

EE-365 - W4 MAGNETICS INDUCTOR DESIGN TRANSFORMER DESIGN

Prof. D. Dujic

École Polytechnique Fédérale de Lausanne
Power Electronics Laboratory
Switzerland

MAGNETIC COMPONENTS

Essential element of every power electronics converter...

MAGNETIC COMPONENTS IN POWER ELECTRONICS

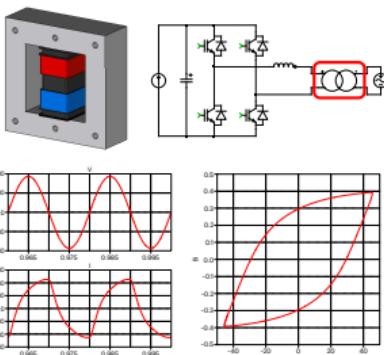


Figure 1 Line frequency transformer interfacing VSI and power grid

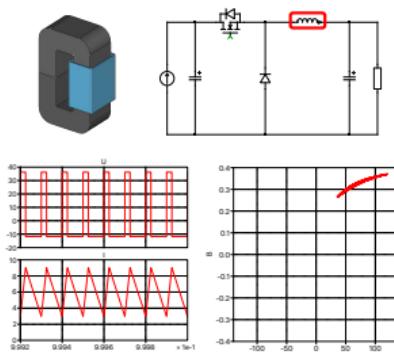


Figure 2 Filter inductor in Buck converter with DC-bias

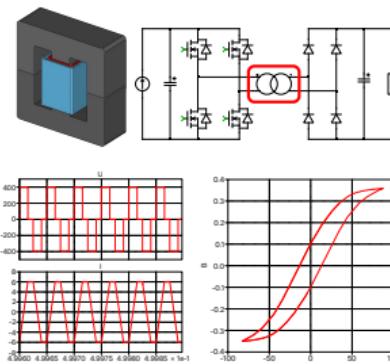
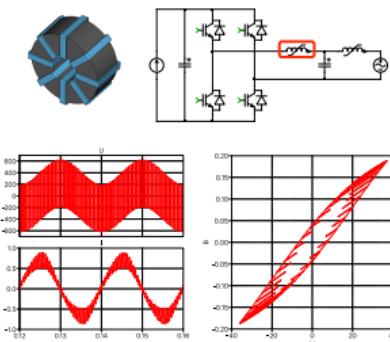
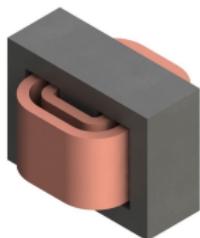
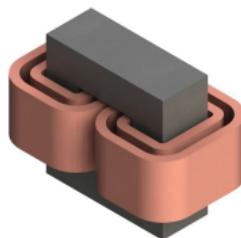
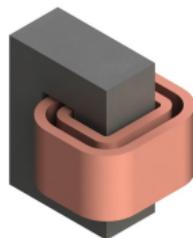


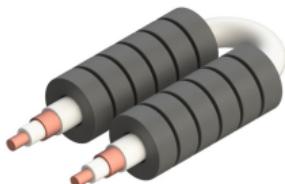
Figure 3 Isolation transformer in DCDC converter with phase-shift modulation


Figure 4 Filter inductor in VSI with both sinusoidal and PWM excitation

Construction Choices:

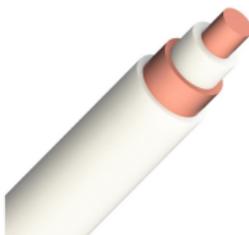

- ▶ Core-Winding Arrangement


Shell Type

Core Type

C-Type

Coaxial Type


- ▶ Winding Types

Litz Wire

Foil

Coaxial

Hollow

Materials:

- ▶ Magnetic Materials

- ▶ Silicon Steel
- ▶ Amorphous
- ▶ Nanocrystalline
- ▶ Ferrites

- ▶ Windings

- ▶ Copper
- ▶ Aluminum

- ▶ Insulation

- ▶ Air
- ▶ Solid
- ▶ Oil

- ▶ Cooling

- ▶ Air natural/forced
- ▶ Oil natural/forced
- ▶ Water

MAGNETIC MATERIALS - SILICON STEEL

Ferromagnetic - Silicon Steel (SiFe)

- ▶ Iron based alloy of Silicon provided as isolated laminations
- ▶ Mostly used for line frequency transformers

Advantages

- ▶ Wide initial permeability range
- ▶ High saturation flux density
- ▶ High Curie-temperature
- ▶ Relatively low cost
- ▶ Mechanically robust
- ▶ Various core shapes available (easy to form)

Disadvantages

- ▶ High hysteresis loss (irreversible magnetisation)
- ▶ High eddy current loss (high electric conductivity)
- ▶ Acoustic noise (magnetostriction)

Saturation B	Init. permeability	Core loss (10 kHz, 0.5T)	Conductivity
$0.8 \sim 2.2 \text{ T}$	$0.6 \sim 100 \cdot 10^3$	$50 \sim 250 \text{ W/kg}$	$2 \cdot 10^7 \sim 5 \cdot 10^7 \text{ S/m}$

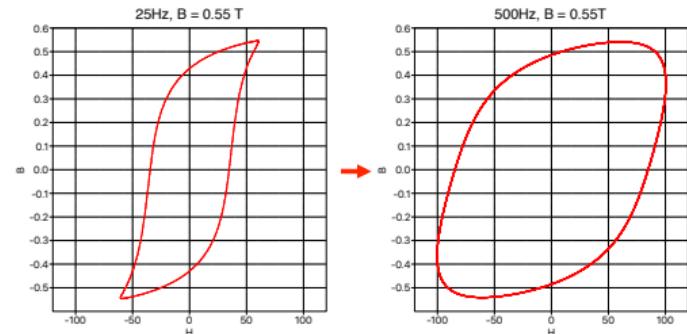
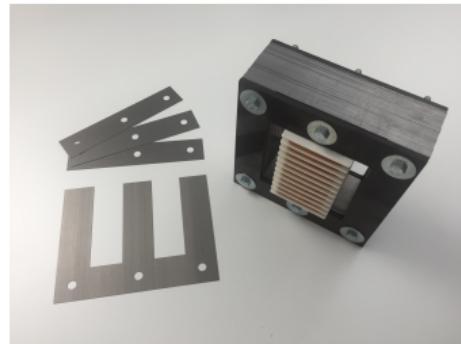



Figure 5 Example: Measured B-H curve of M330-35 laminate

MAGNETIC MATERIALS - AMORPHOUS ALLOY

Ferromagnetic - Amorphous Alloy

- ▶ Iron based alloy of Silicon as thin tape without crystal structure
- ▶ For both line frequency and switching frequency applications

Advantages

- ▶ High saturation flux density
- ▶ Low hysteresis loss
- ▶ Low eddy current loss (low electric conductivity)
- ▶ High Curie-temperature
- ▶ Mechanically robust

Disadvantages

- ▶ Relatively narrow initial permeability range
- ▶ Very high acoustic noise (magnetostriction)
- ▶ Limited core shapes available (difficult to form)
- ▶ Relatively expensive

Saturation B	Init. permeability	Core loss (10kHz, 0.5T)	Conductivity
0.5 ~ 1.6 T	$0.8 \cdot 10^{-3} \sim 50 \cdot 10^{-3}$	2 ~ 20 W/kg	$< 5 \cdot 10^{-3}$ S/m

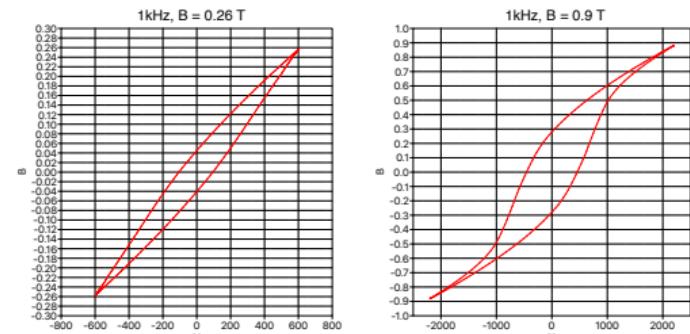


Figure 6 Example: Measured B-H curve of Metglas 2605SA

Ferromagnetic - Nanocrystalline Alloy

- ▶ Iron based alloy of silicon as thin tape with minor portion of crystal structure
- ▶ For both line frequency and switching frequency applications

Advantages

- ▶ Relatively narrow initial permeability range
- ▶ High saturation flux density
- ▶ Low hysteresis loss
- ▶ High Curie-temperature
- ▶ Low acoustic noise

Disadvantages

- ▶ Eddy current loss (compensated thanks to the thin tape)
- ▶ Mechanically fragile
- ▶ Limited core shapes available (difficult to form)
- ▶ Relatively expensive

Saturation B	Init. permeability	Core loss (10kHz, 0.5T)	Conductivity
$1 \sim 1.2 \text{ T}$	$0.5 \cdot 10^3 \sim 100 \cdot 10^3$	$< 50 \text{ W/kg}$	$3 \cdot 10^3 \sim 5 \cdot 10^4 \text{ S/m}$

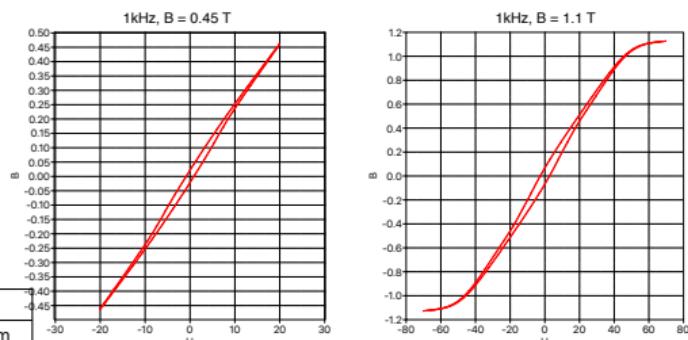


Figure 7 Example: Measured B-H curve of VITROPERM 500F

Ferrimagnetic - Ferrites

- ▶ Ceramic material made from powder of different oxides and carbons
- ▶ For both line frequency and switching frequency applications

Advantages

- ▶ Relatively narrow initial permeability range
- ▶ Low hysteresis loss
- ▶ Very low eddy current loss
- ▶ Low acoustic noise
- ▶ Relatively low cost
- ▶ Various core shapes available

Disadvantages

- ▶ Low saturation flux density
- ▶ Narrow range of initial permeability
- ▶ Magnetic properties deteriorate with temperature increase
- ▶ Mechanically fragile

Saturation B	Init. permeability	Core loss (10kHz, 0.5T)	Conductivity
0.3 ~ 0.5 T	$0.1 \cdot 10^3 \sim 20 \cdot 10^3$	5 ~ 100 W/kg	$< 1 \cdot 10^{-5}$ S/m

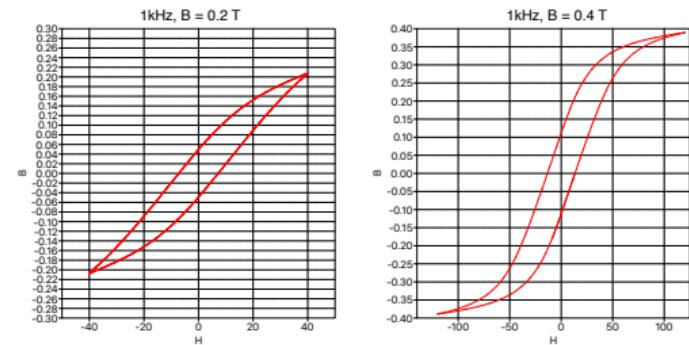



Figure 8 Example: Measured B-H curve of Ferrite N87

WINDING MATERIALS

Copper winding

- ▶ Flat wire - low frequency, easy to use
- ▶ Litz wire - high frequency, limited bending
- ▶ Foil - provide flat windings
- ▶ Hollow tubes - provide cooling efficiency
- ▶ Better conductor
- ▶ More expensive
- ▶ Better mechanical properties

Copper Parameters

Electrical conductivity	$58.5 \cdot 10^6 \text{ S/m}$
Electrical resistivity	$1.7 \cdot 10^{-8} \Omega\text{m}$
Thermal conductivity	401 W/mK
TEC (from } 0^{\circ} \text{ to } 100^{\circ} \text{ C)}	$17 \cdot 10^{-6} \text{ K}^{-1}$
Density	8.9 g/cm^3
Melting point	1083°C

Aluminium winding

- ▶ Flat wire
- ▶ Foil - skin effect differences compared to Copper
- ▶ Hollow tubes
- ▶ Difficult to interface with copper
- ▶ Offer some weight savings
- ▶ Cheaper
- ▶ Somewhat difficult mechanical manipulations

Aluminum Parameters

Electrical conductivity	$36.9 \cdot 10^6 \text{ S/m}$
Electrical resistivity	$2.7 \cdot 10^{-8} \Omega\text{m}$
Thermal conductivity	237 W/mK
TEC (from } 0^{\circ} \text{ to } 100^{\circ} \text{ C)}	$23.5 \cdot 10^{-6} \text{ K}^{-1}$
Density	2.7 g/cm^3
Melting point	660°C

Multiple influencing factors

- ▶ Operating voltage levels
- ▶ Over-voltage category
- ▶ Environment - IP class
- ▶ Temperature
- ▶ Moisture
- ▶ Cooling implications
- ▶ Ageing (self-healing?)
- ▶ Manufacturing complexity
- ▶ Partial Discharge
- ▶ BIL
- ▶ Cost

Dielectric properties

- ▶ Breakdown voltage (dielectric strength)
- ▶ Permittivity
- ▶ Conductivity
- ▶ Loss angle
- ▶ ...

Dielectric material	Dielectric strength (kV/mm)	Dielectric constant
Air	3	1
Oil	5 - 20	2 - 5
Mica tape	60 - 230	5 - 9
NOMEX 410	18 - 27	1.6 - 3.7
PTFE	60 - 170	2.1
Mylar	80 - 600	3.1
Paper	16	3.85
PE	35 - 50	2.3
XLPE	35 - 50	2.3
KAPTON	118 - 236	3.9

Figure 9 Variety of choices available...

DESIGN CONSTRAINTS

Electrical¹

- ▶ Inductance
- ▶ $B < B_{sat}$
- ▶ Turns ratio
- ▶ Duty cycle
- ▶ Frequency
- ▶ $DCR < DCR_{max}$
- ▶ $J < J_{max}$
- ▶ Leakage inductance
- ▶ Self capacitance
- ▶ Self resonance
- ▶ Skin and Proximity effects
- ▶ EMI, EMC
- ▶ Shielding
- ▶ Efficiency
- ▶ Safety
- ▶ Isolation

¹Source: George Slama, Würth Elektronik, APEC2019 Educational Seminar

DESIGN CONSTRAINTS

Electrical¹

- ▶ Inductance
- ▶ $B < B_{sat}$
- ▶ Turns ratio
- ▶ Duty cycle
- ▶ Frequency
- ▶ $DCR < DCR_{max}$
- ▶ $J < J_{max}$
- ▶ Leakage inductance
- ▶ Self capacitance
- ▶ Self resonance
- ▶ Skin and Proximity effects
- ▶ EMI, EMC
- ▶ Shielding
- ▶ Efficiency
- ▶ Safety
- ▶ Isolation

Mechanical

- ▶ $A_{wdg} > A_{wdg-min}$
- ▶ Size (L, W, H)
- ▶ Volume
- ▶ Surface area
- ▶ Weight
- ▶ Safety
- ▶ Creepage distances
- ▶ Clearance distances
- ▶ Insulation class
- ▶ Materials
- ▶ Environmental

¹Source: George Slama, Würth Elektronik, APEC2019 Educational Seminar

DESIGN CONSTRAINTS

Electrical¹

- ▶ Inductance
- ▶ $B < B_{sat}$
- ▶ Turns ratio
- ▶ Duty cycle
- ▶ Frequency
- ▶ $DCR < DCR_{max}$
- ▶ $J < J_{max}$
- ▶ Leakage inductance
- ▶ Self capacitance
- ▶ Self resonance
- ▶ Skin and Proximity effects
- ▶ EMI, EMC
- ▶ Shielding
- ▶ Efficiency
- ▶ Safety
- ▶ Isolation

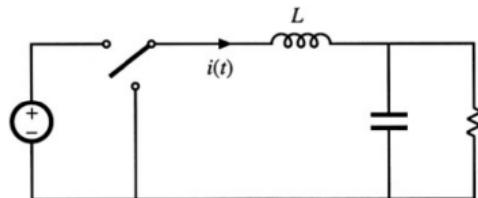
Mechanical

- ▶ $A_{wdg} > A_{wdg-min}$
- ▶ Size (L, W, H)
- ▶ Volume
- ▶ Surface area
- ▶ Weight
- ▶ Safety
- ▶ Creepage distances
- ▶ Clearance distances
- ▶ Insulation class
- ▶ Materials
- ▶ Environmental

Thermal

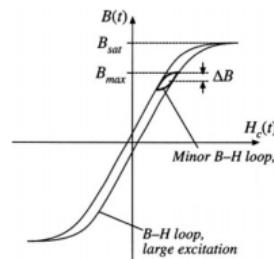
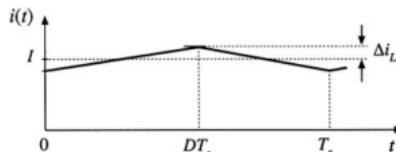
- ▶ $T < T_{max}$
- ▶ $P_{wdq} < P_{wdg-max}$
- ▶ $P_{core} < P_{core-max}$
- ▶ Environmental

¹Source: George Slama, Würth Elektronik, APEC2019 Educational Seminar


INDUCTOR DESIGN

Single winding structure design using K_g method...

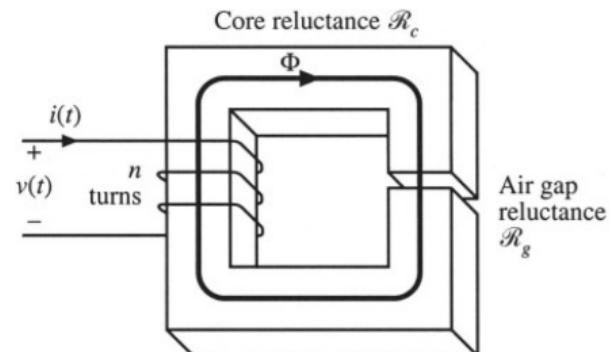
INDUCTOR DESIGN - INTRO



Typical DC inductor application (Buck converter)

- ▶ It is a part of the LC output filter
- ▶ Designed to match the reference L

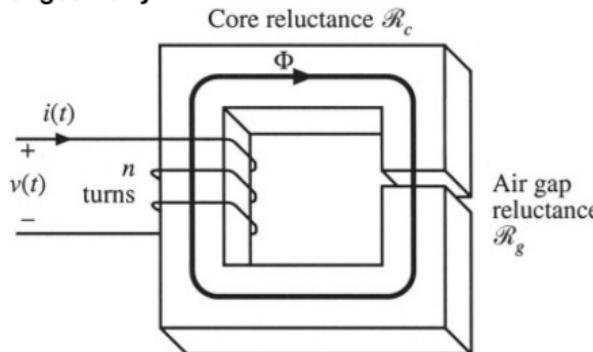
Inductor current and B-H loop

- ▶ Nonzero DC current component $I_{dc} > 0$
- ▶ Nonzero AC current components $\Delta I > 0$

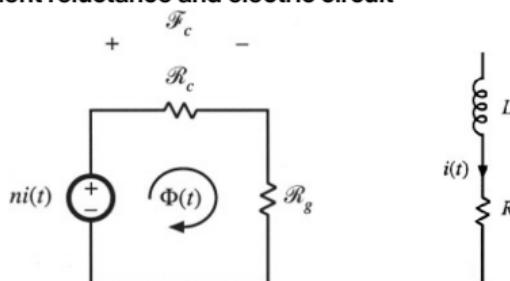


Assumptions

- ▶ Core and proximity losses are negligible
- ▶ Low frequency copper losses are dominant


Design constraints

- ▶ Maximum flux density should not be exceeded
- ▶ Target inductance value should be matched
- ▶ Sufficient winding area of the core
- ▶ Winding resistance - current density - losses



INDUCTOR DESIGN - MAXIMUM FLUX DENSITY CONSTRAINT

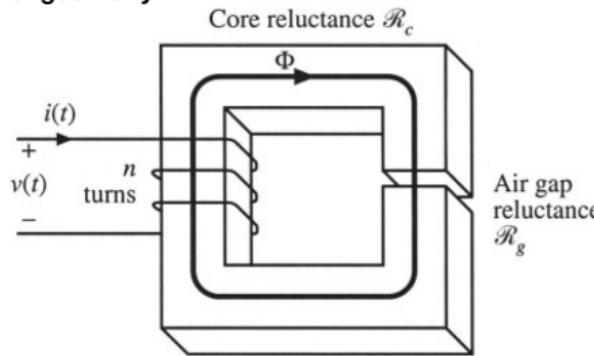
Inductor geometry

Equivalent reluctance and electric circuit

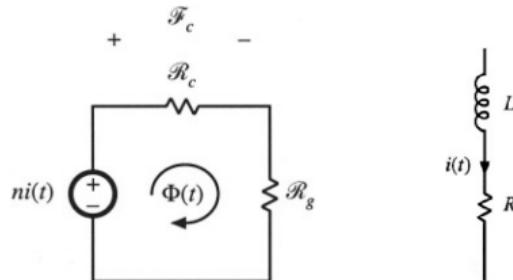
Design constraints

- ▶ Based on the geometry equivalent reluctance circuit is derived
- ▶ It is assumed that the core and the air gap have the same cross sections (fringe flux is neglected)
- ▶ The core and air gap reluctance can be calculated as:

$$\mathfrak{R}_c = \frac{l_c}{\mu_c A_c} \quad \text{and} \quad \mathfrak{R}_g = \frac{l_g}{\mu_0 A_c}$$


- ▶ Solution of the reluctance circuit yields:
$$ni = \Phi(\mathfrak{R}_c + \mathfrak{R}_g)$$
- ▶ Where it can be assumed that $\mathfrak{R}_c \ll \mathfrak{R}_g$ due to $\mu_0 \ll \mu_r$
$$ni = \Phi \mathfrak{R}_g$$
- ▶ Maximum operation flux density B_{max} must be less than the saturation flux density of the given core material B_{sat}
- ▶ B_{max} should be achieved at the maximum current point I_{max}

$$nI_{max} = B_{max} A_c \mathfrak{R}_g$$


- ▶ The B_{max} constraint can be expressed as:

$$nI_{max} = B_{max} \frac{l_g}{\mu_0}$$

Inductor geometry

Equivalent reluctance and electric circuit

Reference magnetizing inductance derivation

- ▶ The reference inductance value must be obtained
- ▶ The inductance is equal to

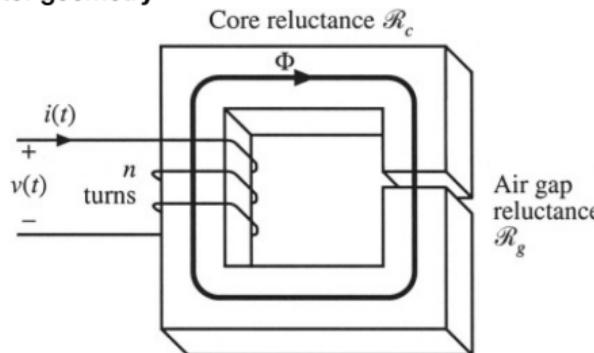
$$L = \frac{n^2}{\mathcal{R}_g} = \frac{\mu_0 A_c n^2}{l_g}$$

Reference resistance derivation

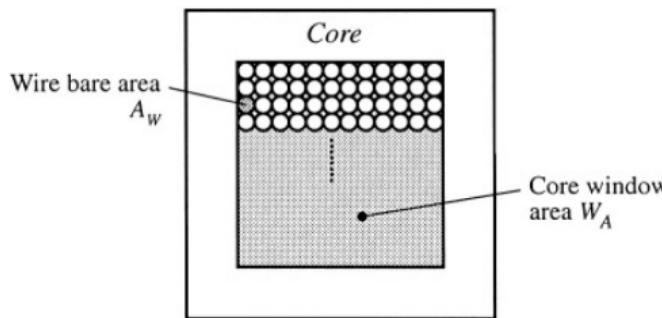
- ▶ The reference resistance value must be obtained
- ▶ The resistance is equal to

$$R = \rho \frac{l_b}{A_w}$$

- ▶ A_w is the bare conductor cross section
- ▶ l_b is the total length of the winding wire


$$l_b = n(MLT)$$
- ▶ (MLT) is the mean-length-per-turn of the winding
- ▶ R can be expressed as

$$R = \rho \frac{n(MLT)}{A_w}$$
- ▶ R must not be too high due to thermal considerations
- ▶ Current density should typically be bounded (cooling!)


$$J_{rms} = \frac{I_{rms}}{A_w} \leq [3 - 6] \frac{A}{mm^2}$$

INDUCTOR DESIGN - WINDING AREA CONSTRAINT

Inductor geometry

Core window area utilization

Core window area sizing

- ▶ The winding must fit through the core window
- ▶ The total bare wire cross section can be expressed as:

$$nA_w$$

- ▶ Conductors are not perfectly packed, e.g. round wire
- ▶ Additional insulation material/spacing may be needed
- ▶ The relation between the core window area W_A and total bare wire cross section can be expressed as:

$$W_A K_u \geq nA_w$$

- ▶ K_u is the window utilization factor, or fill factor
- ▶ K_u is in $[0.7 - 0.55]$ range for round wire
- ▶ Additional multiplicative coefficient in range $[0.95 - 0.65]$ for insulated wire

INDUCTOR DESIGN - THE CORE GEOMETRICAL CONSTANT

We have identified four constraints:

- ▶ Core should not saturate

$$nI_{max} = B_{max} \frac{l_g}{\mu_0}$$

- ▶ Target inductance should be achieved

$$L = \frac{n^2}{\mathfrak{R}_g} = \frac{\mu_0 A_c n^2}{l_g}$$

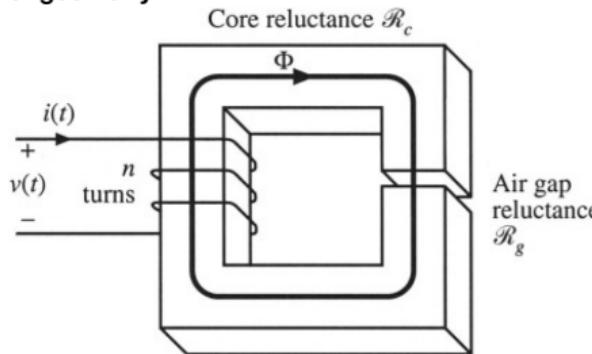
- ▶ Winding should fit into available core window area

$$W_A K_u \geq n A_w$$

- ▶ Winding resistance should be less or equal than desired (Losses!)

$$R = \rho \frac{n(MLT)}{A_w}$$

- ▶ Core geometry related parameters: A_c, W_A, MLT


- ▶ Design specifications: $I_{max}, B_{max}, \mu_0, L, K_u, R, \rho$

- ▶ Unknown variables: n, l_g, A_w

- ▶ Eliminating unknown variables leads to the following inequality:

$$\frac{A_c^2 W_A}{(MLT)} \geq \frac{\rho L^2 I_{max}^2}{B_{max}^2 R K_u}$$

Inductor geometry

Merged constraints

- Combining the presented constraints leads to

$$\frac{A_c^2 W_A}{(MLT)} \geq \frac{\rho L^2 I_{max}^2}{B_{max}^2 R K_u}$$

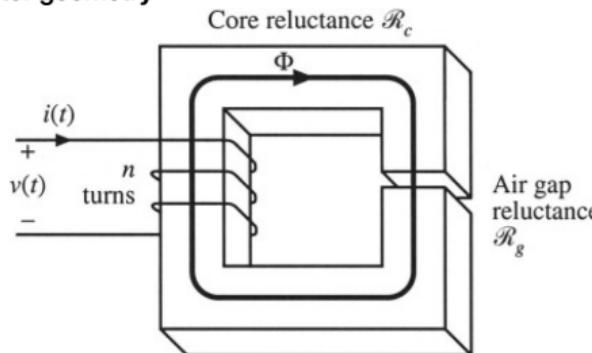
- The **right side** of this inequality are specifications or other known quantities
- The **left side** of the inequality is a function of the core geometry alone

The core geometrical constant - K_g

- It is necessary to choose a core whose geometry satisfies the given inequality
- The Core Geometrical Constant is defined as

$$K_g = \frac{A_c^2 W_A}{(MLT)}$$

- It describes the effective electrical size of magnetic cores in applications where copper loss and maximum flux density are specified
- It can be computed for any core based on its geometry
- The core selection boils down to selecting a core with high enough K_g


$$K_g \geq \frac{\rho L^2 I_{max}^2}{B_{max}^2 R K_u}$$

Conclusions

- Different electric parameters affect the core size
- Different geometries can satisfy the K_g constraint, showing the trade-off between utilized conductor (W_A) and core material (A_c)

INDUCTOR DESIGN - A STEP-BY-STEP PROCEDURE

Inductor geometry

Specified units and constants:

- ▶ Electrical: ρ [$\Omega - \text{cm}$], I_{max} [A], L [H], R [Ω], K_u [p.u.], R [Ω], B_{max} [T]
- ▶ Geometrical: A_c [cm^2], W_A [cm^2], (MLT) [cm]
- ▶ Constants: $\rho = 1.724 \cdot 10^{-6} \Omega - \text{cm}$, $\mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}$

Step-by-step design:

- ▶ Determine the core size:

$$K_g \geq \frac{\rho L^2 I_{max}^2}{B_{max}^2 R K_u} \cdot 10^8 [\text{cm}^5]$$

- ▶ Determine the air gap length:

$$l_g = \frac{\mu_0 L I_{max}}{B_{max}^2 A_c} \cdot 10^4 [\text{m}]$$

- ▶ Determine the number of turns:

$$n = \frac{L I_{max}}{B_{max} A_c} \cdot 10^4$$

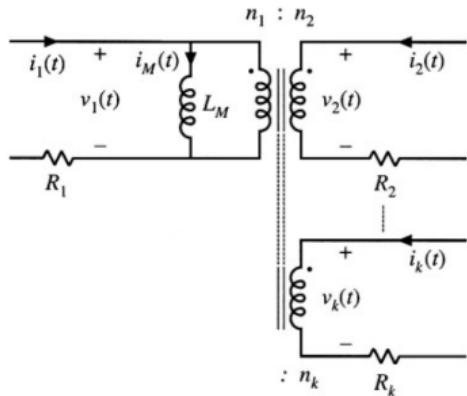
- ▶ Determine the wire size:

$$A_w \leq \frac{K_u W_A}{n} [\text{cm}^2]$$

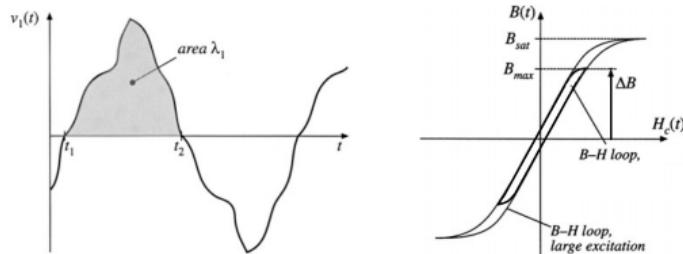
Control check:

- ▶ Check current density:

$$J_{rms} = \frac{I_{rms}}{A_w} \leq 3 \frac{A}{\text{mm}^2}$$


- ▶ Resistance can be computed for verification:

$$R = \rho \frac{n(MLT)}{A_w}$$

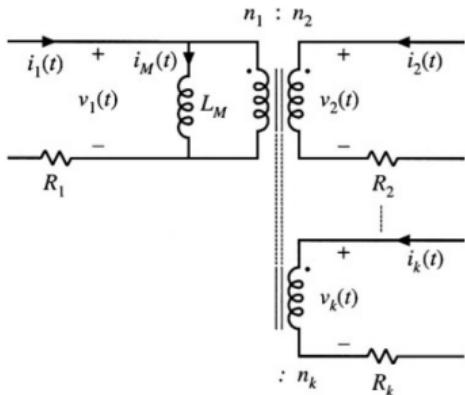

TRANSFORMER DESIGN

Multiple windings structure...

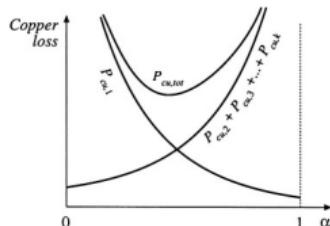
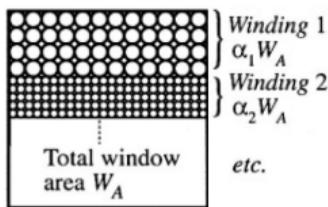
A k-winding transformer

Inductor Current and BH Loop

Assumptions


- ▶ High frequency Skin losses are negligible
- ▶ Proximity losses are negligible
- ▶ Both Winding and Core losses are considered
- ▶ B_{max} is limited by core losses rather than saturation due to large BH loop

Design constraints



- ▶ Optimal core window area allocation
- ▶ Core losses
- ▶ Flux density
- ▶ Copper losses
- ▶ Total losses
- ▶ Optimal flux density

TRANSFORMER DESIGN - OPTIMAL CORE WINDOW AREA ALLOCATION

A k-winding transformer

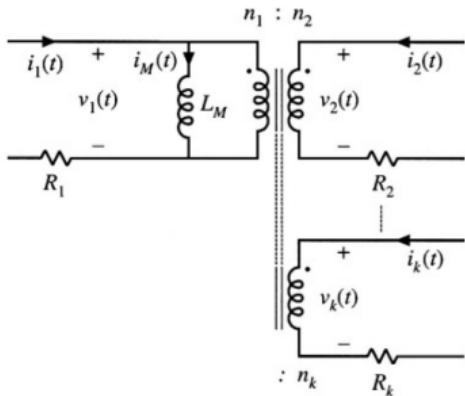
Winding allocation

Problem statement

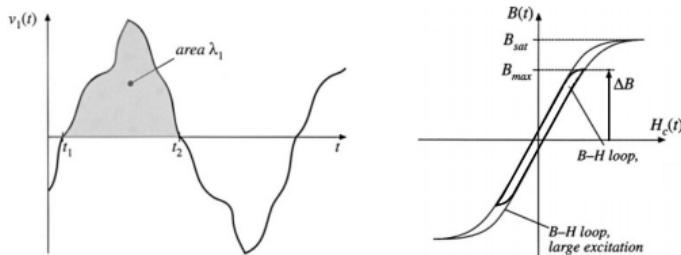
- ▶ A portion of the core window area needs to be allocated for each winding
- ▶ Increasing the allocated area of 1-th ($R_1 \searrow$) winding decreases the available area for the rest ($R_i \nearrow$)
- ▶ Overall winding losses ($P_{cu,tot}$) should be minimized

Optimal core window area allocation

- ▶ There exists an optimal winding space allocation for each winding α_i that minimizes $P_{cu,tot}$
- ▶ It can be expressed as a function of the apparent power of each winding


$$\alpha_i = \frac{V_i I_i}{\sum_{j=1}^k V_j I_j}$$

- ▶ Each winding will get a portion of core window area proportional to its apparent power


$$A_{wi} = \frac{\alpha_i K_u W_A}{n_i}$$

TRANSFORMER DESIGN - CORE LOSSES & FLUX DENSITY

A k-winding transformer

Volt-second and B-H loop

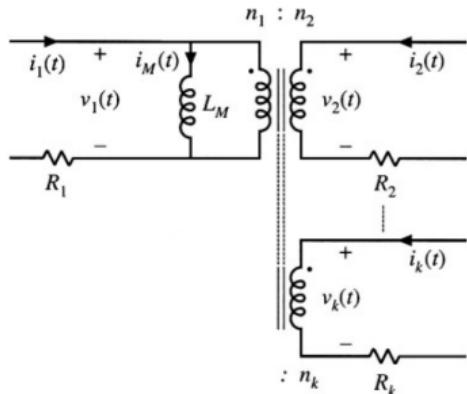
Core losses

- Core losses cannot be neglected due to large BH loop
- For sinusoidal excitation they can be expressed with Steinmetz equation

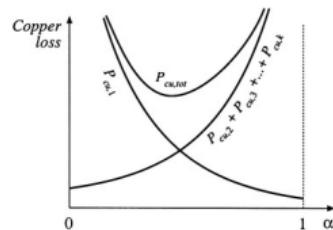
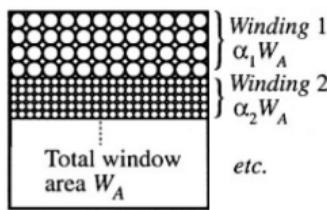
$$P_{fe} = K_{fe}(\Delta B)^\beta A_c l_m$$

- l_m is the core mean magnetic path length, hence $A_c l_m$ is the core volume
- K_{fe} and β is the Steinmetz parameters defined for the chosen core material
- Core losses P_{fe} increase with the increase of max flux density ΔB

Flux density


- For a given applied voltage waveform with λ_1 volt-seconds, the maximum flux density can be expressed as

$$\Delta B = \frac{\lambda_1}{2n_1 A_c}$$



- ΔB and core losses can be decreased by increasing n_1
- However increase of n_1 increases copper losses, since it results in more turns of smaller wire
- Therefore there exists a ΔB that optimizes the total losses

TRANSFORMER DESIGN - COPPER LOSSES

A k-winding transformer

Winding allocation (e.g. primary and secondary)

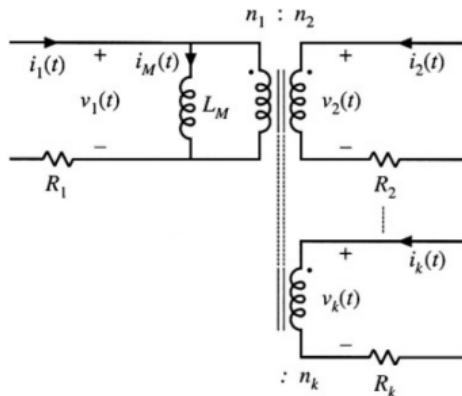
Total copper losses:

- When the core window area is allocated to the various windings according to their relative apparent powers (optimal allocation), the total copper loss is then

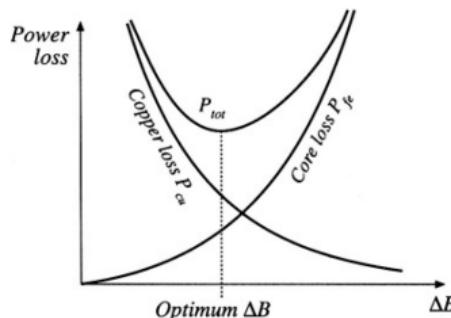
$$P_{cu} = \frac{\rho(MLT)n_1^2 I_{tot}^2}{W_A K_u}$$

- I_{tot} is the sum of the rms winding currents, referred to winding 1.

$$I_{tot} = \sum_{j=1}^k \frac{n_j}{n_1} I_j$$


- ▶ Expression for flux density can be used to eliminate n_1 resulting in

$$P_{cu} = \left(\frac{\rho \lambda_1^2 I_{tot}^2}{4K_u} \right) \left(\frac{(MLT)}{W_A A_c^2} \right) \left(\frac{1}{\Delta B} \right)^2$$


- Given expression is grouped into three terms: specifications, core geometry and ΔB influence

TRANSFORMER DESIGN - TOTAL LOSSES & OPTIMAL FLUX DENSITY

A k-winding transformer

Optimal flux density

Optimal flux density derivation:

- Both P_{fe} and P_{cu} are expressed as explicit functions of ΔB

$$P_{fe} = K_{fe}(\Delta B)^\beta A_c l_m$$

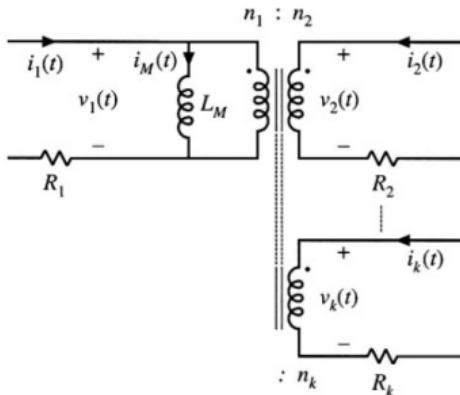
$$P_{cu} = \left(\frac{\rho \lambda_1^2 I_{tot}^2}{4K_u} \right) \left(\frac{(MLT)}{W_A A_c^2} \right) \left(\frac{1}{\Delta B} \right)^2$$

- It is possible to find the optimal ΔB that minimizes the total losses P_{tot}

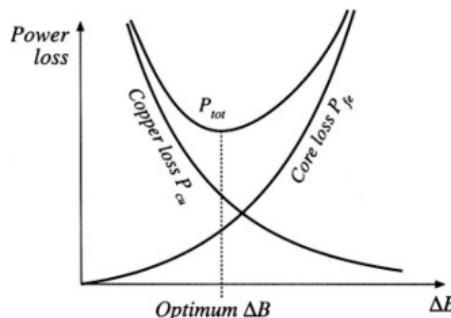
$$P_{tot} = P_{fe} + P_{cu}$$

- Optimal ΔB yields

$$\frac{dP_{tot}}{d(\Delta B)} = 0$$


- Solution of this equation providing the optimal ΔB is given as

$$\Delta B = \left[\frac{\rho \lambda_1^2 I_{tot}^2}{2K_u} \frac{(MLT)}{W_A A_c^3 l_m} \frac{1}{\beta K_{fe}} \right]^{\left(\frac{1}{\beta+2} \right)}$$


- It is important to check if this value exceeds the B_{sat} of the given material

TRANSFORMER DESIGN - THE CORE GEOMETRICAL CONSTANT

A k-winding transformer

Optimal flux density

Merged constraints:

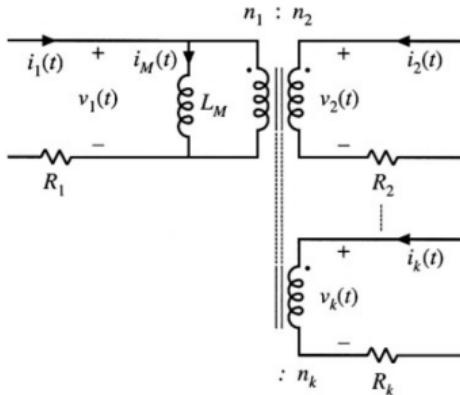
- Combining the previously derived equations leads to

$$\frac{W_A A_c^{(2(\beta-1)/\beta)}}{(MLT)l_m^{(2/\beta)}} \left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)} + \left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)} \right]^{-\left(\frac{\beta+2}{\beta}\right)} = \frac{\rho \lambda_1^2 I_{tot}^2 K_{fe}^{(2/\beta)}}{4K_u P_{tot}^{((\beta+2)/\beta)}}$$

- The terms on the left side depend on the core geometry
- The terms on the right side depend on application specifications and the desired core material characteristics
- The core geometrical constant K_{gfe} is defined as:

$$K_{gfe} = \frac{W_A A_c^{(2(\beta-1)/\beta)}}{(MLT)l_m^{(2/\beta)}} \left[\left(\frac{\beta}{2}\right)^{-\left(\frac{\beta}{\beta+2}\right)} + \left(\frac{\beta}{2}\right)^{\left(\frac{2}{\beta+2}\right)} \right]^{-\left(\frac{\beta+2}{\beta}\right)}$$

- The core selection boils down to selecting a core with high enough K_{gfe}


$$K_{gfe} \geq \frac{\rho \lambda_1^2 I_{tot}^2 K_{fe}^{(2/\beta)}}{4K_u P_{tot}^{((\beta+2)/\beta)}}$$

Conclusions

- K_{gfe} is a measure of the magnetic size of a core for applications in which core loss is significant
- It depends on selected core material characteristics

TRANSFORMER DESIGN - A STEP-BY-STEP PROCEDURE (1/2)

A k-winding transformer

Specified units and constants:

- ▶ Electrical: ρ [$\Omega - cm$], I_{tot} [A], $\frac{n_j}{n_1}$ [p.u.], λ_1 [V - sec], P_{tot} [W], K_u [p.u.], β [], K_{fe} [], ΔB [T]
- ▶ Geometrical: A_c [cm^2], W_A [cm^2], (MLT) [cm], l_m [cm], A_{wi} [cm^2]
- ▶ Constants: $\rho = 1.724 \cdot 10^{-6} \Omega - cm$, $\mu_0 = 4\pi \cdot 10^{-7} H/m$

Step-by-step design:

- ▶ Determine the core size:

$$K_{gfe} \geq \frac{\rho \lambda_1^2 I_{tot}^2 K_{fe}^{(2/\beta)}}{4K_u P_{tot}^{((\beta+2)/\beta)}} \cdot 10^8 [cm^5]$$

- ▶ Evaluate peak ac flux density

$$\Delta B = \left[\frac{\rho \lambda_1^2 I_{tot}^2}{2K_u} \frac{(MLT)}{W_A A_c^3 l_m} \frac{1}{\beta K_{fe}} \right]^{\frac{1}{\beta+2}}$$

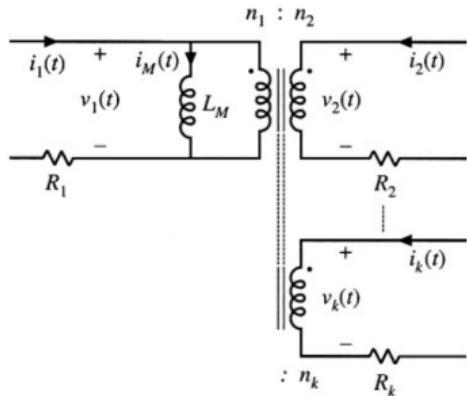
- ▶ Evaluate primary number of turns

$$n_1 = \frac{\lambda_1}{2\Delta B A_c} \cdot 10^4$$

- ▶ Choose numbers of turns for other windings based on desired transformation ratios

$$\frac{n_j}{n_1} [p.u.]$$

- ▶ Evaluate fraction of window area allocated to each winding

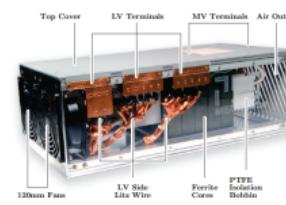
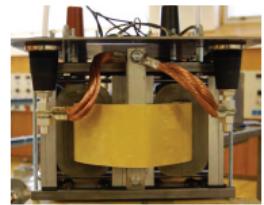
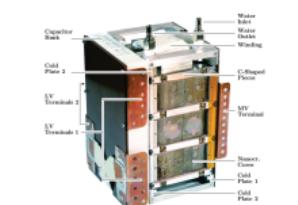
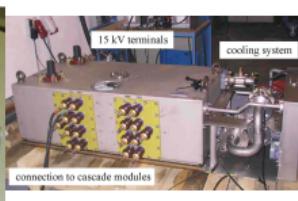

$$\alpha_j = \frac{n_j I_j}{n_1 I_{tot}}$$

- ▶ Evaluate the wire size

$$A_{wj} \leq \frac{\alpha_j K_u W_A}{n_1}$$

TRANSFORMER DESIGN - A STEP-BY-STEP PROCEDURE (2/2)

A k-winding transformer





Control check:

- Optimal ΔB does not saturate the core:
$$\Delta B \leq B_{sat}$$
- Magnetizing inductance, referred to primary winding:
$$L_m = \frac{\mu n_1^2 A_c}{l_m}$$
- Peak AC magnetizing current, referred to primary winding:
$$i_{M,pk} = \frac{\lambda_1}{2L_m}$$
- Winding resistances:
$$R_j = \frac{\rho n_j (MLT)}{A_{wj}}$$

Specified units and constants:

- Electrical: ρ [$\Omega - cm$], I_{tot} [A], $\frac{n_j}{n_1}$ [p.u.], λ_1 [V - sec], P_{tot} [W], K_u [p.u.], β [], K_{fe} [], ΔB [T]
- Geometrical: A_c [cm^2], W_A [cm^2], (MLT) [cm], l_m [cm], A_{wi} [cm^2]
- Constants: $\rho = 1.724 \cdot 10^{-6} \Omega - cm$, $\mu_0 = 4\pi \cdot 10^{-7} H/m$

EXAMPLES OF HIGH-POWER MEDIUM FREQUENCY TRANSFORMERS

?

ACME: ???kW, ???kHz