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Basic Magnetics Theory

Magnetics are an integral part of every switching converter. Often, the design of the magnetic devices
cannot be isolated from the converter design. The power electronics engineer must not only model and
design the converter, but must model and design the magnetics as well. Modeling and design of magnet-
ics for switching converters is the topic of Part III of this book.

In this chapter, basic magnetics theory is reviewed, including magnetic circuits, inductor model-
ing, and transformer modeling [1-5]. Loss mechanisms in magnetic devices are described. Winding eddy
currents and the proximity effect, a significant loss mechanism in high-current high-frequency windings,
are explained in detail [6-11]. Inductor design is introduced in Chapter 14, and transformer design is cov-
ered in Chapter 15.

13.1 REVIEW OF BASIC MAGNETICS
13.1.1 Basic Relationships

The basic magnetic quantities are illustrated in Fig. 13.1. Also illustrated are the analogous, and perhaps
more familiar, electrical quantities. The magnetomotive force #, or scalar potential, between two points
x, and x, is given by the integral of the magnetic field H along a path connecting the points:

.ﬁ=f’ﬂ-d¢ (3.1
Ll

where df is a vector length element pointing in the direction of the path. The dot product yields the com-
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Magnetic quantities Electrical quantities
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Fig. 13.1 Comparison of magnetic field H, MMF @, flux .#, and flux density B, with the analogous electrical quan-
tities £, V, [, and J.

ponent of H in the direction of the path. If the magnetic field is of uniform strength H passing through an
element of length € as illustrated, then Eq. (13.1) reduces to

F=He (13.2)
This is analogous to the electric field of uniform strength E, which induces a voltage V = E£ between two
points separated by distance ¢.

Figure 13.1 also illustrates a total magnetic flux @ passing through a surface § having area A,.
The total flux ®is equal to the integral of the normal component of the flux density B over the surface

q::j B-dA (13.3)
surfirce §

where dA is a vector area element having direction normal to the surface. For a uniform flux density of
magnitude B as illustrated, the integral reduces to

& =BA, (13.4)
Flux density B is analogous to the electrical current density J, and flux & is analogous to the electric cur-
rent /. If a uniform current density of magnitude J passes through a surface of area A, then the total cur-
rentis [=JA,.

Faraday’s law relates the voltage induced in a winding to the total flux passing through the inte-
rior of the winding. Figure 13.2 illustrates flux @(f) passing through the interior of a loop of wire. The
loop encloses cross-sectional area A .. According to Faraday’s law, the flux induces a voltage v(7) in the
wire, given by

_ do() 135
W= dt ( )

where the polarities of v(f) and () are defined according to the right-hand rule, as in Fig. 13.2. For a
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Fig. 13.2 The voltage v(t) induced in a loop of wire is
related by Faraday's law to the derivative of the total flux ®(r)

passing through the interior of the loop. Flux (1)

< v(t)

uniform flux distribution, we can express v(#) in terms of the flux density B(f) by substitution of Eq.
(13.4):
dB(r)
u=A.77 (13.6)
Thus, the voltage induced in a winding is related to the flux ¢ and flux density B passing through the
interior of the winding.

Lenz’s law states that the voltage v(¢) induced by the changing flux @(t) in Fig. 13.2 is of the
polarity that tends to drive a current through the loop to counteract the flux change. For example, con-
sider the shorted loop of Fig. 13.3. The changing flux ®(f) passing through the interior of the loop
induces a voltage v(¢) around the loop. This voltage, divided by the impedance of the loop conductor,
leads to a current i(¢) as illustrated. The current i(¢) induces a flux ®’(r), which tends to oppose the
changes in @(¢). Lenz’s law is invoked later in this chapter, to provide a qualitative understanding of eddy
current phenomena.

Ampere’s law relates the current in a winding to the magnetomotive force & and magnetic field
H. The net MMF around a closed path oflength £, is equal to the total current passing through the inte-
rior of the path. For example, Fig. 13.4 illustrates a magnetic core, in which a wire carrying current i(f)
passes through the window in the center of the core. Let us consider the closed path illustrated, which
follows the magnetic field lines around the interior of the core. Ampere’s law states that

H-dt = total current passing through interior of path (13.7)

closed path

The total current passing through the interior of the path is equal to the total current passing through the
Induced current
Fig, 13.3 [llustration of Lenz's law in a shorted loop of wire. The flux

@(¢) induces current (¢}, which in turn generates flux @’(¢) that tends to
oppose changes in d(r). Flux &(r)

Shorted
loop

Induced
flux &'(r)
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i(r)

Y

Fig. 13.4 The net MMF around a closed
path is related by Ampere’s law to the total
current passing through the interior of the
path.

Magnetic path
|+ length (,

window in the center of the core, or i(#). If the magnetic field is uniform and of magnitude H(f), then the
integralis H(1)¢,,. So for the example of Fig. 13.4, Eq. (13.7) reduces to

() =H@L, =i(1) (13.8)

Thus, the magnetic field strength H(¢) is related to the winding current i(f). We can view winding currents

as sources of MMF. Equation (13.8) states that the MMF around the core, :4(f) = H(1)t,,, is equal to the

winding current MMF i(#). The total MMF around the closed loop, accounting for both MMFs, is zero.
The relationship between B and H, or equivalently between ® and /%, is determined by the core

material characteristics. Figure 13.5(a) illustrates the characteristics of free space, or air:
B=uH (13.9)

The quantity g, is the permeability of free space, and is equal to 47 - 1077 Henries per meter in MKS
units. Figure 13.5(b) illustrates the B—H characteristic of a typical iron alloy under high-level sinusoidal
steady-state excitation. The characteristic is highly nonlinear, and exhibits both hysteresis and saturation.
The exact shape of the characteristic is dependent on the excitation, and is difficult to predict for arbitrary
waveforms.

For purposes of analysis, the core material characteristic of Fig. 13.5(b) is usually modeled by
the linear or piecewise-linear characteristics of Fig. 13.6. In Fig. 13.6(a), hysteresis and saturation are
ignored. The B—H characteristic is then given by

(a) Bt (b) Bt
N/
/ u
Ll "(
H H
Mo
¥
/d

Fig. 13.5 B-H characteristics: (a) of free space or air, (b) of a typical magnetic core material.
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(a) B4 (b) B

sar

H= 1, Ry H

S

sar

Fig. 13.6 Approximation of the B-H characteristics of a magnetic core material: (a) by neglecting both hysteresis
and saturation, (b) by neglecting hysteresis.

B=pH (13.10)
TESTRTA

The core material permeability ¢ can be expressed as the product of the relative permeability g, and of
to- Typical values of i, lie in the range 10° to 10°,

The piecewise-linear model of Fig. 13.6(b) accounts for saturation but not hysteresis. The core
material saturates when the magnitude of the flux density B exceeds the saturation flux density B,,. For
|B| < B,, the characteristic follows Eq. (13.10). When |B| > B, the model predicts that the core
reverts to free space, with a characteristic having a much smaller slope approximately equal to fi,.
Square-loop materials exhibit this type of abrupt-saturation characteristic, and additionally have a very
large relative permeability u,. Soft materials exhibit a less abrupt saturation characteristic, in which g
gradually decreases as H is increased. Typical values of B, are 1 to 2 Tesla for iron laminations and sili-
con steel, 0.5 to 1 Tesla for powdered iron and molypermalloy materials, and 0.25 to 0.5 Tesla for ferrite
materials.

Unit systems for magnetic quantities are summarized in Table 13.1. The MKS system is used
throughout this book. The unrationalized cgs system also continues to find some use. Conversions
between these systems are listed.

Figure 13.7 summarizes the relationships between the basic electrical and magnetic quantities
of a magnetic device. The winding voltage v(¢) is related to the core flux and flux density via Faraday’s

Table 13.1 Units for magnetic quantities

Quantity MKS Unrationalized cgs Conversions
Core material equation B=p,u H B=p H
B Tesla Gauss 1T=10"G
H Ampere/meter Oersted 1 A/m=4n-107 Oe
_1n8
@ Weber Maxwell il

1T=1Wb/m?
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Faraday's law

V(1) - » B(n), (1)

Fig. 13.7 Summary of the steps in determina-

tion of the terminal electrical i—v characteristics Terr{ru{ai Core

of a magnetic element. characteristics characteristics
i(r) = » H(D), #(1)

Ampere’s law

law. The winding current i(f) is related to the magnetic field strength via Ampere’s law. The core material
characteristics relate B and H.

We can now determine the electrical terminal characteristics of the simple inductor of Fig.
13.8(a). A winding of n turns is placed on a core having permeability g. Faraday’s law states that the flux
@(r) inside the core induces a voltage v, (£} in each turn of the winding, given by

v (€)= dd>(r) (13.11)

Since the same flux &(¢) passes through each turn of the winding, the total winding voltage is

v(1) =nv,,,(t)=n Ei%)'fj‘l (13.12)

Equation (13.12) can be expressed in terms of the average flux density B(f) by substitution of Eq. (13.4):

o) = na, 0 (13.13)
(a)
. P | Core area
I_(f) -— A
o ] \I
v(r) iy
tums & N Core
P permeability
T
Fig. 13.8 Inductor example: (a) inductor core
geometry, (b) application of Ampere’s law,
(b)
Magnetic
- path

length €,
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where the average flux density B(f) is ®(¢)/A,..

The use of Ampere’s law is illustrated in Fig. 13.8(b). A closed path is chosen which follows an
average magnetic field line around the interior of the core. The length of this path is called the mean
magnetic path length €. If the magnetic field strength H(r) is uniform, then Ampere’s law states that He,
is equal to the total current passing through the interior of the path, that is, the net current passing
through the window in the center of the core. Since there are n turns of wire passing through the window,
each carrying current i(¢), the net current passing through the window is ni(f). Hence, Ampere’s law

states that
H(1)E,, = ni(1) (13.14)

Let us model the core material characteristics by neglecting hysteresis but accounting for satu-
ration, as follows:

B,, forHZ=B,/W
B={ uH for|H|<B,/u (13.15)
-B,, forH<-B, /L

The B-H characteristic saturated slope 4, is much smaller than x, and is ignored here. A characteristic
similar to Fig. 13.6(b) is obtained. The current magnitude [, at the onset of saturation can be found by
substitution of H = B /p into Eq. (13.14). The result is

sal

1 = Buln (13.16)

sal = IIH

We can now eliminate B and H from Eqgs. (13.13) to (13.15), and solve for the electrical terminal charac-
teristics. For | /| <[ _,, B = pH. Equation (13.13) then becomes

saft

u(:,\:pmc% (13.17)

Substitution of Eq. (13.14) into Eq. (13.17) to eliminate H(¢) then leads to

W= yr;z.»‘i{. d:gz (13.18)
which is of the form
= i 13.19
vit)=L i ( )
with
L= w::a\(- (13.20)

m

So the device behaves as an inductor for | /] <7,

stant. Faraday’s law states that the terminal voltage is then

When ||>1,

san?

then the flux density B(¢) = B,,, is con-

xal
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) =nh, LB (1321

When the core saturates, the magnetic device behavior approaches a short circuit. The device behaves as
an inductor only when the winding current magnitude is less than /. Practical inductors exhibit some

small residual inductance due to their nonzero saturated permeabilities; nonetheless, in saturation the
inductor impedance is greatly reduced, and large inductor currents may result.

13.1.2 Magnetic Circuits

Figure 13.9(a) illustrates uniform flux and magnetic field inside a element having permeability u, length
€, and cross-sectional area A4..The MMF between the two ends of the clement is

4 =HE (13.22)
Since:H = B/u and B = #/A,, can express & as
i=-L ¢ (1323)
pA,
This equation is of the form
4 =0R (13.24)
with
o i 13.25
v (13.25)

Equation (13.24) resembles Ohm’s law. This equation states that the magnetic flux through an element is
proportional to the MMF across the element. The constant of proportionality, or the reluctance .4, is
analogous to the resistance R of an electrical conductor. Indeed, we can construct a lumped-element
magnetic circuit model that corresponds to Eq. (13.24), as in Fig. 13.9(b). In this magnetic circuit model,
voltage and current are replaced by MMF and flux, while the element characteristic, Eq. (13.24), is rep-
resented by the analog of a resistor, having reluctance .#".

Complicated magnetic structures, composed of multiple windings and multiple heterogeneous

@ <+— Length (—» (b)
+ +— MMF % —» _ Area
A(_ +a— F — -
Flux :_\ —p—f\/\,—q)
) A
N— Core permeability p

Y

» f
o=
H HA,

Fig. 13.9 An element containing magnetic flux (a), and its equivalent magnetic circuit (b).
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(a) Node (b} Node @ =0,+P,
/
, / @, @, \ @,
— —_— = &
D
\ 2 l ‘ @,

Fig. 13.10 Kirchoff's current law, applied to magnetic circuits; the net flux entering a node must be zero: (a) phys-

ical element, in which three legs of a core meet at a node; (b) magnetic circuit model.

elements such as cores and air gaps, can be represented using equivalent magnetic circuits. These mag-
netic circuits can then be solved using conventional circuit analysis, to determine the various fluxes,
MMFs, and terminal voltages and currents. Kirchoff’s laws apply to magnetic circuits, and follow
directly from Maxwell’s equations. The analog of Kirchoff’s current law holds because the divergence of
B is zero, and hence magnetic flux lines are continuous and cannot end. Therefore, any flux line that
enters a node must leave the node. As illustrated in Fig. 13.10, the total flux entering a node must be zero.
The analog of Kirchoff’s voltage law follows from Ampere's law, Eq. (13.7). The left-hand-side integral
in Eq. (13.7) is the sum of the MMFs across the reluctances around the closed path. The right-hand-side
of Eq. (13.7) states that currents in windings are sources of MMF. An n-turn winding carrying current i(f)
can be modeled as an MMF source, analogous to a voltage source, of value ni(f). When these MMF
sources are included, the total MMF around a closed path is zero.

Consider the inductor with air gap of Fig. 13.11(a). A closed path following the magnetic field
lines is illustrated. This path passes through the core, of permeability # and length ., andacross the air
gap, of permeability p,, and length fg.The cross-sectional areas of the core and air gap are approximately
equal. Application of Ampere’s law for this path leads to

T+ Fy=ni (13.26)
where #_ and &, are the MMFs across the core and air gap, respectively. The core and air gap character-

istics can be modeled by reluctances as in Fig. 13.9 and Eq. (13.25); the core reluctance .%g and air gap
reluctance ,%g are given by

(a) Core (b)
permeability p F,
Q + 7 -
. ( \ | Cross-sectional .
i) =< area A,
+ n \, _{ +
Wil “fiiis. N Air gap . ;
N T ¥4 ni(r) (+) @ R, 7,
\, J/ e Magnetic path -
length £,

Fig. 13.11 Inductor with air gap example: (a) physical geometry, (b) magnetic circuit model.
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¢
R= ==
£ u? (13.27)
o vy
Ty

A magnetic circuit corresponding to Egs. (13.26) and (13.27) is given in Fig. 13.11(b). The winding is a
source of MMF, of value ni. The core and air gap reluctances are effectively in series. The solution of the
magnetic circuit is

ni= m[.%c + a?s) (13.28)

The flux @(#) passes through the winding, and so we can use Faraday’s law to write

WD =n -d‘;@ (13.29)
Use of Eq. (13.28) to eliminate ®(¢) yields
- 200 13.30
=3+ 7, @ =
Therefore, the inductance L is
2
L=t _ (13.31)
R+ R,

The air gap increases the total reluctance of the magnetic circuit, and decreases the inductance.

Air gaps are employed in practical inductors for two reasons. With no air gap (4, = 0), the
inductance is directly proportional to the core permeability g. This quantity is dependent on temperature
and operating point, and is difficult to control. Hence, it may be difficult to construct an inductor having
a well-controlled value of L. Addition of an air gap having a reluctance '%e.' greater than #, causes the
value of L in Eq. (13.31) to be insensitive to variations in .

Addition of an air gap also allows the inductor to operate at higher values of winding current i(f)
without saturation. The total flux @ is plotted vs. the winding MMF ni in Fig. 13.12. Since @ is propor-
tional to B, and when the core is not saturated ni is proportional to the magnetic field strength H in the

®=BA_,
BSDJAC -------- L 1
l,ﬁ’c |
; — 1
Fig. 13.12 Effect of air gap on the magnetic circuit & vs. ni | R+ Ry
characteristics. The air gap increases the current [, at the i |
onset of core saturation. : i Y
n‘r.mll n'fsa-rZ ni e< Hr:‘
T T BSGI Al’
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core, Fig. 13.12 has the same shape as the core B—H characteristic. When the core is not saturated, @ is
related to ni according to the linear relationship of Eq. (13.28). When the core saturates, ® is equal to

A (13.32)

salt e

[\

sat

=B
The winding current [, at the onset of saturation is found by substitution of Eq. (13.32) into (13.28):

1= Do (#o+2) (13.33)
The ®-ni characteristics are plotted in Fig. 13.12 for two cases: (a) air gap present, and (b) no air gap
(.'ﬁ’g =0). It can be seen that [, is increased by addition of an air gap. Thus, the air gap allows increase of
the saturation current, at the expense of decreased inductance.

13.2  TRANSFORMER MODELING

Consider next the two-winding transformer of Fig. 13.13. The core has cross-sectional area A_, mean
magnetic path length £, and permeability 4. An equivalent magnetic circuit is given in Fig. 13.14. The
core reluctance is

; £
= (13.34
s )

Since there are two windings in this example, it is necessary to determine the relative polarities of the
MMF generators. Ampere’s law states that

Fo=nyiy+ngiy (13.35)
o
W o, o B®
> N 2 >
Fig. 13.13 A two-winding transformer. *('0 n 4—R —N. *
v
19 tums ¢ \: y J tums vy(t)
Core

Fig. 13.14 Magnetic circuit that models the

two-winding transformer of Fig. 13.14. pd
272
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The MMF generators are additive, because the currents i, and i, pass in the same direction through the
core window. Solution of Fig. 13.14 yields
DR = nyi| + ngiy (13.36)

This expression could also be obtained by substitution of %_= @4 into Eq. (13.35).

13.2.1 The Ideal Transformer

In the ideal transformer, the core reluctance 4¢ approaches zero. The causes the core MMF 4, = ®7 to
also approach zero. Equation (13.35) then becomes

0=nyi, +n,i, (13.37)
Also, by Faraday’s law, we have
=g 4P
T (13.38)
do
2=y

Note that @ is the same in both equations above: the same total
flux links both windings. Elimination of & leads to

.

Y-

n,n,

I o

e _W

Va
=— (13.39) . .
dt ny,oon v %Hé v,

Equations (13.37) and (13.39) are the equations of the ideal trans-

former: e =
Ideal

2o and ongiy+niy=0 (13.40)

M Fig. 13.15 Ideal transformer symbol.
The ideal transformer symbol of Fig. 13.15 is defined by Eq.
(13.40).
13.2.2 The Magnetizing Inductance
For the actual case in which the core reluctance @ is nonzero, we have

DA =nyi +nyi, with vy =n dd (13.41)

dt

Elimination of @ yields

(13.42)
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ldeal
Fig. 13.16 Transformer model including magnetizing inductance.
This equation is of the form
di 13.43
v =L '&;:_' ( :
where
g n}
M= R (13.44)

_ . WA

el e . iy
are the magnetizing inductance and magnetizing current, referred to the primary winding. An equivalent
circuit is illustrated in Fig. 13.16.

Figure 13.16 coincides with the transformer model introduced in Chapter 6. The magnetizing
inductance models the magnetization of the core material. It is a real, physical inductor, which exhibits
saturation and hysteresis. All physical transformers must contain a magnetizing inductance. For example,
suppose that we disconnect the secondary winding. We are then left with a single winding on a magnetic
core—an inductor. Indeed, the equivalent circuit of Fig. 13.16 predicts this behavior, via the magnetizing
inductance. The magnetizing current causes the ratio of the winding currents to differ from the turns
ratio.

The transformer saturates when the core flux density B(f) exceeds the saturation flux density
B, When the transformer saturates, the magnetizing current iy,(f) becomes large, the impedance of the
magnetizing inductance becomes small, and the transformer windings become short circuits. It should be
noted that large winding currents i,(f) and i,(f) do not necessarily cause saturation: if these currents obey
Eq. (13.37), then the magnetizing current is zero and there is no net magnetization of the core. Rather,
saturation of a transformer is a function of the applied volt-seconds. The magnetizing current is given by

iyt = LL J vi()dt (13.45)
M
Alternatively, Eq. (13.45) can be expressed in terms of the core flux density B() as
i 13.46
BO =Y [ v, (1)dr (13.46)

The flux density and magnetizing current will become large enough to saturate the core when the applied
volt-seconds A, is too large, where A is defined for a periodic ac voltage waveform as

503
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- J"’ v, (1)t
[}
: (13.47)

The limits are chosen such that the integral is taken over the positive portion of the applied periodic volt-
age waveform.

To fix a saturating transformer, the flux density should be decreased by increasing the number of
turns, or by increasing the core cross-sectional area A,.. Adding an air gap has no effect on saturation of
conventional transformers, since it does not modify Eq. (13.46). An air gap simply makes the transformer
less ideal, by decreasing L,, and increasing iy(f) without changing B(¢). Saturation mechanisms in trans-
formers differ from those of inductors, because transformer saturation is determined by the applied wind-
ing voltage waveforms, rather than the applied winding currents.

13.2.3 Leakage Inductances

In practice, there is some flux which links one winding but not the other, by “leaking” into the air or by
some other mechanism. As illustrated in Fig. 13.17, this flux leads to leakage inductance, i.e., additional
effective inductances that are in series with the windings. A topologically equivalent structure is illus-
trated in Fig. 13.17(b), in which the leakage fluxes @, and @ p, Are shown explicitly as separate induc-
tors.

(a) o
Py
i(0) \ (1)
£ N b / o+
v @, A : N A% (1)
_ N { >
(b)
D, o @,
M
i\(1) ( \ i(1)
+ 4 e
A I 5
v,(0) d 11 q :' v,(0)
e i e

Fig. 13.17 Leakage flux in a two-winding transformer; (a) transformer geometry, (b) an equivalent system,
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i L, oy i Ly iy
o rEE6 fa'u'u\_._.+
iy
= . .
Y LM=,T;L|2 %”g V2
Ideal

Fig. 13.18 Two-winding transformer equivalent circuit, including magnetizing inductance referred to primary, and
primary and secondary leakage inductances.

Figure 13.18 illustrates a transformer electrical equivalent circuit model, including series induc-
tors Ly and Ly, which model the leakage inductances. These leakage inductances cause the terminal volt-
age ratio v,()/v,(¢) to differ from the ideal turns ration,/n,. In general, the terminal equations of a two-
winding transformer can be written

V|U)
Vz(”

Lli LI3
Ll! L22

_d_[r'_lu)’ (13.48)
dr| i5(t)

The quantity L, is called the mutual inductance, and is given by

nns N
i oy, (13.49)

L=
The quantities L;; and L, are called the primary and secondary self-inductances, given by

n
L||=Lrl+ﬁ£<u (13.50)

n,
Lyp=Lp+ 7, Ly

Note that Eq. (13.48) does not explicitly identify the physical turns ratio n,/n,. Rather, Eq.
(13.48) expresses the transformer behavior as a function of electrical quantities alone. Equation (13.48)
can be used, however, to define the effective turns ratio

L
n, = L_f? (13.51)
and the coupling coefficient
L
b= 12 (13.52)
v ILIl"l:‘ZZ

The coupling coefficient £ lies in the range O £ k < 1, and is a measure of the degree of magnetic coupling
between the primary and secondary windings. In a transformer with perfect coupling, the leakage induc-
tances Ly and L, are zero. The coupling coefficient k is then equal to 1. Construction of low-voltage
transformers having coefficients in excess of 0.99 is quite feasible. When the coupling coeffi-
cient is close to 1, then the effective turns ratio n1, is approximately equal to the physical turns ratio ny/n,.



506 Basic Magnetics Theory

13.3 LOSS MECHANISMS IN MAGNETIC DEVICES
13.3.1 Core Loss

Energy is required to effect a change in the magnetization of a core material. Not all of this energy is
recoverable in electrical form; a fraction is lost as heat. This power loss can be observed electrically as
hysteresis of the B—H loop.

Consider an n—turn inductor excited by periodic waveforms v(f) and i(f) having frequency f. The
net energy that flows into the inductor over one cycle is

W= f Vi) dt (13.53)

ane cycle

We can relate this expression to the core B—H characteristic: substitute B(t) for v(t) using Faraday’s law,
Eq. (13.13), and substitute H(f) for i(f) using Ampere’s law, i.e. Eq. (13.14):

| dB(1) H(:)f,,,}
W—J [n T )[—,,—~ dt
ane cyele ( l 354)
=(AL,) J HdB
e cyele

The term A ¢

m

is the volume of the core, while the integral is the area of the B—H loop:
(energy lost per cycle) = (core volume)(area of B—H loop) (13.55)

The hysteresis power loss P, is equal to the energy lost per cycle, multiplied by the excitation
frequency f:

Py=(f)(Ada) f HdB (13.56)

ane cycle

To the extent that the size of the hysteresis loop is independent of frequency, hysteresis loss increases
directly with operating frequency.

Magnetic core materials are iron alloys that, unfor-
tunately, are also good electrical conductors. As a result, ac
magnetic fields can cause electrical eddy currents to flow Eddy
within the core material itself. An example is illustrated in current
Fig. 13.19. The ac flux &(f) passes through the core. This
induces eddy currents i(f) which, according to Lenz’s law,
flow in paths that oppose the time-varying flux d(r). These
eddy currents cause i2R losses in the resistance of the core
material. The eddy current losses are especially significant
in high-frequency applications.

According to Faraday’s law, the ac flux d(¢} induces voltage in the core, which drives the cur-
rent around the paths illustrated in Fig. 13.19. Since the induced voltage is proportional to the derivative
of the flux, the voltage magnitude increases directly with the excitation frequency f. If the impedance of

Core

Fig. 13.19 Eddy currents in an iron core.
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the core material is purely resistive and independent of frequency, then the magnitude of the induced
eddy currents also increases directly with f. This implies that the *R eddy current losses should increase
as f2. In power ferrite materials, the core material impedance magnitude actually decreases with increas-
ing f. Over the useful frequency range, the eddy current losses typically increase faster than 2

There is a basic tradeoff between saturation flux density and core loss. Use of a high operating
flux density leads to reduced size, weight, and cost. Silicon steel and similar materials exhibit saturation
flux densities of 1.5 to 2 T. Unfortunately, these core materials exhibit high core loss. In particular, the
low resistivity of these materials leads to high eddy current loss. Hence, these materials are suitable for
filter inductor and low-frequency transformer applications. The core material is produced in laminations
or thin ribbons, to reduce the eddy current magnitude. Other ferrous alloys may contain molybdenum,
cobalt, or other elements, and exhibit somewhat lower core loss as well as somewhat lower saturation
flux densities.

Iron alloys are also employed in powdered cores, containing ferromagnetic particles of suffi-
ciently small diameter such that eddy currents are small. These particles are bound together using an
insulating medium. Powdered iron and molybdenum permalloy powder cores exhibit typical saturation
flux densities of 0.6 to 0.8 T, with core losses significantly lower than laminated ferrous alloy materials.
The insulating medium behaves effectively as a distributed air gap, and hence these cores have relatively
low permeability. Powder cores find application as transformers at frequencies of several kHz, and as fil-
ter inductors in high frequency (100 kHz) switching converters.

Amorphous alloys exhibit low hysteresis loss. Core conductivity and eddy current losses are
somewhat lower than ferrous alloys, but higher than ferrites. Saturation flux densities in the range 0.6 to
1.5 T are obtained.

Ferrite cores are ceramic materials hav- 1

11 I

ing low saturation flux density, 0.25 to 0.5 T. v :'gf_-‘" 1
Their resistivities are much higher than other S? ¢ gf’ !"
materials, and hence eddy current losses are B i1/
much smaller. Manganese-zinc ferrite cores find / / /
widespread use as inductors and transformers in E / / / @J /
converters having switching frequencies of 10 % =Y
kHz to 1 MHz. Nickel-zinc ferrite materials can = / / / //
be employed at yet higher frequencies. 2 o1 / IAAA

Figure 1320 contains typical total core £ 7 !:' f 7 § :
loss data, for a certain ferrite material. Power loss "': 7 7 Ja ¥
density, in Watts per cubic centimeter of core RS // /“ !" / fl 7
material, is plotted as a function of sinusoidal 5 / }f / /
excitation frequency f and peak ac flux density % /i'?
AB. At a given frequency, the core loss £, can be B S
approximated by an empirical function of the /
form ) /

0.01
Pﬁ=Kje(A8)“’1rfm (13.57) 0.01 0.1 0.3

AB, Tesla

The parameters Kﬁ,- and B are determined by fit- Fig. 13.20 Typical core loss data for a high-frequency
ting Eq. (13.57) to the manufacturer’s published power ferrite material. Power loss density is plotted vs.
data. Typical values of B for ferrite materials peak ac flux density AB, for sinusoidal excitation.
operating in their intended range of AB and f lie

in the range 2.6 to 2.8. The constant of proportionality K, increases rapidly with excitation frequency f.
The dependence of K, on fcan also be approximated by empirical formulae that are fitted to the manu-
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facturer’s published data; a fourth-order polynomial or a function of the form Kfeﬂ f & are sometimes
employed for this purpose.

13.3.2 Low-Frequency Copper Loss

Significant loss also occurs in the resistance of the copper windings. This is also
a major determinant of the size of a magnetic device: if copper loss and winding
resistance were irrelevant, then inductor and transformer elements could be
made arbitrarily small by use of many small turns of small wire.
Figure 1321 contains an equivalent circuit of a winding, in which ele- i(0)
ment R models the winding resistance. The copper loss of the winding is
R (13.58)

Ly

li')

o

where [, - is the rms value of i(#). The dc resistance of the winding conductor

can be expressed as .
Fig. 13.21 Winding

¢ equivalent circuit that
R=p- (1339 models copper loss.

where A, is the wire bare cross-sectional area, and £, is the length of the wire. The resistivity p is equal to
1.724-1009Q-—cm for soft-annealed copper at room temperature. This resistivity increases to
2.3-107% Q-cm at 100°C.

134 EDDY CURRENTS IN WINDING CONDUCTORS

Eddy currents also cause power losses in winding conductors. This can lead to copper losses significantly
in excess of the value predicted by Egs. (13.58) and (13.59). The specific conductor eddy current mecha-
nisms are called the skin effect and the proximity effect. These mechanisms are most pronounced in high-
current conductors of multi-layer windings, particularly in high-frequency converters.

13.4.1 Introduction to the Skin and Proximity Effects

Figure 13.22(a) illustrates a current i(f) flowing through a solitary conductor. This current induces mag-
netic flux ®(r), whose flux lines follow circular paths around the current as shown. According to Lenz’s
law, the ac flux in the conductor induces eddy currents, which flow in a manner that tends to oppose the
ac flux d(r). Figure 13.22(b) illustrates the paths of the eddy currents. It can be seen that the eddy cur-
rents tend to reduce the net current density in the center of the conductor, and increase the net current
density near the surface of the conductor.

The current distribution within the conductor can be found by solution of Maxwell’s equations.
For a sinusoidal current i(f) of frequency f, the result is that the current density is greatest at the surface of
the conductor. The current density is an exponentially decaying function of distance into the conductor,
with characteristic length & known as the penetration depth or skin depth. The penetration depth is given

by
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(a) (b) Current
density

Wire

Eddy
currents

Eddy
currents

i)

Fig. 13.22 The skin effect: (a) current i(r) induces flux @(¢), which in turn induces eddy currents in conductor;
(b) the eddy currents tend to oppose the current i(r) in the center of the wire, and increase the current on the surface
of the wire,

w 2B 13.60
b g ( )

For a copper conductor, the permeability i is equal to f,, and the resistivity p is given in Section 13.3.2.
At 100°C, the penetration depth of a copper conductor is

ﬁ=%cm (13.61)

with fexpressed in Hz. The penetration depth of copper conductors is plotted in Fig. 13.23, as a function
of frequency f. For comparison, the wire diameters d of standard American Wire Gauge (AWG) conduc-
tors are also listed. It can be seen that d/8 = 1 for AWG #40 at approximately 500 kHz, while /8 = 1 for

Wire diameter

B E #20 AWG

Penetration — E

depth 8, cm . -
eSS E #30 AWG

%% :

. E
0.01 =i #40 AWG

0.001
10 kHz 100 kHz 1 MHz
Frequency

Fig. 13.23 Penetration depth 8, as a function of frequency f, for copper wire.
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AWG #22 at approximately 10 kHz.

The skin effect causes the resistance and copper loss of solitary large-diameter wires to increase
at high frequency. High-frequency currents do not penetrate to the center of the conductor. The current
crowds at the surface of the wire, the inside of the wire is not utilized, and the effective wire cross-sec-
tional area is reduced. However, the skin effect alone is not sufficient to explain the increased high-fre-
quency copper losses observed in multiple-layer transformer windings.

A conductor that carries a high-frequency current i() = o
induces copper loss in a adjacent conductor by a phenomenon 2 IS
known as the proximity effect. Figure 1324 illustrates two copper -E:f -;f
foil conductors that are placed in close proximity to each other. S S
Conductor 1 carries a high-frequency sinusoidal current i(f), whose h D
penetration depth & is much smaller than the thickness & of conduc- &
tors 1 or 2. Conductor 2 is open-circuited, so that it carries a net ol R®
current of zero. However, it is possible for eddy currents to be i A

induced in conductor 2 by the current i(f) flowing in conductor 1.
The current i(f) flowing in conductor 1 generates a flux
d(7) in the space between conductors 1 and 2; this flux attempts to
penetrate conductor 2. By Lenz’s law, a current is induced on the
adjacent (left) side of conductor 2, which tends to oppose the flux Area
®(7). If the conductors are closely spaced, and if & = &, then the !

induced current will be equal and opposite to the current i(f), as . .
. R Fig. 13.24 The proximity effect
illustrated in Fig. 13.24. v g -

in adjacent copper foil conductors.

Conductor | carries current i),
Conductor 2 is open-circuited.

Current |
density J

Since conductor 2 is open-circuited, the net current in con-
ductor 2 must be zero. Therefore, a current + i(f) flows on the right-
side surface of conductor 2. So the current flowing in conductor 1
induces a current that circulates on the surfaces of conductor 2.

Figure 13.25 illustrates the proximity effect in a simple transformer winding. The primary
winding consists of three series-connected turns of copper foil, having thickness # == §, and carrying net
current i(f). The secondary winding is identical; to the extent that the magnetizing current is small, the
secondary turns carry net current — i(f). The windings are surrounded by a magnetic core material that
encloses the mutual flux of the transformer.

The high-frequency sinusoidal current i(f) flows on the right surface of primary layer 1, adjacent
to layer 2. This induces a copper loss in layer 1, which can be calculated as follows. Let R,. be the dc
resistance of layer 1, given by Eq. (13.59), and let I be the rms value of i(r). The skin effect causes the
copper loss in layer 1 to be equal to the loss in a conductor of thickness & with uniform current density.
This reduction of the conductor thickness from 4 to § effectively increases the resistance by the same fac-
tor. Hence, layer 1 can be viewed as having an “ac resistance” given by

Rm: = g Rrjr- (l3.()2)
The copper loss in layer 1 is
Py =1"R, (13.63)

The proximity effect causes a current to be induced in the adjacent (left-side) surface of primary
layer 2, which tends to oppose the flux generated by the current of layer 1. If the conductors are closely
spaced, and if h = 8, then the induced current will be equal and opposite to the current i(7), as illustrated
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Fig. 13.25 A simple transformer example illustrating the proximity effect: (a) core and winding geometry,
(b) distribution of currents on surfaces of conductors.

in Fig. 13.25. Hence, current — i(¢) flows on the left surface of the second layer. Since layers 1 and 2 are
connected in series, they must both conduct the same net current i(f). As a result, a current + 2i(f) must
flow on the right-side surface of layer 2.

The current flowing on the left surface of layer 2 has the same magnitude as the current of layer
1, and hence the copper loss is the same: P,. The current flowing on the right surface of layer 2 has rms

magnitude 2/; hence, it induces copper loss (ZI)ERM = 4P,. The total copper loss in primary layer 2 is
therefore

P,=P, +4P,= 5P, (13.64)

The copper loss in the second layer is five times as large as the copper loss in the first layer!
The current 2i(7) flowing on the right surface of layer 2 induces a flux 2((#) as illustrated in Fig.
13.25. This causes an opposing current — 2i(f) to flow on the adjacent (left) surface of primary layer 3.

Since layer 3 must also conduct net current i(f), a current + 3i(f) flows on the right surface of layer 3. The
total copper loss in layer 3 is
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Py=(22+3%)p, = 13P, (13.65)
Likewise, the copper loss in layer m of a multiple-layer winding can be written

P.=1?

{m - 1)2 + m2l [% RJ‘,) (13.66)

It can be seen that the copper loss compounds very quickly in a multiple-layer winding.
The total copper loss in the three-layer primary winding is P; + 5P, + L3P, or 19P,. More gen-
erally, if the winding contains a total of M layers, then the total copper loss is

P= Iz{g— Rﬂ.}”ﬁll “m -1 ]2 + mzl

:fz(g RJC] % [QM'2 + 1]

(13.67)

If a dc or low-frequency ac current of rms amplitude / were applied to the M-layer winding, its copper
loss would be P, = IQMR(‘,(- Hence, the proximity effect increases the copper loss by the factor

Fﬂ=é=%[g J(am+1) (13.68)

This expression is valid for a foil winding having h = 8.

As illustrated in Fig. 13.25, the currents in the secondary winding are symmetrical, and hence
the secondary winding has the same conduction loss.

The example above, and the associated equations, are limited to A = & and to the winding
geometry shown. The equations do not quantify the behavior for & ~ 8, nor for round conductors, nor are
the equations sufficiently general to cover the more complicated winding geometries often encountered
in the magnetic devices of switching converters. Optimum designs may, in fact, occur with conductor
thicknesses in the vicinity of one penetration depth. The discussions of the following sections allow com-
putation of proximity losses in more general circumstances.

13.4.2 Leakage Flux in Windings

As described above, an externally-applied magnetic field will induce eddy currents to flow in a conduc-
tor, and thereby induce copper loss. To understand how magnetic fields are oriented in windings, let us
consider the simple two-winding transformer illustrated in Fig. 13.26. In this example, the core has large
permeability g === p,. The primary winding consists of eight turns of wire arranged in two layers, and
each turn carries current i(¢) in the direction indicated. The secondary winding is identical to the primary
winding, except that the current polarity is reversed.

Flux lines for typical operation of this transformer are sketched in Fig. 13.26(b). As described in
Section 13.2, a relatively large mutual flux is present, which magnetizes the core. In addition, leakage
flux is present, which does not completely link both windings. Because of the symmetry of the winding
geometry in Fig. 13.26, the leakage flux runs approximately vertically through the windings.

To determine the magnitude of the leakage flux, we can apply Ampere’s Law. Consider the
closed path taken by one of the leakage flux lines, as illustrated in Fig. 13.27. Since the core has large
permeability, we can assume that the MMF induced in the core by this flux is negligible, and that the



13.4  Eddy Currents in Winding Conductors 513

(a) (b)
Primary Secondary
winding  winding Leakage flux
pr—— p——

®

®©@ ®@®
®©® ® ® O
@ Q¥
® ® ® ®
®©® ® ® O
®© ©® @
@ ® @ ®
Q] B &

= Core
=Ry

Fig. 13.26 Two-winding transformer example: (a) core and winding geometry, (b) typical flux distribution.

total MMF around the path is dominated by the MMF #{x) across the core window. Hence, Ampere’s
Law states that the net current enclosed by the path is equal to the MMF across the air gap:

Enclosed current = #(x) = H(x)(,, (13.69)

where €, is the height of the window as shown in Fig. 13.27. The net current enclosed by the path
depends on the number of primary and secondary conductors enclosed by the path, and is therefore a
function of the horizontal position x. The first layer of the primary winding consists of 4 turns, each car-
rying current i(f). So when the path encloses only the first layer of the primary winding, then the enclosed
current is 4i(¢) as shown in Fig. 13.28. Likewise, when the path encloses both layers of the primary wind-
ing, then the enclosed current is 8i(f). When the path encloses the entire primary, plus layer 2 of the sec-
ondary winding, then the net enclosed current is 8i(f) — 4i(t) = 4i(). The MMF #(x} across the core
window is zero outside the winding, and rises to a maximum of 8i(¢) at the interface between the primary
and secondary windings. Since H(x) = #(x)/€,, the magnetic field intensity H(x) is proportional to the
sketch of Fig. 13.28.

Leakage path
—
| N o |
Fig. 13.27 Analysis f’f lcakaﬁgc flux using Ampere’s Law, Enclosed | \ ;
for the transformer of Fig. 13.26. current | Fx) s

H(x)4 +/
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Fig. 13.28 MMF diagram for the transformer winding example
of Figs. 13.26 and 13.27.
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It should be noted that the shape of the :#(x) curve in the vicinity of the winding conductors
depends on the distribution of the current within the conductors. Since this distribution is not yet known,
the #(x) curve of Fig. 13.28 is arbitrarily drawn as straight line segments.

In general, the magnetic fields that surround conductors and lead to eddy currents must be
determined using finite element analysis or other similar methods. However, in a large class of coaxial
solenoidal winding geometries, the magnetic field lines are nearly parallel to the winding layers. As
shown below, we can then obtain an analytical solution for the proximity losses.

134.3 Foil Windings and Layers

The winding symmetry described in the previous section allows simplification of the analysis. For the
purposes of determining leakage inductance and winding eddy currents, a layer consisting of #, turns of
round wire carrying current i(f) can be approximately modeled as an effective single turn of foil, which
carries current n,i(t). The steps in the transformation of a layer of round conductors into a foil conductor
are formalized in Fig. 13.29 [6, 8-11]. The round conductors are replaced by square conductors having
the same copper cross-sectional area, Fig. 13.29(b). The thickness & of the square conductors is therefore

(@) © @)
&
8.2 .

Fig. 13.29 Approximating a layer of round
conductors as an effective foil conductor.

OOoOoise=




134 Eddy Currents in Winding Conductors 515

equal to the bare copper wire diameter, multiplied by the factor ./rn/4 :

h= /%4 (13.70)

These square conductors are then joined together, into a foil layer [Fig. 13.29(c)]. Finally, the width of
the foil is increased, such that it spans the width of the core window [Fig. 13.29(d)]. Since this stretching
process increases the conductor cross-sectional area, a compensating factor 1} must be introduced such
that the correct dc conductor resistance is predicted. This factor, sometimes called the conductor spacing
factor or the winding porosity, is defined as the ratio of the actual layer copper area [Fig. 13.29(a)] to the
area of the effective foil conductor of Fig. 13.29(d). The porosity effectively increases theresistivity p of
the conductor, and thereby increases its skin depth:

g::gf (13.71)

If a layer of width €, contains n, turns of round wire having diameter d, then the winding porosity 1 is
given by

n= \/TZF d ;’_f (13.72)
A typical value of 1) for round conductors that span the width of the winding bobbin is 0.8. In the follow-

ing analysis, the factor ¢ is given by A/8 for foil conductors, and by the ratio of the effective foil conduc-
tor thickness / to the effective skin depth & for round conductors as follows:

b /Td 13.73
o=g=vT/F§ G2

13.44 Power Loss in a Layer

In this section, the average power loss P in a uniform layer of

thickness & is determined. As illustrated in Fig. 13.30, the mag-

netic field strengths on the left and right sides of the conductor are

denoted H(0) and H(d), respectively. It is assumed that the compo- H(0)

nent of magnetic field normal to the conductor surface is zero.

These magnetic fields are driven by the magnetomotive forces

S#(0) and #(h), respectively. Sinusoidal waveforms are assumed,

and rms magnitudes are employed. It is further assumed here that

H(0) and H(h) are in phase; the effect of a phase shift is treated in _ )

(10} A . . Fx)  Hh)
With these assumptions, Maxwell’s equations are solved #(0) \/

to find the current density distribution in the layer. The power loss N

density is then computed, and is integrated over the volume of the -

layer to find the total copper loss in the layer [10]. The result is 0 h

H(h)

Layer

Fig. 13.30 The power loss is deter-

mined for a uniform layer. Uniform

P=R&% (720 + 7%0)6(@ -4 FWFOG@)| 137 wngential magnetic fields H(O) and
¢ H(k) are applied to the layer surfaces.
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where n, is the number of turns in the layer, and R, is the dc resistance of the layer. The functions G (@)
and G,{¢) are

6= 2y oo )
(13.75)
iy b oy
If the winding carries current of rms magnitude /, then we can write
F(h) - F0)=n,d (13.76)
Let us further express #(h) in terms of the winding current I, as
F(h) = mn, (13.77)
The quantity m is therefore the ratio of the MMF 4(h) to the layer ampere-turns n,l. Then,
;g:; =m=1 (13.78)
The power dissipated in the layer, Eq. (13.74), can then be written
P=1?R, Q' (¢, m) (13.79)
where
Qe m) = (2»12 —2m+ !.)G‘{(p) - 4»:(m - I)Gz((p) (13.80)
We can conclude that the proximity effect increases the copper loss in the layer by the factor
P =p0(e.m (1381)

I’R,,
Equation (13.81), in conjunction with the definitions (13.80), (13.77), (13.75), and (13.73), can be plot-
ted using a computer spreadsheet or small computer program. The result is illustrated in Fig. 13.31, for
several values of m.

It is illuminating to express the layer copper loss P in terms of the dc power loss P d.rll‘c}:! that
would be obtained in a foil conductor having a thickness ¢ = 1. This loss is found by dividing Eq. (13.81)
by the effective thickness ratio @:

P =g.m (13.82)
Prft' |¢=|

Equation (13.82) is plotted in Fig. 13.32. Large copper loss is obtained for small ¢ simply because the
layer is thin and hence the dc resistance of the layer is large. For large m and large ¢, the proximity effect
leads to large power loss; Eq. (13.66) predicts that Q'(@, m) is asymptotic to m® + (m — 1)? for large .
Between these extremes, there is a value of ¢ which minimizes the layer copper loss.
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Fig. 13.32 Layer copper loss, relative to the dc loss in a layer having effective thickness of one penetration depth.
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13.4.5 Example: Power Loss in a Transformer Winding

Let us again consider the proximity loss in a conventional transformer, in which the primary and second-
ary windings each consist of M layers. The normalized MMF diagram is illustrated in Fig. 13.33. As
given by Eq. (13.81), the proximity effect increases the copper loss in each layer by the factor @Q’((p, m).
The total increase in primary winding copper loss P, is found by summation over all of the primary lay-
ers:

P
Fe= 5 pri _ ﬂf_f f: @O (@, m) (13.83)

e M iz

Owing to the symmetry of the windings in this example, the secondary winding copper loss is increased
by the same factor. Upon substituting Eq. (13.80) and collecting terms, we obtain

Fo= ﬂ— g m2(2G(9) - 4G (@) - m(2G () - 4G.(@)) + G () (13.84)
The summation can be expressed in closed form with the help of the identities
g M(M+1)
2, n=- 5
(13.85)

2. g M(M + I(J’(QM +1)

m= |

Use of these identities to simplify Eq. (13.84) leads to
Fo=0|G @)+ % (m2- 1)((:,(@ o 2(;‘3(1[’)) (13.86)

This expression is plotted in Fig. 13.34, for several values of M. For large ¢, G () tends to 1, while
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Fig. 13.34 Increased total winding copper loss in the two-winding transformer example, as a function of ¢ and
number of layers M, for sinusoidal excitation.

Number of layers M = 15 12

100

W oA L ON =100 =

N
N

—== 0.5

0.1
0.1 1 10

Fig. 13.35 Transformer example winding total copper loss, relative to the winding dc loss for layers having effec-
tive thicknesses of one penetration depth.
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G,() tends to 0. It can be verified that Fp then tends to the value predicted by Eq. (13.68).
We can again express the total primary power loss in terms of the dc power loss that would be
obtained using a conductor in which @ = 1. This loss is found by dividing Eq. (13.86) by ¢:

T Gy + 2 (M2-1)(G,(@) - 26,(@) (1387)
P 3

pric o=l
This expression is plotted in Fig. 13.35, for several values of M. Depending on the number of layers, the
minimum copper loss for sinusoidal excitation is obtained for ¢ near to, or somewhat less than, unity.

13.4.6 Interleaving the Windings

One way to reduce the copper losses due to the proximity effect is to interleave the windings. Figure
13.36 illustrates the MMF diagram for a simple transformer in which the primary and secondary layers
are alternated, with net layer current of magnitude i. It can be seen that each layer operates with % =0 on
one side, and & =i on the other. Hence, each layer operates effectively with m = 1. Note that Eq. (13.74)
is symmetric with respect to #4{0) and #(h); hence, the copper losses of the interleaved secondary and
primary layers are identical. The proximity losses of the entire winding can therefore be determined
directly from Fig. 13.34 and 13.35, with M = 1. It can be shown that the minimum copper loss for this
case (with sinusoidal currents) occurs with ¢ = 7/2, although the copper loss is nearly constant for any
(=1, and is approximately equal to the dc copper loss obtained when ¢ = 1. It should be apparent that
interleaving can lead to significant improvements in copper loss when the winding contains several lay-
ers.

Partial interleaving can lead to a partial improvement in proximity loss. Figure 13.37 illustrates
a transformer having three primary layers and four secondary layers. If the total current carried by each
primary layer is i(f), then each secondary layer should carry current 0.75i(¢). The maximum MMF again
occurs in the spaces between the primary and secondary windings, but has value 1.5i(?).

To determine the value for m in a given layer, we can solve Eq. (13.78) for m:

Fh) ]
M=) - 5(0) (a48)

pri sec pri sec pri sec
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Fig. 13.36 MMF diagram for a simple transformer with interleaved windings. Each layer operates withm = .
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Fig. 13.37 A partially interleaved two-winding transformer, illustrating fractional values of m. The MMF dia-
gram is constructed for the low-frequency limit.

The above expression is valid in general, and Eq. (13.74) is symmetrical in #(0) and #(/1). However,
when F(0) is greater in magnitude than Z#(h), it is convenient to interchange the roles of #%(0) and #(h),
so that the plots of Figs. 13.31 and 13.32 can be employed.

In the leftmost secondary layer of Fig. 13.37, the layer carries current — 0.75.. The MMF
changes from 0 to — 0.75i. The value of m for this layer is found by evaluation of Eq. (13.88):

___Fh) 075 _
"= F0 - A0) 07510 (1389

The loss in this layer, relative to the dc loss of this secondary layer, can be determined using the plots of
Figs. 13.31 and 13.32 with m = 1. For the next secondary layer, we obtain

___d ~ 1.50 . 13.90
=T - F0) T 15— (-0.750) . { )

Hence the loss in this layer can be determined using the plots of Figs. 13.31 and 13.32 with m = 2.The
next layer is a primary-winding layer. Its value of m can be expressed as

o F(0) _ —1.5{ _ ;
= FO- A 15059 (13.91)

m

The loss in this layer, relative to the dc loss of this primary layer, can be determined using the plots of
Figs. 13.31 and 13.32 with m = 1.5. The center layer has an m of

— F(h) _ 0.5¢ - 13
T FR) - #(0) T 05i-(-0.50) 0 (a3

m

The loss in this layer, relative to the dc loss of this primary layer, can be determined using the plots of
Figs. 1331 and 1332 with m = 0.5. The remaining layers are symmetrical to the corresponding layers
described above, and have identical copper losses. The total loss in the winding is found by summing the
losses described above for each layer.
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Interleaving windings can significantly reduce the proximity loss when the primary and second-
ary currents are in phase. However, in some cases such as the transformers of the flyback and SEPIC con-
verters, the winding currents are out of phase. Interleaving then does little to reduce the MMFs and
magnetic fields in the vicinity of the windings, and hence the proximity loss is essentially unchanged. It
should also be noted that Eqs. (13.74) to (13.82) assume that the winding currents are in phase. General
expressions for out-of-phase currents, as well as analysis of a flyback example, are given in [10].

The above procedure can be used to determine the high-frequency copper losses of more com-
plicated multiple-winding magnetic devices. The MMF diagrams are constructed, and then the power
loss in each layer is evaluated using Eq. (13.81). These losses are summed, to find the total copper loss.
The losses induced in electrostatic shields can also be determined. Several additional examples are given
in [10].

It can be concluded that, for sinusoidal currents, there is an optimal conductor thickness in the
vicinity of ¢ = 1 that leads to minimum copper loss. It is highly advantageous to minimize the number of
layers, and to interleave the windings. The amount of copper in the vicinity of the high-MMF portions of
windings should be kept to a minimum. Core geometries that maximize the width £, of the layers, while
minimizing the overall number of layers, lead to reduced proximity loss.

Use of Litz wire is another means of increasing the conductor area while maintaining low prox-
imity losses. Tens, hundreds, or more strands of small-gauge insulated copper wire are bundled together,
and are externally connected in parallel. These strands are twisted, or transposed, such that each strand
passes equally through each position inside and on the surface of the bundle. This prevents the circula-
tion of high-frequency currents between strands. To be effective, the diameter of the strands should be
sufficiently less than one skin depth. Also, it should be pointed out that the Litz wire bundle itself is com-
posed of multiple layers. The disadvantages of Litz wire are its increased cost, and its reduced fill factor.

13.4.7 PWM Waveform Harmonics

The pulse-width-modulated waveforms encountered in switching converters contain significant harmon-
ics, which can lead to increased proximity losses. The effect of harmonics on the losses in a layer can be
determined via field harmonic analysis [10], in which the MMF waveforms #(0,t) and :%(d,1) of Eq.
(13.74) are expressed in Fourier series. The power loss of each individual harmonic is computed as in
Section 13.4.4, and the losses are summed to find the total loss in a layer. For example, the PWM wave-
form of Fig. 13.38 can be represented by the following Fourier series:

i(t)=1o+ }’il V2 I cos (jor) (13.93)

where

g
I i (ynD)
with @ = 27t/T,. This waveform contains a dc component /, = DI, plus harmonics of rms magnitude /,
proportional to 1/j. The transformer winding current waveforms of most switching converters follow this
Fourier series, or a similar series.

Effects of waveforms harmonics on proximity losses are discussed in [8§-10]. The dc component
of the winding currents does not lead to proximity loss, and should not be included in proximity loss cal-
culations. Failure to remove the dc component can lead to significantly pessimistic estimates of copper
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Fig. 13.38 Pulse-width modulated winding current waveform,
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loss. The skin depth & is smaller for high frequency harmonics than for the fundamental, and hence the
waveform harmonics exhibit an increased effective . Let @, be given by Eq. (13.73), in which 8 is found
by evaluation of Eq. (13.60) at the fundamental frequency. Since the penetration depth & varies as the
inverse square-root of frequency, the effective value of ¢ for harmonic, j is

0;=J7 @, (13.94)

In a multiple-layer winding excited by a current waveform whose fundamental component has ¢ = @,
close to 1, harmonics can significantly increase the total copper loss. This occurs because, for m > 1,
Q'(@, m) is a rapidly increasing function of ¢ in the vicinity of 1. When ¢, is sufficiently greater than I,
then Q'(¢, m)is nearly constant, and harmonics have less influence on the total copper loss.

For example, suppose that the two-winding transformer of Fig. 13.33 is employed in a converter
such as the forward converter, in which a winding current waveform i(f) can be well approximated by the
Fourier series of Eq. (13.93). The winding contains M layers, and has dc resistance R,;.. The copper loss
induced by the dc component is

P, = "Elea (13.95)

de =

The copper loss F“)i ascribable to harmonic j is found by evaluation of Eq. (13.86) with @ = ¢ i

Pj = !'}R‘k. ﬁ ©, (13.96)

G(/T 00 +3 (M*-1)(G.(/T 00 -26:T 90

The total copper loss in the winding is the sum of losses arising from all components of the harmonic
series:

_Pu  _p, 200 $ sin’ (GnD) 2 (py2 : (13.97)
Df;kR‘,L._D-‘-D?I:);l qu G(/Jj ¢|)+3(M "l][G|(v’(f tPL)—ZGz(er (pg}]

In Eq. (13.97), the copper loss is expressed relative to the loss DI ptszc predicted by a low-frequency
analysis. This expression can be evaluated by use of a computer program or computer spreadsheet.
To explicitly quantify the effects of harmonics, we can define the harmonic loss factor F, as

}Z«I F; (13.98)
Fy= P,

with P, given by Eq. (13.96). The total winding copper loss is then given by
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Fig. 13.39 Increased proximity losses
induced by PWM waveform harmonics,
forward converter example: (a) at D = 0.1,
(byatD=0.3, (c)at D =0.5.
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Po,=I3Ry+ FyFo iRy, (13.99)

with Fp given by Eq. (13.86). The harmonic factor Fy, is a function not only of the winding geometry, but
also of the harmonic spectrum of the winding current waveform. The harmonic factor F, is plotted in
Fig. 1339 for several values of D, for the simple transformer example. The total harmonic distortion
(THD) of the example current waveforms are: 48% for D = 0.5, 76% for D = 0.3, and 191% for D = 0.1.

The waveform THD is defined as
S 52
\/ E, 15 (13.100)

It can be seen that harmonics significantly increase the proximity loss of a multilayer winding when ¢, is
close to 1. For sufficiently small @, the proximity effect can be neglected, and Fy, tends to the value
1 + (THD)?. For large ¢,, the harmonics also increase the proximity loss; however, the increase is less
dramatic than for @, near 1 because the fundamental component proximity loss is large. It can be con-
cluded that, when the current waveform contains high THD and when the winding contains several lay-
ers or more, then proximity losses can be kept low only by choosing ¢, much less than 1. Interleaving the
windings allows a larger value of @, to be employed.

135 SEVERAL TYPES OF MAGNETIC DEVICES, THEIR B-H LOOPS, AND
CORE VS. COPPER LOSS

A variety of magnetic elements are commonly used in power applications, which employ the properties
of magnetic core materials and windings in different ways. As a result, quite a few factors constrain the
design of a magnetic device. The maximum flux density must not saturate the core. The peak ac flux den-
sity should also be sufficiently small, such that core losses are acceptably low. The wire size should be
sufficiently small, to fit the required number of turns in the core window. Subject to this constraint, the
wire cross-sectional area should be as large as possible, to minimize the winding dc resistance and cop-
per loss. But if the wire is too thick, then unacceptable copper losses occur owing to the proximity effect.
An air gap is needed when the device stores significant energy. But an air gap is undesirable in trans-
former applications. It should be apparent that, for a given magnetic device, some of these constraints are
active while others are not significant.

Thus, design of a magnetic element involves not only obtaining the desired inductance or turns
ratio, but also ensuring that the core material does not saturate and that the total power loss is not too
large. Several common power applications of magnetics are discussed in this section, which illustrate the
factors governing the choice of core material, maximum flux density, and design approach.

13.5.1 Filter Inductor

A filter inductor employed in a CCM buck converter is illustrated in Fig. 13.40(a). In this application, the
value of inductance L is usually chosen such that the inductor current ripple peak magnitude A is a small
fraction of the full-load inductor current dc component /, as illustrated in Fig. 13.40(b). As illustrated in
Fig. 1341, an air gap is employed that is sufficiently large to prevent saturation of the core by the peak
current I + Ai.
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Fig. 13.40 Filter inductor employed in a CCM buck converter: (a) circuit schematic, (b) inductor current wave-
form.
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Fig. 13.41 Filter inductor: (a) structure, (b) magnetic circuit model.

The core magnetic field strength H (¢) is related to the winding current i(f) according to
i =10 Re (13.101)
e e Iy

where £ is the magnetic path length of the core. Since H,(r) is proportional to i(t), H (f) can be expressed
as a large dc component A, and a small superimposed ac ripple AH , where

A
H('O = ﬂ i = i
[ K+ Ay (13.102)
_ hAi A
AH, = _fc P ’ﬂ)x

A sketch of B(r) vs. H (#) for this application is given in Fig. 1342. This device operates with the minor
B-H loop illustrated. The size of the minor loop, and hence the core loss, depends on the magnitude of
the inductor current ripple Ai. The copper loss depends on the rms inductor current ripple, essentially
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equal to the dc component /. Typically, the core loss can be ignored, and the design is driven by the cop-
per loss. The maximum flux density is limited by saturation of the core. Proximity losses are negligible.
Although a high-frequency ferrite material can be employed in this application, other materials having
higher core losses and greater saturation flux density lead to a physically smaller device. Design of a fil-
ter inductor in which the maximum flux density is a specified value is considered in the next chapter.

13.5.2 AC Inductor

An ac inductor employed in a resonant converter is illustrated in Fig. 13.43. In this application, the high-
frequency current variations are large. In consequence, the B(#)—-H(¢) loop illustrated in Fig. 1344 is
large. Core loss and proximity loss are usually significant in this application. The maximum flux density

(a) (b) i(0)

Bh

sat

B-H loop, for AB
operation as
ac inductor e

Fig. 13.44 Operational B-H loop of an ac inductor, —AH, )

-AB
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is limited by core loss rather than saturation. Both core loss and copper loss must be accounted for in the
design of this element, and the peak ac flux density AB is a design variable that is typically chosen to
minimize the total loss. A high-frequency material having low core loss, such as ferrite, is normally
employed. Design of magnetics such as this, in which the ac flux density is a design variable that is cho-
sen in a optimal manner, is considered in Chapter 15.

13.5.3 Transformer

Figure 13.45 illustrates a conventional transformer employed in a switching converter. Magnetization of
the core is modeled by the magnetizing inductance L,,. The magnetizing current i (f) is related to the
core magnetic field H(f) according to Ampere’s law

Hey= 2t} (13.103)

m

However, iy, (f) is not a direct function of the winding currents ,(¢) or i,(f). Rather, the magnetizing cur-
rent is dependent on the applied winding voltage waveform v,(f). Specifically, the maximum ac flux den-
sity is directly proportional to the applied volt-seconds A,. A typical B—H loop for this application is
illustrated in Fig. 13.46.

@ (b) v,(0) Area A,
i\(1) im0 g
+ i@ g
v (0 L vy(1)
' o H ’ i)y

/ \/,'

Fig. 13.45 Conventional transformer: (a) equivalent circuit, (b) typical primary voltage and magnetizing current
waveforms,

By
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Fig. 13.46 Operational B-H loop of a conventional transformer. operation as
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c
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In the transformer application, core loss and proximity losses are usually significant. Typically
the maximum flux density is limited by core loss rather than by saturation. A high-frequency material
having low core loss is employed. Both core and copper losses must be accounted for in the design of the
transformer. The design must also incorporate multiple windings. Transformer design with flux density
optimized for minimum total loss is described in Chapter 15.

13.5.4 Coupled Inductor

A coupled inductor is a filter inductor having multiple windings. Figure 13.47(a) illustrates coupled
inductors in a two-output forward converter. The inductors can be wound on the same core, because the
winding voltage waveforms are proportional. The inductors of the SEPIC and Cuk converters, as well as
of multiple-output buck-derived converters and some other converters, can be coupled. The inductor cur-
rent ripples can be controlled by control of the winding leakage inductances [12,13]. DC currents flow in
each winding as illustrated in Fig. 13.47(b), and the net magnetization of the core is proportional to the
sum of the winding ampere-turns:

(0 +mint) R,
HG)= i R+, (13.104)

©

As in the case of the single-winding filter inductor, the size of the minor B—H loop is proportional to the
total current ripple (Fig. 13.48). Small ripple implies small core loss, as well as small proximity loss. An
air gap is employed, and the maximum flux density is typically limited by saturation.

(a) _H
. . 1/ I *
X / J—

O
\J
—
| =
4'A%

(b)

i(®
I
Fig. 13.47 Coupling the output filter inductors
of a two-output forward converter: (a) schematic,
(b) typical inductor current waveforms. ON
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13.5.5 Flyback Transformer

As discussed in Chapter 6, the flyback transformer functions as an inductor with two windings. The pri-
mary winding is used during the transistor conduction interval, and the secondary is used during the
diode conduction interval. A flyback converter is illustrated in Fig. 13.49(a), with the flyback transformer
modeled as a magnetizing inductance in parallel with an ideal transformer. The magnetizing current i,,(s)
is proportional to the core magnetic field strength H (¢). Typical DCM waveforms are given in Fig.
13.49(b).

Since the flyback transformer stores energy, an air gap is needed. Core loss depends on the mag-
nitude of the ac component of the magnetizing current. The B-H loop for discontinuous conduction
mode operation is illustrated in Fig. 13.50. When the converter is designed to operate in DCM, the core
loss is significant. The peak ac flux density AB is then chosen to maintain an acceptably low core loss.
For CCM operation, core loss is less significant, and the maximum flux density may be limited only by
saturation of the core. In either case, winding proximity losses are typically quite significant. Unfortu-
nately, interleaving the windings has little impact on the proximity loss because the primary and second-
ary winding currents are out of phase.

(a) (b) i\(7)

Sv b0y :

oML T N
_|E i@} i !

Fig. 13.49 Flyback transformer: (a) converter schematic, with transformer equivalent circuit, (b) DCM current
waveforms.
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SUMMARY OF KEY POINTS

Magnetic devices can be modeled using lumped-element magnetic circuits, in a manner similar to that
commonly used to model electrical circuits. The magnetic analogs of electrical voltage V, current /, and
resistance R, are magnetomotive force (MMF) %, flux @, and reluctance ;4 respectively.

Faraday’s law relates the voltage induced in a loop of wire to the derivative of flux passing through the
interior of the loop.

Ampere’s law relates the total MMF around a loop to the total current passing through the center of the
loop. Ampere’s law implies that winding currents are sources of MMF, and that when these sources are
included, then the net MMF around a closed path is equal to zero.

Magnetic core materials exhibit hysteresis and saturation. A core material saturates when the flux density
B reaches the saturation flux density &,

el ©

Air gaps are employed in inductors to prevent saturation when a given maximum current flows in the
winding, and to stabilize the value of inductance. The inductor with air gap can be analyzed using a simple
magnetic equivalent circuit, containing core and air gap reluctances and a source representing the winding
MMF.

Conventional transformers can be modeled using sources representing the MMFs of each winding, and the
core MMF. The core reluctance approaches zero in an ideal transformer. Nonzero core reluctance leads to
an electrical transformer model containing a magnetizing inductance, effectively in parallel with the ideal
transformer. Flux that does not link both windings, or “leakage flux,” can be modeled using series induc-
tors.

The conventional transformer saturates when the applied winding volt-seconds are too large. Addition of
an air gap has no effect on saturation. Saturation can be prevented by increasing the core cross-sectional
area, or by increasing the number of primary turns.

Magnetic materials exhibit core loss, due to hysteresis of the B—H loop and to induced eddy currents flow-
ing in the core material. In available core materials, there is a tradeoff between high saturation flux density
B, and high core loss P,. Laminated iron alloy cores exhibit the highest B, but also the highest Py,
while ferrite cores exhibit the lowest Pﬁ, but also the lowest B_,. Between these two extremes are pow-

EYT
dered iron alloy and amorphous alloy materials.

The skin and proximity effects lead to eddy currents in winding conductors, which increase the copper loss

P,, in high-current high-frequency magnetic devices. When a conductor has thickness approaching or
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larger than the penetration depth &, magnetic fields in the vicinity of the conductor induce eddy currents in
the conductor. According to Lenz’s law, these eddy currents flow in paths that tend to oppose the applied
magnetic fields.

The magnetic field strengths in the vicinity of the winding conductors can be determined by use of MMF
diagrams. These diagrams are constructed by application of Ampere’s law, following the closed paths of
the magnetic field lines which pass near the winding conductors. Multiple-layer noninterleaved windings
can exhibit high maximum MMFs, with resulting high eddy currents and high copper loss.

An expression for the copper loss in a layer, as a function of the magnetic field strengths or MMFs sur-
rounding the layer, is given in Section 13.4.4. This expression can be used in conjunction with the MMF
diagram, to compute the copper loss in each layer of a winding. The results can then be summed, yielding
the total winding copper loss. When the effective layer thickness is near to or greater than one skin depth,
the copper losses of multiple-layer noninterleaved windings are greatly increased.

Pulse-width-modulated winding currents contain significant total harmonic distortion, which can lead to a
further increase of copper loss. The increase in proximity loss caused by current harmonics is most pro-
nounced in multiple-layer non-interleaved windings, with an effective layer thickness near one skin depth.
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PROBLEMS

13.1 The core illustrated in Fig. 13.51(a) is 1 cm thick. All legs are 1 cm wide, except for the right-hand side
vertical leg, which is 0.5 cm wide. You may neglect nonuniformities in the flux distribution caused by
turning corners.

(a) 3cm 3cm (b)
PR 1 WP 1. T e
i |8 e ¥ ; L
> = = L -+
n, tums E {105cm n, urns g p_n; tums
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1emf] | E i
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Core relative permeability u, = 1000 B ils
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Fig. 13.51 Problem 13.1
(a) Determine the magnetic circuit model of this device, and label the values of all reluctances in
your model.
(b) Determine the inductance of the winding.

A second winding is added to the same core, as shown in Fig. 13.51(b).
(c) Modify your model of part (a) to include this winding.

(d) The electrical equations for this circuit may be written in the form

vi| _ LyLy| d|i
14] Ly Ly | dt |1y

Use superposition to determine analytical expressions and numerical values for L, L5, and L,.

13.2 Two windings are placed as illustrated in Fig. 13.52(a) on a core of uniform cross-sectional area
A.=1 em?, Each winding has 50 turns. The relative permeability of the core is p, = 10,
(a) Sketch an equivalent magnetic circuit, and determine numerical values for each reluctance.
(b) Determine the self-inductance of each winding.
(©) Determine the inductance L* obtained when the windings are connected in series as in Fig.
13.52(b).

(d) Determine the inductance L™ obtained when the windings are connected in anti-series as in Fig.
13.52(c).
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133 All three legs of the magnetic device illustrated in Fig. 13.53 are of uniform cross-sectional area A..

Legs 1 and 2 each have magnetic path length 3€, while leg 3 has magnetic pathlength . Bothwindings
have n turns. The core has permeability p = p,.

I iy
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Leg Leg Leg
1 3 2

Fig. 13.53 Magnetic core for Problem 13.3.

(a) Sketch a magnetic equivalent circuit, and give analytical expressions for all element values.
A voltage source is connected to winding 1, such that v(¢) is a square wave of peak value V, = and
period T,. Winding 2 is open-circuited.

(b) Sketch f,(f)and label its peak value.

(c) Find the flux ¢,(¢)in leg 2. Sketch ¢,(¢) and label its peak value.

d) Sketch vy{r} and label its peak value.

134 The magnetic device illustrated in Fig. 13.54(a) consists of two windings, which can replace the two
inductors in aCuk, SEPIC, or other similar converter. For this problem, all three legs have the same uni-
form cross-sectional area A.. The legs have gaps of lengths g, g,, andg,, respectively. The core perme-
ability p is very large. You may neglect fringing flux. Legs 1 and 2 have windings containing »; and n,
turns, respectively.

(a) Derive a magnetic circuit model for this device, and give analytical expressions for each reluc-
tance in your model. Label the polarities of the MMF generators.
(b) Write the electrical terminal equations of this device in the matrix form

vi|_| L Lz iy
4] iy

LIZL‘ZZ

d
dt
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Fig. 13.54 Magnetic core and converter for Problem 13.4.
and derive analytical expressions for L, L, and L,,.
© Derive an electrical circuit model for this device, and give analytical expressions for the turns

ratio and each inductance in your model, in terms of the turns and reluctances of part (a).
This single magnetic device is to be used to realize the two inductors of the Cuk converter, as in Fig.
13.54(b).
(d) Sketch the voltage waveforms v,(#) and v,(#), making the linear ripple approximation as appro-
priate. You may assume that the converter operates in the continuous conduction mode.

(e) The voltage waveforms of part (d) are applied to your model of parts (b) and (c). Solve your
model to determine the slopes of the inductor current ripples during intervals DT, and D'T,.
Sketch the steady-state inductor current waveforms i,(t) and ix(t}, and label all slopes.

®) By skillful choice of i, /n, and the air gap lengths, it is possible to make the inductor current rip-
ple Ai in either i(r) or iy(¢) go to zero. Determine the conditions on n,/n,, g, &, and g, that
cause the current ripple in i,(f) to become zero. Sketch theresulting #,(¢) and i,(f), and label all

slopes.

It is possible to couple the inductors in this manner, and cause one of the inductor current ripples to go to
zero, in any converter in which the inductor voltage waveforms are proportional.

Over its usable operating range, a certain permanent magnet material has the B—H characteristics illus-
trated by the solid line in Fig. 13.55. The magnet has length £, = 0.5 cm, and cross-sectional area 4 em?.

(]

B, = 1T. Derive an equivalent magnetic circuit model for the magnet, and label the numerical values of

the elements.

Fig. 13.55 B-H characteristic of the permanent B,
magnet material for Problem 13.5. u=106 ,

f
|

o
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13.6

13.7

13.8

13.9

13.10

Basic Magnetics Theory

The two-transistor forward converter of Fig. 6.27 operates with V, = 300 V, V=128V, switching fre-
quency f, = 100 kHz, and turns ratio n = 0.25. The dc load power is 250 W. The transformer uses an
EC41 ferrite core; relevant data for this core is listed in Appendix D. The core loss is given by Fig. 13.20.
The primary winding consists of 44 turns of #21 AWG wire, and the secondary winding is composed of
11 turns of #15 AWG wire. Data regarding the American wire gauge is also listed in Appendix D.

(a) Estimate the core loss of this transformer

(b) Determine the copper loss of this transformer. You may neglect proximity losses.

The two-transistor forward converter of Fig. 6.27 operates in CCM with Vs =300V, V=28V, switching
frequency f, = 100 kHz, and turns ratio n = 0.25. The dc load power is 250 W. The transformer uses an
EC41 ferrite core; relevant data for this core is listed in Appendix D. This core has window height
€,=2.78 cm. The primary winding consists of 44 turns of #24 AWG wire, and the secondary winding is
composed of 11 turns of #14 AWG wire. Each winding comprises one layer. Data regarding the Ameri-
can wire gauge is also listed in Appendix D. The winding operates at room temperature.

(a) Determine the primary and secondary copper losses induced by the dc components of the wind-
ing currents.

(b) Determine the primary and secondary copper losses induced by the fundamental components of
the winding currents.

(c) Determine the primary and secondary copper losses induced by the second harmonic compo-
nents of the winding currents.

The winding currents of the transformer in a high-voltage inverter are essentially sinusoidal, with negli-
gible harmonics and no dc components. The primary winding consists of one layer containing 10 turns
of round copper wire. The secondary winding consists of 250 turns of round copper wire, arranged in ten
layers. The operating frequency is f= 50 kHz, and the winding porosity is 0.8. Determine the primary
and secondary wire diameters and wire gauges that minimize the total copper loss.

A certain three-winding transformer contains one primary and two secondaries. The operating frequency
is 40 kHz. The primary winding contains a total of 60 turns of #26AWG, arranged in three layers. The
secondary windings each consist of five turns of copper foil, one turn per layer. The foil thickness is
0.25 mm. The primary layers have porosity 0.8, while the secondary layer porosity is 1. The primary
winding carries a sinusoidal current having rms value 7, while each secondary carries rms current 6. The
windings are not interleaved: the primary winding is closest to the center leg of the core, followed by
secondary winding #1, followed by secondary winding #2.

(a) Sketch an MMF diagram illustrating the magnetic fields in the vicinity of each winding layer.

(b) Determine the increased copper loss, due to the proximity effect, in each layer.
(c) Determine the ratio of copper loss to dc copper loss, £, for the entire transformer windings.
d) In this application, it is not feasible to interleave the primary winding with the other windings.

However, changing the conductor size is permissible. Discuss how the windings could be better
optimized.

A transformer winding contains a four-layer primary winding, and two two-layer secondary windings.
Each layer of the primary winding carries total current /. Each layer of secondary winding #1 carries
total current 1.51. Each layer of secondary winding #2 carries total current 0.5/. All currents are sinusoi-
dal. The effective relative conductor thickness is ¢ = 2. The windings are partially interleaved, in the fol-
lowing order: two primary layers, followed by both layers of secondary #1, followed by both layers of
secondary #2, and finally the two remaining primary layers.

(a) Sketch an MMF diagram for this winding arrangement.
(b) Determine the increased copper loss, due to the proximity effect, for each layer.

() Determine the increase in total transformer copper loss, due to the proximity effect.
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13.12

Problems 537

A single-output forward converter contains a transformer having a noninterleaved secondary winding
with four layers. The converter operates at D = 0.3 in CCM, with a secondary winding current waveform
similar to Fig. 13.38.

(a) Estimate the value of ¢, that minimizes the secondary winding copper losses.

. . . 2
(b) Determine the resulting secondary copper loss, relative to I, “R, .

A schematic diagram and waveforms of the isolated SEPIC, operating in CCM, are given in Figs. 6.37
and 6.38.

(@ Do you expect the SEPIC transformer to contain an air gap? Why or why not?
(b) Sketch the SEPIC transformer B—H loop, for CCM operation.
() For CCM operation, do you expect core loss to be significant? Explain your reasoning.

@ For CCM operation, do you expect winding proximity losses to be significant? Explain your rea-
soning.



