
tan–1(Q/I) = π/2 –tan–1(I/Q). (13–109’)

Those properties allow us to create Table 13–6.
So we have to check the signs of Q and I, and see if |Q| > |I|, to deter-

mine the octant location, and then use the appropriate approximation in Table
13–6. The maximum angle approximation error is 0.26° for all octants.

When θ is in the 5th octant, the above algorithm will yield a θ’ that’s
more positive than +π radians. If we need to keep the θ’ estimate in the range
of –π -to- +π, we can rotate any θ residing in the 5th quadrant +π/4 radians
(45°), by multiplying (I +jQ) by (1 +j), placing it in the 6th octant. That multi-
plication yields new real and imaginary parts defined as

I’ = (I –Q), and Q’ = j(I +Q). (13–110)

Then the 5th octant θ’ is estimated using I’ and Q’ with

θ’5th oct⋅ = –3π/4 – . (13–110’)

13.22 FREQUENCY DEMODULATION ALGORITHMS

In Section 9.2 we discussed the notion of measuring the instantaneous fre-
quency of a complex sinusoidal signal by computing the derivative of the sig-
nal’s instantaneous θ(n) phase as shown in Figure 13–60.

I Q
Q I

' '
' . '2 20 28125+
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Table 13–6 Octant Location versus Arctangent Expressions 

Octant Arctan approximation

1st, or 8th θ’ = 

2nd, or 3rd θ’ = π/2 –

4th, or 5th θ’ = π +

6th, or 7th θ’ = –π/2 – IQ
Q I2 20 28125+ .

IQ
I Q2 20 28125+ .

IQ
Q I2 20 28125+ .

IQ
I Q2 20 28125+ .



This is the traditional discrete signal FM demodulation method, and it works
fine. The demodulator’s instantaneous output frequency is

f(n) = Hz, (13–111)

where fs is the sample rate in Hz.
Computing instantaneous phase θ(n) requires an arctangent operation,

which is difficult to implement accurately without considerable computa-
tional resources. Here’s a scheme for computing ∆θ(n) for use in Eq. (13–111)
without the intermediate θ(n) phase computation (and its pesky arctan-
gent)[53,54]. We derive the ∆θ(n) computation algorithm as follows, initially
using continuous-time variables based on the following definitions:

i(t) = in-phase signal,
q(t) = quadrature phase signal,
θ(t) = tan–1[q(t)/i(t)] = instantaneous phase,
∆θ(t) = time derivative of θ(t). (13–112)

First, we let r(t) = q(t)/i(t) be the signal for which we’re trying to compute the
derivative of its arctangent. The time derivative of tan–1[r(t)], a calculus iden-
tity, is

∆θ(t) = . (13–113)

Because d[r(t)]/dt = d[q(t)/i(t)]/dt, we use the calculus identity for the deriv-
ative of a ratio to write

. (13–114)

Plugging Eq. (13–114)’s result into Eq. (13–113), we have

∆θ(t) = . (13–115)1
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Figure 13–60 Frequency demodulator using an arctangent function.
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Replacing r(t) in Eq. (13–115) with q(t)/i(t) yields

∆θ(t) = . (13–116)

We’re getting there. Next we multiply the numerator and denominator of the
first ratio in Eq. (13–116) by i2(t), and replace t with our discrete time variable
index n to arrive at our final result of

∆θ(n) = . (13–117)
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Figure 13–61 Frequency demodulator without arctangent: (a) standard process;
(b) simplified process.
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The implementation of this algorithm, where the derivatives of i(n) and
q(n) are i’(n) and q’(n) respectively, is shown in Figure 13–61(a). The ∆φ(n) out-
put sequence is used in Eq. (13–111) to compute instantaneous frequency.

The Differentiator is an tapped-delay line FIR differentiating filter with
an odd number of taps. Reference [54] reports acceptable results when the dif-
ferentiator is a FIR filter having 1,0,–1 as coefficients. The Delay elements in
Figure 13–61 are used to time-align i(n) and q(n) with the outputs of the dif-
ferentiators such that the delay is (K–1)/2 samples when a K-tap differentiator
is used. In practice, the Delay can be obtained by tapping off the center tap of
the differentiating filter.

If the i(n)+jq(n) signal is purely FM and hard limited such that
i2(n)+q2(n) = Constant, the denominator computations in Eq. (13–117) need
not be performed. In this case, using the 1,0,–1 coefficient differentiators, the
FM demodulator is simplified to that shown in Figure 13–61(b) where the
Scaling operation is multiplication by the reciprocal of Constant.

13.23 DC REMOVAL

When we digitize analog signals using an analog-to-digital (A/D) converter,
the converter’s output typically contains some small DC bias: that is, the av-
erage of the digitized time samples is not zero. That DC bias may have come
from the original analog signal or from imperfections within the A/D con-
verter. Another source of DC bias contamination in DSP is when we truncate
a discrete sequence from a B-bit representation to word widths less than B
bits. Whatever the source, unwanted DC bias on a signal can cause problems.
When we’re performing spectrum analysis, any DC bias on the signal shows
up in the frequency domain as energy at zero Hz, the X(0) spectral sample.
For an N-point FFT the X(0) spectral value is proportional to N and becomes
inconveniently large for large-sized FFTs. When we plot our spectral magni-
tudes, the plotting software will accommodate any large X(0) value and
squash down the remainder of the spectrum in which we are more interested.

A non-zero DC bias level in audio signals is particularly troublesome be-
cause concatenating two audio signals, or switching between two audio sig-
nals, results in unpleasant audible clicks. In modern digital communications
systems, a DC bias on quadrature signals degrades system performance and
increases bit error rates. With that said, it’s clear that methods for DC removal
are of interest to many DSP practitioners.

13.23.1 Block-Data DC Removal
If you’re processing in non-real-time, and the signal data is acquired in blocks
(fixed-length sequences) of block length N, DC removal is straightforward.
We merely compute the average of our N time samples, and subtract that av-
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