
tions.

1. Determine core size

21 42 g2
s DL:;’M"M,.W 108 e’ (14.52)
BF"ﬂ(Pf“Kn

Choose a core which is large enough to satisfy this inequality. Note the values of A,, W,, and MLT for
this core. The resistivity p of copper wire is 1,724 - 10 Q-cm at room temperature, and 2.3 - 107 Q-cm
at 100°C.

2. Determine air gap length
2
‘= gutzuf Moax |04 bl (14.53)

L A

max’ e

Here, B,,,, is expressed in Tesla, A, is expressed in cm?, and £, is expressed in meters. The permeability

of free space is p, = 47+ 107 H/m. This value is approximate, and neglects fringing flux and other non-
idealities.

3. Determine numberof winding 1 turns

Lyl
ny = =AM g s (14.54)
Here, B,,,, is expressed in Teslaand A, is expressed in cm?.

3. Determine number of secondary turns

Use the desired turns ratios:

e (14.55)
ny= (r_%) n
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4. Evaluate fraction of window area allocated to each winding

nyl,
nid i

Oy

nyl,
g=—
ﬂilim

(14.56)

nd,
n‘=—
J"I"'i'm

5. Evaluate wire sizes

< oy KHWA
ny
< %K, Wy

w2 =

A

wl

A
sy

(14.57)

Select wire with bare copper area less than or equal to these values. An American Wire Gauge table is
included in Appendix D.

14.4 EXAMPLES
14.4.1 Coupled Inductor for a Two-Output Forward Converter

As a first example, let us consider the design of coupled inductors for the two-output forward converter
illustrated in Fig. 14.12. This element can be viewed as two filter inductors that are wound on the same
core. The turns ratio is chosen to be the same as the ratio of the output voltages. The magnetizing induc-
tance performs the function of filtering the switching harmonics for both outputs, and the magnetizing
current is equal to the sum of the reflected winding currents.

At the nominal full-load operating point, the converter operates in the continuous conduction
mode with a duty cycle of D = 0.35. The switching frequency is 200 kHz. At this operating point, it is
desired that the ripple in the magnetizing current have a peak magnitude equal to 20% of the dc compo-
nent of magnetizing current.

The dc component of the magnetizing current [, is

n
Ly=1+-21
M I n, 2

_ 12 (14.58)
=(4A)+2Q2A)

=486 A

The magnetizing current ripple Ai,, can be expressed as
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Fig. 14.12 Two-output forward converter example: (a) circuit schematic, (b) coupled inductor model inserted into
converler secondary-side circuit, (¢) magnetizing current and voltage waveforms of coupled inductor, referred to
winding 1.

Vo', (14.59)
2L,

Aiy =

Since we want Ay, to be equal to 20% of /,,, we should choose L, as follows:

L VDT,
M= 241,
(28 V)(1 - 0.35)(5 ps) (14.60)
T 2(4.86 A)(20%)
=47 uH

The peak magnetizing current, referred to winding 1, is therefore
IM.;»M=IM+QEM=S>B3 A (14.61)

Since the current ripples of the winding currents are small compared to the respective dc components, the
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rms values of the winding currents are approximately equal to the dc components: I, =4 A, [, =2 A.
Therefore, the sum of the rms winding currents, referred to winding 1, is

1,=1, +:—712=4.86A (14.62)

For this design, it is decided to allow 0.75 W of copper loss, and to operate the core at a maximum flux
density of 0.25 Tesla. A fill factor of 0.4 is assumed. The required K, is found by evaluation of Eq.
(14.52), as follows:

(1.724 - 10°° Q — cm)(47 uH)?(4.86 A)*(5.83 A)? 4
e e e (1 (14.63)
i (0.25 T)*(0.75 W)(0.4) .

=16- 10" ecm?®

A ferrite PQ 20/16 core is selected, which has a K of 22.4-10 ~* ¢m®. From Appendix D, the geometri-
cal parameters for this core are: A =0.62 em?, W, =0.256 em?, and MLT = 4.4 cm.
The air gap is found by evaluation of Eq. (14.53) as follows:

fs _ l-logrff;.m 104
nLe c
_ (4n- 107 TH/m)(47 pH)(S83 A)? | 4 (14.64)
B (0.25 T)%(0.62 cm?)

=0.52 mm

In practice, a slightly longer air gap would be necessary, to allow for the effects of fringing flux and other
nonidealities. The winding 1 turns are found by evaluation of Eq. (14.54):

Lyl
=gl o
_ (47 pH)(5.83 A)
~ (0.25 T)}(0.62 cm?)
= 17.6 turns

i (14.65)

The winding 2 turns are chosen according to the desired turns ratio:

n
ny=|-2|n,
n,

12 (14.66)
= [ﬁ) (17.6)

= 7.54 turns

The numbers of turns are rounded off to n = 17 turns, n, =7 turns (18:8 would be another possible
choice). The window area W, is allocated to the windings according to the fractions from Eq. (14.56):

_ml _ (I74A)
= ndy (17486 A) 08235
_ml, (M2 A)

27 nl, (17)(4.86 A)

(14.67)
=0.1695
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The wire sizes can therefore be chosen as follows:

KW 0.82354(0.4)(0.2 ?
4, <B&W_( X0(0.256em) _ 4 o6 1072 cm?
n an
use AWG #21
(14.68)
2
AT (CIDTNONOTI) 5 0 10575 i
n, )
use AWG #24

14.4.2 CCM Flyback Transformer

As a second example, let us design the flyback transformer for the converter illustrated in Fig. 14.13.
This converter operates with an input voltage of 200 V, and produces an full-load output of 20 V at SA.
The switching frequency is 150 kHz. Under these operating conditions, it is desired that the converter
operate in the continuous conduction mode, with a magnetizing current ripple equal to 20% of the dc
component of magnetizing current. The duty cycle is chosen to be D = 0.4, and the turns ratio is n,/n, =
0.15. A copper loss of 1.5 W is allowed, not including proximity effect losses. To allow room for isola-
tion between the primary and secondary windings, a fill factor of K, = 0.3 is assumed. A maximum flux
density of B, = 0.25T is used; this value is less than the worst-case saturation flux density B, of the
ferrite core material.

By solution of the converter using capacitor charge balance, the dc component of the magnetiz-
ing current can be found to be

T ) i I
!M_(nl] FR=125A (14.69)

Hence, the magnetizing current ripple should be

Aiy = (20%)1, =025 A (14.70)
and the maximum value of the magnetizing current is

Dgma =Ly + Ay =15A (14.71)
To obtain this ripple, the magnetizing inductance should be

V. DT
- !
Lu=25;, (14.72)
=1.07 mH

The rms value of the primary winding current is found using Eq. (A.6) of Appendix A, as follows:

- Toa: A
f.=fnv'£_>\/l+%(%‘ﬁ) =0.796 A (14.73)
M
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(a)

(b)

Fig. 14.13 Flyback transformer
design example: (a) converter sche-
matic, (b) typical waveforms.
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The rms value of the secondary winding current is found in a similar manner:

L=2 1, D

n,

1 [ Aiy
I+ |5
2

3

M

)
] =06.50A

(14.74)

Note that £, is not simply equal to the turns ratio multiplied by /,. The total rms winding current is equal

to:

Ly=1+21,=177A
n

(14.75)
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We can now determine the necessary core size. Evaluation of Eq. (14.52) yields

2 2
K > pLMIJ'zmlM.M 108

£ BIZHMPNKH
(1724 10-°@-cm)( 107 1072 1) (1.7 A)(15 A)? (14.76)
' 1 8
(025T)%(1.5 W)(0.3)
=0.049 cm?

The smallest EE core listed in Appendix D that satisfies this inequality is the EE30, which has
K, = 0.0857 cm®. The dimensions of this core are

A,  109cm?

W_,, 0.476 sz (1437)
MLT 6.6cm

{ 577 cm

"

The air gap length 8g is chosen according to Eq. (14.53):

¢ = I'LI}LMIif.mm‘ 104

¢ BhaAc

(4n- 10 "H/m|)(1.07- 10 B)(15 A)" (14.78)
) (025 T)(1.09 cm?) 1
=0.44 mm

The number of winding 1 turns is chosen according to Eq. (14.54), as follows:

= 10
(10710 H)(15 A) - (14.79)
~ (0257)(1.09cm?)

= 58.7 turns

Since an integral number of turns is required, we round off this value to

n,=59 (14.80)

To obtain the desired turns ratio, n, should be chosen as follows:

Ny = (:ﬂz) H
2= n I
f (14.81)

We again round this value off, to
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n,=9 (14.82)

The fractions of the window area allocated to windings 1 and 2 are selected in accordance with Eq.
(14.56):

T L -
Ve (177 A) (14.83)
Tl
mly o (59)(1.77 A)
The wire gauges should therefore be
Aw.é“%:l,og- 10%cm?  —use #28 AWG "
Ay, <KW _ggg. 107 em?  —use #19 AWG
w2s " m,

The above American Wire Gauges are selected using the wire gauge table given at the end of Appendix
D.

The above design does not account for core loss or copper loss caused by the proximity effect.
Let us compute the core loss for this design. Figure Fig. 14.14 contains a sketch of the B—H loop for this
design. The flux density B(f) can be expressed as a dc component (determined by the dc value of the
magnetizing current f,,), plus an ac variation of peak amplitude AB that is determined by the current rip-
ple Ai,,. The maximum value of B(z) is labeled B,,,,; this value is determined by the sum of the dc com-
ponent and the ac ripple component. The core material saturates when the applied B(¢) exceeds B,,:
hence, to avoid saturation, B, should be less than B, . The core loss is determined by the amplitude of
the ac variations in B(?) i.e., by AB.

The ac component AB is determined using Faraday’s law, as follows. Solution of Faraday’s law
for the derivative of B(f) leads to

dB(e) _ vu(1) (14.85)
dt nA

¢

As illustrated in Fig. 14.15, the voltage applied during the first subinterval is vy,(r) = V.. This causes the

B(1),
B
B, .t
Fig. 14.14 B-H loop for the flyback transformer design H (1)
i K
example. 1 Minor B-H loop,
CCM flyback
example
~B-H loop,

large excitation
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B(1)
B, t AB
/A;,fg e S
Fig. 14.15 Variation of flux density B(f), flyback transformer nA,
example. 0 >
vyl
M(®) Ve .
- DTs —
0
flux density to increase with slope
dB@) _ Y, (14.86)

dr  nmA,

Over the first subinterval 0 < ¢t < DT,, the flux density B(f) changes by the net amount 2AB. This net
change is equal to the slope given by Eq. (14.86), multiplied by the interval length DT:

V
= 14,
M_[nltJ(DT,) (14.87)
Upon solving for AB and expressing A, in cm?, we obtain
V. DT,
_V,DT, (14.88)
AB InA 10

[

For the flyback transformer example, the peak ac flux density is found to be

_ (200 v)(04)(6.67 us) 104
~ 2(59)(1.09 cm?) (4.89)
=0.041T

To determine the core loss, we next examine the data provided by the manufacturer for the given
core material. A typical plot of core loss is illustrated in Fig. 14.16. For the values of AB and switching
frequency of the flyback transformer design, this plot indicates that 0.04 W will be lost in every em? of
the core material. Of course, this value neglects the effects of harmonics on core loss. The total core loss
P, will therefore be equal to this loss density, multiplied by the volume of the core:

P =(0.04 Wem®)(A.£,,)
=(0.04 W/em?)(1.09 cm?)(5.77 em)
=025W

(14.90)

This core loss is less than the copper loss of 1.5 W, and neglecting the core loss is often warranted in
designs that operate in the continuous conduction mode and that employ ferrite core materials.
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14.5 SUMMARY OF KEY POINTS

L A variety of magnetic devices are commonly used in switching converters. These devices differ in their
core flux density variations, as well as in the magnitudes of the ac winding currents. When the flux density
variations are small, core loss can be neglected. Alternatively, a low-frequency material can be used, hav-
ing higher saturation flux density.

2. The core geometrical constant K, is a measure of the magnetic size of a core, for applications in which
copper loss is dominant. In the K, design method, flux density and total copper loss are specified. Design
procedures for single-winding filter inductors and for conventional multiple-winding transformers are
derived.
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PROBLEMS

14.1

14.2

14.3

14.4

A simple buck converter operates with a 50 kHz switching frequency and a dc input voltage of Ve =40V,
The output voltage is V =20 V. The load resistance is K 2 4 €.

(a) Determine the value of the output filter inductance L such that the peak-to-average inductor cur-
rent ripple Aiis 10% of the dc component /.

(b) Determine the peak steady-state inductor current /

(c) Design an inductor which has the values of L and /,,,, from parts (a) and (b). Use a ferrite EE
core, with B, . =0.25 T. Choose a value of winding resistance such that the inductor copper loss
is less than or equal to 1 W at room temperature. Assume K, = (.5, Specify: core size, gap

length, wire size (AWG), and number of turns.

A boost converter operates at the following quiescent point: V, =28 V, V=48 V, P, = 150 W,
[, =100 kHz. Design the inductor for this converter. Choose the inductance value such that the peak cur-
rent ripple is 10% of the dc inductor current. Use a peak flux density of 0.225 T, and assume a fill factor
of 0.5. Allow copper loss equal to 0.5% of the load power, at room temperature. Use a ferrite PQ core.

Specify: core size, air gap length, wire gauge, and number of turns.

Extension of the KM approach to design of two-winding transformers. It is desired to design a trans-
former having a turns ratio of 1:n. The transformer stores negligible energy, no air gap is required, and
the ratio of the winding currents i,(£)/i,(¢) is essentially equal to the turns ratio n. The applied primary
volt-seconds A, are defined for a typical PWM voltage waveform v,(f) in Fig. 13.45(b); these volt-sec-
onds should cause the maximum flux density to be equal to a specified value B,, = AB. You may
assume that the flux density B(f) contains no dc bias, as in Fig. 13.46. You should allocate half of the
cove window area to each winding. The total copper loss P, is also specified. You may neglect proximity

losses.

(a) Derive a transformer design procedure, in which the following quantities are specified: total cop-
per loss P, , maximum flux density B, . fill factor K, wireresistivity p, rms primary current {;,
applied primary volt-seconds A, and turns ratio 1:n. Your procedure should yield the following
data: required core geometrical constant K, primary and secondary turns #, and n,, and primary

and secondary wire areas A, and A ;.

(b) The voltage waveform applied to the transformer primary winding of the Cuk converter [Fig.
6.41(c)] is equal to the converter input voltage ¥, while the transistor conducts, and is equal to
-V, DI(l ~ D) while the diode conducts. This converter operates with a switching frequency of
100 kHz, and a transistor duty cycle D equal to 04. The dc input voltage is V,, = 120 V, the dc
output voltage is V=24V, and the load power is 200 W. You may assume a fill factor of K,=0.3.
Use your procedure of part (a) to design a transformer for this application, in which
B,,.=0.15T,and P, =025 W at 100°C. Use a ferrite PQ core. Specify: core size, primary and
secondary turns, and wire gauges.

Coupled inductor design. The two-output forward converter of Fig. 13.47(a) employs secondary-side
coupled inductors. An air gap is employed.

Design a coupled inductor for the following application: ¥, =5V, ¥, =I5V, /, =20 A, [, =4 A,
D = 0.4, The magnetizing inductance should be equal to 8 gH, referred to the 5 V winding. You may
assume a fill factor K of 0.5. Allow a total of 1 W of copper loss at 100°C, and use a peak flux density of
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B,,..=0.2T. Use a ferrite EE core. Specify: core size, air gap length, number of turns and wire gauge for

each winding.

14.5 Flyback transformer design. A flyback converter operates with a 160 Vdc input, and produces a 28 Vdc
output. The maximum load current is 2 A. The transformer turns ratio is 8:1. The switching frequency is
100 kHz. The converter should be designed to operate in the discontinuous conduction mode at all load
currents. The total copper loss should be less than 0.75 W.

(@) Choose the value of transformer magnetizing inductance L, such that, at maximum load current,
Dy =0.1 (the duty cycle of subinterval 3, in which all semiconductors are off). Please indicate
whether your value of L, is referred to the primary or secondary winding. What is the peak tran-
sistor current? The peak diode current?

(b) Design a flyback transformer for this application. Use a ferrite pot core with B, = 0.25 Tesla,
and with fill factor K, = 0.4. Specify: core size, primary and secondary turns and wire sizes, and
air gap length.

(c) For your design of part (b), compute the copper losses in the primary and secondary windings.
You may neglect proximity loss.

(d) For your design of part (b), compute the core loss. Loss data for the core material is given by
Fig. 13.20. Is the core loss less than the copper loss computed in Part (c)?



