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C’est quoi une antenne?

https://pixabay.com/fr/photos/d
endroctone-du-musc-
coleoptere4343564/

https://pixabay.com/fr/illustrations/extraterr
estre-robot-android-1905155/

https://pixabay.com/fr/vectors/diff
usion-tour-radio-wave-297434/

https://pixabay.com/fr/vectors/t%C3
%A9l%C3%A9vision-r%C3%A9tro-
vintage-vieux-tv-308962/

Image par Gino Crescoli de Pixabay 
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ANTENNE  . n.f. (Antaine, XIIe; lat. antenna).

> 1o Mar. Vergue longue et mince des voiles latines.  
>2o  (1712). Appendice sensoriel à l'avant de la tête 

de certains arthropodes dits Antennifères.  
Fig. Avoir des antennes,  une sensibilité très aiguë, 
de l'intuition. 

> 3o  Par anal. Conducteur (ou ensemble de conducteurs)
aérien destiné à rayonner ou à capter les ondes 
électromagnétiques. V. Aérien. Antenne de télévision.

> 4o   Par ext. Antenne chirurgicale, unité avancée
du service de santé militaire. Tout poste avancé en liaison 
avec un centre.
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Antenne (standard IEEE)

• Dispositif destiné à recevoir et à émettre des 
ondes électromagnétiques

• Filtre spatial, sélectionnant des directions 
privilégiées

• Transducteur (convertisseur) entre un signal 
guidé (tension, courant) et un signal rayonné 
(onde électromagnétique)

Si la conversion se fait sans changement de fréquence,
l’antenne est réciproque!

(sert à l’émission et à la réception)
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Antenne

+ + + + + + + +
+

- - - + + + + -
-

...

Onde guidée

transition onde dans l'espace libre
/2
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• Fréquentielle: Fréquence centrale et bande passante (filtre)

• Spatiale: diagramme de rayonnement, directivité (filtre 
spatial)

• Vectorielle: orientation des champs E et H (polarisation)

• Puissance: efficacité, gain

Caractéristiques
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• L'antenne est vu comme un circuit à un accès: monoporte

Caractéristiques fréquentielles 

Rr

Rl

jXa

Zs=Rs+jXs

Emetteur Antenne

Rayonnement
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Caractéristiques fréquentielles 

Rr

Rl

jXaZch=Rch+jXch

Récepteur Antenne

Rayonnement

,s11
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2 critères sont généralement utilisés pour les antennes:
 |S11| < -10 dB or VSWR < 1.92 (approximé par 2)

 |S11| < -6 dB or VSWR < 3

Bande passante : exemple
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Spatiales: Diagramme de rayonnement
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Directivité d'une antenne

P
d

1/2

d

 
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Directivité d'une antenne

A basse fréquence les 
antennes sont omnidirectionnelles
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Directivité d'une antenne

A haute fréquence, les antennes sont directionnelles
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Antenne parabolique d'Arecibo

diamètre: 305 m !

NAIC Arecibo Observatory, a facility of the National Science Foundation
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excitation

NAIC Arecibo Observatory, a facility of the National Science Foundation
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• 50 MHz, =6m and =1.12°

• 10GH, =3cm and =0.0056°

Angle d'ouverture de l'antenne d'Arecibo
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• La forme de l'antenne

• Sa dimension

• Ses matières

• La fréquence

Les caractéristique d'une antenne dépendent 
de
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https://astro.unl.edu/naap/hydrogen/light.html
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• Dipole

• Boucles

• Antennes à ouverture

• Antennes à réflecteurs

• Antennes Patch

Les familles d'antennes classiques
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Dipole

V0

I0

λ/2
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Antennes à ouverture
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Antenne Dipole Monopole Antenne “Chapeau”

Antenne Imprimée

(Microstrip Antenna)

Antenne Imprimée

excitée par ligne

Antenne Imprimée

à couplage EM

Antennes patch
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Antennes pour satellites

https://pixabay.com/de/photos/mondspaziergang-astronaut-60616/ ESA, December 1, 2010, URL: 
http://www.esa.int/Our_Activities/Telecommunications_Integrated_Applications-
Hylas/Overview
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Equation d'onde pour les potentiels

Définition des potentiels vecteur et scalaire
       ; j V     H r A r E r A r

Ils sont liés par la jauge de Lorenz (attention, d'autres
jauges sont possibles)

  0j V   A r

Donc    
  

j
j




 
  

A r
E r A r

26 A. Skrivervik, MAG

Equation d'onde pour les potentiels

   

 

2

2 2

2 2

1

j

j

j

j j
j

k






 

  


  



  

   

  

  
       

 
   

   

H J E

A J E

A J E

A
A A J A

A A J

A J

De manière similaire, on obtient  2 2k V



   
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Equation d'onde pour les potentiels

Le potentiel vecteur est lié au courant, le potentiel scalaire
aux charges

La vitesse de propagation est 
1

c
k




 

Dans le vide 8
0 299800 / 3 10 /c c km s m s   

La longueur d'onde vaut 2 c

k f

  
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Solution des équations de Helmoltz pour des sources 
élementaires

   2 2
zk    A r e

Considérons une source élémentaire orientée selon z

x

y

z
Le potentiel vecteur est obtenu en
résolvant

On obtient  
4

jkr

z

e

r






A r e

De même, pour une charge élémentaire située à l'origine
on obtient   1

4

jkre
V

r



r
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Solutions pour des sources quelconques

J(r')

r'
r

| r - r' |

v

(r')




considérons un volume v 
contenant une distribution 
de courant J(r) et une 
distribution de charge (r). On 
calcule le potentiel dû à ces sources.
On effectue donc une intégration
des équations de Helmoltz en 
coordonnées sphériques

A r   
4

dv'
v

 J r '  e
 jk rr '

r  r '

V r   1

4
dv '

v

  r '  e
 jk rr '

r  r '
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• Les potentiels sont donnés par une superposition d'ondes 
sphériques

• Leur constante de propagation et leur longueur d'onde sont 
données par

• Les résultats sont valables quelle que soit la distance r

• Les champs sont obtenus en utilisant  

Constats

2
;k

k

   

       ; j V     H r A r E r A r
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Cas particulier: les antennes

dans le cas du rayonnement des antennes, on s'intéresse au
cas où l'observateur est loin de l'antenne, donc les cas où
r est beaucoup plus grand que les dimensions de l'antenne, on
peut remplacer |r-r'| par un développement limité. Pour 
l'amplitude, il suffit de prendre  ' r r r

pour la phase, il faut être plus 
précis : 

r  r '  r e
r
 r '

 r  x'sin cos  y'sin sin  z'cos

r’.er
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Cas particulier: les antennes

on obtient finalement :

A r   
4

dv'
v

 J r '  e
jk rr '

r  r '



4

dv '
v

 J r '  e jkrejker r '

r



4
e jkr

r
f  , 

f  ,   dv 'J r ' 
v

 ejker r '

où la fonction f est appelée intégrale vectorielle, et joue
un rôle important dans la théorie des antennes.
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Champs rayonnés

on obtient, en considérant les approximation en phase et
en amplitude pour |r-r'|:

 
 

r
c

r r

r r

j

Z

j

j







 

    
  

H A e

E A e e A

E e e A

de plus, on montre facilement que

1
r

c

c r

Z

Z

 

 

H e E

E e H
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Champs rayonnés

En coordonnées sphériques, on obtient
; ; 0

; ; 0

r

r
c c

E j A E j A E

E E
H H H

Z Z

   

 
 

     

  

ce qui donne en termes de l'intégrale vectorielle f
   

   

, , ,
2

, , ,
2

jkr
c

jkr
c

jZ e
E r

r

jZ e
E r

r

 

 

   


   


  

  

e f

e f

le vecteur de Poynting est donné par
21

* r
cZ

S = E×H E e
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Densité de puissance rayonnée

Du vecteur de Poynting, purement radial, on obtient la
densité de puissance rayonnée vers l'extérieur:

   2221 1
, , r

c c

p r E E
Z Z        S e E

Que l'on peut exprimer en termes de l'intégrale vectorielle

   22 2
2 2

1
, , /

4
cZ

p r f f W m
r   


    

On définit l'intensité de rayonnement, indépendante de r
       222

2
, , , /

4
cZ

U r p r f f W stéradian    


  

Cette intensité correspond à la puissance par unité 
d'angle solide 
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Résumé

Champ lointain

Avec
J(r')

r'
r

| r - r' |

v

(r')




H  = - E  /Zc ;     H  =  E  /Zc ;   E r = H r =  0

    ', ' ' rjk

v

dv e    e rf J r

       , , , ; , , ,
2 2

jkr jkr
c cjZ jZe e

E r E r
r r          

 
     e f e f
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exemple: le dipôle de Herz

dipôle de Herz ou doublet:
antenne élémentaire. Petit 
filament de longueur l
parcouru par un courant I

   2 cosI t I t

A la limite l=dl

En pratique, l est beaucoup plus petit que la longueur d'onde et I
ne varie pas sur la longueur du filament 

x

z

y

r




el
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exemple: dipôle de Herz
Considérons un dipôle de Herz orienté selon une direction 
quelconque el, et placé à l'origine. La densité de courant
correspondante est l I

s


e

J

et l'élément de volume ' 'd v s d l 

L'intégrale vectorielle devient  
0

, '
l

l ldl I I l 


  f e e

Et le potentiel vecteur  
4

jkr

l

I l e

r





A r e

Les champs électriques et magnétiques deviennent
   

   

, ,
2

, ,
2

jkr
c

jkr

l r

jZ e
r I l

r

j e
r I l

r

 


 






 

 

r r lE e × e ×e

H e ×e
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exemple: le dipôle de Herz orienté selon ez

x

z

y

r





 

 
 

 

   

   

2 2
2

2 2
2 2

, , sin
2

, , 0

, , 0

, , sin
2

, sin
4

1
, , sin

4

jkr
c

jkr

c

c

jZ e
E r I l

r
E r

H r

j e
H r I l

r
Z

U I l

Z
p r I l

r









  


 

 

  


  


  






 





 

 

 
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Diagamme de 
rayonnement
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Diagramme de champ

Représentation graphique de f (E et H) et de f(E et H)

il y a un diagramme pour la phase, un pour l'amplitude

Représentation normalisée de l'amplitude

DE () = | E()  | / | E(max,max)  | = | f()  | / | f(max,max) | 

DE () = | E()  | / | E(max,max) | = | f()  | / | f(max,max) | 

Attention: max,max peuvent être différents !

En dB : DE (dB) =  20 log10 |DE|  
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Choix de normalisation

• Chaque composante par rapport à son maximum
• Les deux composantes par rapport au maximum maximorum

max (|E|max, |E|max)

• Les deux composantes par rapport à la valeur max. du module

( E•E*)max = max [ E.E
*+E.E* ]
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Diagramme de puissance

Représentation graphique de p(r, )  ou de U() =r2p

Il s'agit en champ lointain d'un scalaire réel

DP () = p(r,)  / p (r,max,max)  = U()/U (max,max)

DP (dB) =  10 log10 |DP| 

Note : p est proportionnel à (|E|2 + |E|2). Donc si f ou f = 0
Dp(dB) = D(dB)
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Système de coordonnées



45 A. Skrivervik, MAG

3-D Polaire

dipôle cornet
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3-D carthésien




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Dipole : diagramme 3D polaire
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Système de coordonnées



49 A. Skrivervik, MAG

Coupes selon (méridiens)

plan xz
=0°
 : [-180°;180°]

plan yz
=90°
 : [-180°;180°]
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coupes selon (équateur)

plan xy
=90°
 : [-180°;180°]
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Exemple : Antenne isotrope (n'existe pas !!)

plan xy
=90°
 : [-180°;180°]

plan xz
=0°
 : [-180°;180°]
plan yz
=90°
 : [-180°;180°]
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Exemple : antenne omnidirectionnelle

vue 3D
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Exemple : antenne omnidirectionnelle

plan xz
=0°
 : [-180°;180°]
plan yz
=90°
 : [-180°;180°]

méridiens
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Exemple : antenne omnidirectionnelle

équateur

plan xy
=90°
 : [-180°;180°]
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Exemple : antenne directive (patch microruban)

Vue 3D
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Exemple : antenne directive (patch microruban)

Exemple de méridien

=90°
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Exemple : antenne directive (patch microruban)

Exemple de méridien

=0°
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Exemple d'antenne directive : réseau 4x4 éléments
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Exemple d'antenne directive : réseau 4x4 éléments
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Exemple d'antenne directive : réseau 4x4 éléments

vue 3D



61 A. Skrivervik, MAG

Exemple d'antenne directive : réseau 4x4 éléments

Exemple de méridien

=0°
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Exemple d'antenne directive : réseau 4x4 éléments

Exemple de méridien

=90°
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Définitions

BW : largeur du faisceau (Beamwidth)
HPBW: Largeur du faisceau à puissance moitié 
(Half Power Beam width)
SLL: niveau des lobes latéraux (Side Lobe Level)
SLL = 10 log [ Pmax (lobe principal) / 
Pmax (lobes latéraux) ]
En général, Pmax (lobe principal) = 1.

Donc:  SLL = - 10 log [ Pmax (lobes 
latéraux) ]
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Diagramme de rayonnement

1

Lobe principal

lobes latéraux

0 

0.5

HPBW

linéaire
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Diagramme de rayonnement

lobes latéraux

0


dB

-3

HPBW

Lobe principal

SLL

logarithmique (en dB)
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Diagramme de rayonnment (polaire)
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Puissance rayonnée et directivité

Puissance rayonnée: intégration
de p(r,) sur une surface sphérique
de rayon r : ds = r2 sin 

Prad  = 
s
ds p(r, ) =  

0

2
d 

0


d sin  r2 p(r, )   =  

0

2
d 

0


d sin  U(r, )

24
rad

iso

P
p p

r
 
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Directivité

 
D() = p(r,) / piso = 4 r2 p(r,) /Prad =

4 r2p(r,)

d
0

2
d r2sin

0


p(r,)

   
   

10

max max max

max 10 max

, 10 log ,

max , , 1

10log 0

dB

dB

D D

D D D

D D dB

   

   



    
 

   
2

0 0

1
, sin , 1

4
D d d D

 

      


  
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Directivité
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Resistance de rayonnement

I

Zin=Rrad+jXant

Puissance fournie à l'antenne: 
 2 Ref inP I Z

Donc R
rad

 Re Z
in

  P
rad

/ I 2

Si on considère une antenne à l'émission, on peut définir
le circuit équivalent suivant
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• une antenne est un élément passif, linéaire, dissipatif

• Impédance Zin

• Puissance fournie à l'antenne:Pf = I2 Re(Zin).

• En l'absence de pertes, Pf=Prad

• On définit donc la résistance de rayonnement comme Rrad = 
Re(Zin) = Prad / I2

• Xant beaucoup plus difficile à obtenir (en général par 
simulation numérique)

Résistance de rayonnement
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Exemple : dipole de Hertz

Rappel

x

y

z




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U I l

Z
p r I l

r


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
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Exemple : dipole de Hertz

x

y

z





l

Diagramme de puissance indépendant de 
 
 

2

2
10 10

sin

10log sin 20log sin

p

p dB

D

D

 

  



 
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Exemple : dipole de Hertz

 
 

max

max

90

1pD





 



2

2

sin 0 pour =0,180°

180

sin 0.5 pour  =45°, 135 °

90

BW

HPBW

 


 



 


 
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Exemple: dipole de Hertz

Dmax=1.5=1.76 dB

Pour une longueur donnée, la résistance de 
rayonnement est proportionnelle au carré de la 
fréquence. Par exemple, un fil de cuivre de  1 mètre 
de longueur a une résistance de rayonnement de 
0.0088  à 1 MHz, 0.88  à 10 MHz, et 88  à 100 
MHz

   22 2

0

2
2 sin , , /

3rad cP d r p r Z I l
        

  23
, sin

2
D   

     2 22
/ 800 /

3rad cR Z l l
      
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Effet des pertes



77 A. Skrivervik, MAG

• diélectrique

• ohmiques

Effet des pertes

z

z

i(z,t)

u(z,t)

z

i(z,t)

u(z,t)

Rz Lz

Gz Cz

i(z+z,t)

u(z+z,t)

Pour une antenne pouvant
être représentée par une
ligne de transmission:
résistance en série et 
conductance en parallèle
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Antennes réelle: le rendement

I

jXant

Rrad

Rloss

in loss rad antZ R R jX  

Puissance rayonnée

Puissance fournie

2
rad radP I R

Pave  I 2 Re Zin
 

I 2 Rrad  Rloss 

Rendement de l'antenne  
P

rad

P
ave


R

rad

R
rad
R

loss

1
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Le gain d'une antenne

le gain est définit comme 

G  ,  
4U  , 

Pave

D  ,  
4U  , 

P
rad

Donc 
 
 

,
1

,

G

D

 


 
 
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• proche de 100% pour une parabole, un dipôle demi-onde, une 
antenne cornet

• 10-60% pour une antenne de smartphone

• environ 1% pour une antenne radio sur une voiture 

Rendements typiques d'antennes
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Exemple: le dipôle de Hertz

   22 2

0

2
2 sin , , /

3rad cP d r p r Z I l
        

Puissance rayonnée

Résistance de rayonnement
     2 22

/ 800 /
3rad cR Z l l
      

Pertes ohmiques dans le fil métallique de longueur l
et de rayon a (dues à l'effet pelliculaire)

2loss

l f
R

a


 




 
P

rad

P
ave


R

rad

R
rad
R

loss

1Rendement
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Exemple: le dipôle de Herz

Application numérique:
l=1m, = 5.7 107 (cuivre)

f Rrad [] Rloss[] 
------------------------------------------------------------
1 MHz 0.0088 0.1 8 %
10 MHz 0.88 0.3 73 %

100 MHz 88. 1. 98.9 %
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Désadaptation

P
ave

 I 2 Re Z
in

 

 Prad
 P

avecas sans pertes

Le transfert de puissance à l'antenne est maximum, et donc
la puissance rayonnée maximale quand l'antenne est 
adaptée au générateur:
En général, un générateur a une impédance purement réelle Rg
Dans ce cas, la puissance maximale vaut

*
in gZ Z

Prad Pave cas avec pertes

Pave VgI g
* 

Vg

2

2R
g


1

2
V̂g Î g

* 
V̂

g

2

4R
g

2
rad

rad

P
R

I

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Désadaptation

Générateur

Antenne

onde rayonnée
a

b

Vg

Rg

Xg

Rrad

Xa

a

b

I
antenne

Onde rayonnée

émetteur

,g g

in g
g

in g

Z Z

Z Z







La puissance fournie à l'antenne
n'est pas toujours toute la puissance
disponible au générateur Pav-e
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Désadaptation

CHARGE

ANTENNE

ONDE REÇUE
A

B

ZL RRAD

XA

A

B

I

VREC

,l l

l in
l

l in

Z Z

Z Z
 




La puissance fournie à
la charge n'est pas toujours
égale à la puissance captée
par l'antenne Prload=Pav-r
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Désadaptation

S'il y a désadaptation entre l'antenne et le générateur ou
la charge (réception), la puissance fournie est donnée par

et la puissance fournie par l'antenne à la charge

 21f av e gP P  

 2P 1
loadr av r lP  

où g est le coefficient de réflexion entre le générateur et 
l'antenne et l le coefficient de réflexion entre
l'antenne et la charge

in g
g

in g

Z Z

Z Z







l in
l

l in

Z Z

Z Z
 



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Formule de Friis

Cas idéal:
2

4loadr av e r trP P D D
R




   
 

Antennes désadaptées:   
2

2 21 1
4loadr av e r tr r trP P D D

R

 


     
 

Avec pertes   

  

2
2 2

2
2 2

1 1
4

1 1
4

loadr av e r tr r tr r tr

av e r tr r tr

P P D D
R

P G G
R

   


 






     
 

     
 
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Antenne réelles

A l'émission  2

1 1 1rad f g av eP P P     

A la réception  2

1 1 1
loadr r g av eP P P     
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Polarisation

90 A. Skrivervik, MAG

Polarisation

Jairam Sankar, https://www.electronicsforu.com/resources/learn-electronics/antenna-polarisation
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Polarisation

E

k

E(t)  2 ˆ x E0x cos t   x  ˆ y E0y cos t  y 
ˆ z E0z cos t  z 

Dans un régime mono-fréquentiel, 
une antenne émet un onde qui a une
certaine polarisation donnée par

92 A. Skrivervik, MAG

Polarisation

   
 
0 0

0

ˆ ˆ( ) 2 cos cos

ˆ cos

x x y y

z z

t E t E t
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 
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x y
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E(t) E 0 cos t E T / 4 sin t 
   

 
   

 

0 0

0

0 0
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ˆ ˆ(0) 2 cos cos

ˆ cos

ˆ ˆ( / 4) 2 sin sin

ˆ sin
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E
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

 



  


   

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z
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z
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Polarisation

En termes de vecteur phaseur :

(0) Re 2

( / 4) Im 2T

   
    

E

E

E

E

0 0 0ˆ ˆ ˆyx
jj j z

x y zE e E e E e   E x y z

E(t=0)E(t=T/4)

       ( ) 0 cos / 4 sint E t E T t  E
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cas particuliers

E(t=0)

E(t=T/4)

E(t=0)E(t=T/4)



95 A. Skrivervik, MAG

cas particuliers

https://www.electronicsforu.com/resources/learn-electronics/antenna-polarisation
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cas particuliers

   
2

0 / 4 0

0

T

E

 



E E

   
   
0 / 4 0

0 / 4 0

T

T

 

 

E E

E E

0 E E

polarisation 
linéaire:

polarisation 
circulaire :
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Formule de Friis

2
2*

4
loadr

e r
av e

P
G G

P r




   
 

e re e

Où ee (er) est le vecteur de polarisation de l’antenne d’émission
(réception). Ce vecteur est un vecteur unitaire qui
représente la polarisation de l'onde émise par cette antenne

2*e re e est appelé le facteur de dépolarisation

98 A. Skrivervik, MAG

Formule de Friis pour une 
antenne réelle

Dans l’espace libre   
2

22 21 1
4loadr av e r tr g l e rP P G G

R

 


     
 

 *e e

l: coefficient de réflexion de l'antenne à la réception
g: coefficient de réflexion de l'antenne d'émission
er: vecteur de polarisation de l'antenne à la réception
ee: vecteur de polarisation de l'antenne d'émission

2

pol e r   *e eFacteur de dépolarisation
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exemples: polarisation linéaire
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exemples: polarisation circulaire
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Surface de captation, surface équivalente

Rx Tx

L

D

Si L>>>D, l'onde sphérique émise par l'antenne émettrice
peut-être considérée comme une onde plane au niveau de 
l'antenne réceptrice. Cette onde à une densité de puissance
p
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Surface de captation
La puissance maximum disponible (available) à la reception Pav-r est la puissance fournie par l’antenne 
réceptrice quand on la connecte sur une impédance de charge qui est égale à la valeur complexe conjuguée de 
l’impédance interne de l’antenne (Zload = Zin*, adaptation conjuguée).
On définit alors la surface de captation équivalente Ae (effective aperture) d'une antenne à la réception 
comme le rapport entre la puissance maximum disponible à la réception et la densité de puissance incidente.

  2, av r
e

P
A m

p
      
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Surface de captation

charge adaptée

antenne de surface A

Pr

k

onde plane de densité de puissance p

antenne ayant une surface de captation A

Onde plane d'une densité de puissance pCharge adaptée

Pr  p  A 
E0

2

Zc
A Puissance reçue maximale

Pr ,  Ae , p
avec

Ae  ,  A
Puissance reçue réelle

avec
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lien entre directivité et surface de captation

   

   
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
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4
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   




en utilisant les valeurs connues pour le dipôle de Herz

Antenne A

Antenne B

DA(), AeA()

A

B

DB(), AeB()


