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INDUCTOR ANDCAPACITOR RESPONSE

As already mentioned before:
▶ the current lags the voltage by 90◦ in an inductor
▶ currents leads the voltage by 90◦ in a capacitor

Relation between voltages and currents can be summarized as:

IL = VL

jωL
= VL

ωL
e
−jπ/2

IC = jωCVC = ωCVCe
jπ/2

Inductor current iL and capacitor voltage vC are commonly used state variable:

iL(t) = iL(t1) + 1
L

∫ t

t1
vLdt, t > t1

vC (t) = vC (t1) + 1
C

∫ t

t1
iCdt, t > t1

▶ inductor current is the response to applied inductor voltage
▶ capacitor voltage is the response to change in capacitor current

Figure 1 Phasor representation.

Figure 2 Inductor and Capacitor response.
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INDUCTOR ANDCAPACITOR - STEADY STATE

Steady state condition imply repetition of the waveforms
▶ v(t + T ) = v(t)
▶ i(t + T ) = i(t)

In case of an inductor this leads to:

1
T

∫ t1+T

t1
vLdt = 0

In the steady state average inductor voltage is zero

In case of a capacitor we have:

1
T

∫ t1+T

t1
iCdt = 0

In the steady state average capacitor current is zero

These concepts will be frequently used for circuit analysis in the course

Figure 3 Inductor response in steady state.

Figure 4 Capacitor response in steady state.
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MAGNETIC CIRCUITS - AMPERE’S LAW

Magnetic components are widely used in power electronics

Inductors and Transformers are typical components found in many
converters

Ampere’s Law
▶ a current-carrying conductor produces a magnetic field of

intensity H, [A/m]
▶ the line integral of the magnetic field intensity H , equals the total

enclosed current

∮ Hdl = ∑ i

For practical circuits, this normally can be written as:

∑
k

Hklk = ∑
m

Nmim

For circuit in Fig, 5 this becomes:

H1l1 +Hglg = N1i1

Right-hand rule can be used to determine the direction of H-field

Figure 5 Ampere’s Law: a) General formulation, b) Example.

Figure 6 Right-hand rule: a) Generic case, b) Example.
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FLUX DENSITY (B), CONTINUITY OF FLUX

Flux density B is related to field intensity H through the medium where field exist:

B = µH [Wb/m2] = [T ]
The permeability µ of a medium is defined as:

µ = µ0µr

where:
▶ µ0 is the permeability of the air, µ0 = 4π ⋅ 10−7H/m
▶ µr is the relative permeability that may go up to several thousands

In case of saturation, incremental permeability µ∆ = ∆B/∆H is much smaller

The magnetic flux Φ through an area can be found as surface integral of the B-field

Φ = ∫
A
BdA

As the magnetic flux lines form closed loops, in-out net sum is zero

Continuity of flux imply:

Φ = ∫
Aclosed loop

BdA = 0 ⇒ ∑
k

Φk = 0

Figure 7 B-H relation.

Figure 8 Continuity of flux (KCL for magnetics)
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MAGNETIC RELUCTANCE

Ampere’s law and continuity of flux can be used to define the Reluctance

∑
k

Hklk = ∑
k

HkµkAk
lk

µkAk
= ∑

k

BkAk
lk

µkAk
= ∑

k

Φk
lk

µkAk
= Φ∑

k

lk
µkAk

This further yields:

Φ∑
k

lk
µkAk

= ∑
m

Nmim

The magnetic Reluctance Rk in the path of the magnetic lines is defined as:

Rk = lk
µkAk

We have:

Φ∑
k

Rk = ∑
m

Nmim

For simple circuit as on figure we have: ΦR = Ni

Knowing Rk and im from circuit, flux can be calculated as:

Φ =
∑m Nmim
∑k Rk

Figure 9 Magnetic Reluctance.

Figure 10 Magnetic-Electric Analogy.
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FARADAY’S LAW, LENZ’S LAW, SELF-INDUCTANCE

For a stationary coil, convention indicates positive voltage where positive current enters, while for a chosen current direction, right-hand rule
indicates positive flux direction

Faraday’s Law relates a time varying flux linkage of the coil NΦ to induced voltage:

e = +
d(NΦ)
dt

= N
dΦ
dt

Lenz’s Law states that the current induced in a circuit due to a change or a motion in a mag-
netic field is so directed as to oppose the change in flux and to exert a mechanical force
opposing the motion. Self-inductance of the coil is defined as:

L = NΦ
i

⇒ NΦ = Li

From Faraday’s law we have for stationary coil:

e = L
di
dt

+ i
dL
dt

= L
di
dt

Considering ΦR = Ni we have:

L = N
i
Ni
R

= N
2

R

Coil inductance is a property of magnetic circuit and independent of i

Figure 11 a) Flux direction and voltage polarity; b)
Lenz’s Law.

Figure 12 Self-inductance L
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TRANSFORMERWITH LOSSLESS CORE (I)

A transformer consist of two or more coils that are magnetically coupled.

Total flux in coils 1 and 2 is given, respectively:

Φ1 = Φ +Φl1, Φ2 = −Φ +Φl2

where Φl1,Φl2 are the leakage fluxes. The flux Φ links the two coils and is given by:

Φ = N1i1 −N2i2
Rc

= N1im
Rc

with Rc being reluctance of the core, and im magnetizing current:

im = i1 −
N2

N1
i2

The leakage fluxes are given with:

Φl1 = N1i1
Rl1

, Φl2 = N2i2
Rl2

with Rl1,Rl2 being Reluctances of the leakage paths

No matter how good is transformer design, certain portion of flux will leak outside the core

Figure 13 a) Cross Section; b) B-H characteristic.
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TRANSFORMERWITH LOSSLESS CORE (II)

The voltages v1, v2 at the transformer terminals are given by:

v1 = R1i1 +N1
dΦ1

dt
, v2 = −R2i2 −N2

dΦ2

dt

where R1, R2 account for the ohmic losses in the windings. Further development yields:

v1 = R1i1 +
N

2
1

Rl1

di1
dt

+
N

2
1

Rc

dim
dt

, v2 = −R2i2 −
N

2
2

Rl2

di2
dt

+
N1N2

Rc

dim
dt

We can simplify this by considering:

e1 = N
2
1

Rc

dim
dt

= Lm
dim
dt

, Lm = N
2
1

Rc
, Ll1 = N

2
1

Rl1
, Ll2 = N

2
2

Rl2

Resulting in:

v1 = R1i1 + Ll1
di1
dt

+ Lm
dim
dt

= R1i1 + Ll1
di1
dt

+ e1

v2 = −R2i2 − Ll2
di2
dt

+
N2

N1
e1 = −R2i2 − Ll2

di2
dt

+ e2

This is the base for the transformer equivalent circuit

Figure 14 a) Cross Section; b) B-H characteristic.

Figure 15 Equivalent circuits of a transformer
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IDEAL VERSUS REAL TRANSFORMER

Ideal transformer circuit is result of several simplifications
▶ R1 = R2 = 0 - perfect conductors used for windings
▶ Rc = 0 ⇒ µ = ∞ ⇒ Lm = ∞

▶ Rl1 = Rl2 = 0 ⇒ Ll1 = Ll2 = 0 ⇒ Φl1 = Φl2 = 0

With these simplifications, transformer equivalent circuit reduces to ideal transformer:

v1 = e1, v2 = e2 = N2

N1
e1 = N2

N1
v1 ⇒

v1
N1

= v2
N2

In case of a real core with hysteresis characteristics, core losses are present

Core losses are modelled by equivalent resistance Rm in series or parallel to Lm

The total leakage inductance seen from one side, can be written as:

Ll,total = Ll1 + L
′

l2 ⇒ L
′

l2 = (N1

N2
)2Ll2

Similarly, winding resistance can be reflected from the secondary side:

R
′

2 = (N1

N2
)2R2

The total leakage inductance is often specified in p.u. of the transformer apparent power

Figure 16 Equivalent circuits of a transformer

Figure 17 a) Core loss inc.; b) Reflected to prim.
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