
1 Power and Attenuation in Telecommunications

1.1 Basic Free-Space Path Loss Model

1) The wavelength is given by:

λ =
c

f
=

3× 108

2× 109
= 0.15 m

where c is the speed of light.

2) Compute PR for PT = 1 W and d = 100 m: Using the FSPL model:

PR = PT

(
λ

4πd

)2

= 1×
(

0.15

4π × 100

)2

≈ 1.42× 10−8 W

3) The path loss in dB:

L(dB) = 10 log10

(
PT

PR

)
= 10 log10

(
1

1.42× 10−8

)
≈ 78.5 dB

1.2 Effect of Distance on Power Attenuation

1. Compute PR for d = 200 m:
Using the FSPL model:

PR = PT

(
λ

4πd

)2

Substituting d = 200 m:

PR = 1×
(

0.15

4π × 200

)2

= 3.56× 10−9 W

Compute PR using empirical model with γ = 3 and γ = 4:

PR = PT · d−γ

For γ = 3:
PR = 1× 100−3 = 10−6 W

For γ = 4:
PR = 1× 100−4 = 10−8 W
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2 Signal Transformation in Time and Frequency

1) Classification of x(t)

x(t) =

{
1, 0 ≤ t < 1

0, otherwise

The given signal is: Continuous, Non-Periodic and Deterministic

2) Time Delay by 2 Seconds
A time delay by T0 = 2 seconds results in:

x′(t) = x(t− 2) =

{
1, 2 ≤ t < 3

0, otherwise

The Fourier transform property states:

x(t− T0) ⇐⇒ X(f)e−j2πfT0

Hence,
X ′(f) = X(f)e−j4πf .

This introduces a linear phase shift but does not affect the magnitude spectrum.

3) Time Scaling by Factor α
If the signal is scaled in time by a factor α, then the transformed signal is:

x′′(t) = x(αt)

Using the Fourier transform time-scaling property:

x(αt) ⇐⇒ 1

|α|
X

(
f

α

)
This implies that:

� The frequency content of the signal is compressed for α > 1 and expanded
for α < 1.

� The bandwidth scales proportionally to 1/|α|.

3 Power, Energy, and Power Spectral Density

1) Total Energy Es

The total energy of the signal is given by:

Es =

∫ ∞

−∞
|s(t)|2dt.
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Since s(t) = 0 for t < 0, we integrate from 0 to ∞:

Es =

∫ ∞

0

A2e−2atdt.

Evaluating the integral:

Es = A2

∫ ∞

0

e−2atdt = A2

[
e−2at

−2a

]∞
0

.

Es =
A2

2a
, for a > 0.

Thus, the signal has finite energy.

2) Energy and Power for A = 5, a = 2
Substituting A = 5 and a = 2:

Es =
52

2× 2
=

25

4
= 6.25.

The power of the signal is:

Ps = lim
T→∞

1

T

∫ T

0

s2(t)dt.

Since s(t) is not periodic, its power is zero.

3) Effect of Gain G on Energy and Power If the receiver introduces a
gain G, the new signal is:

s′(t) = Gs(t).

The new energy is:

E′
s =

∫ ∞

0

|GAe−at|2dt = G2Es.

The new power is:
P ′
s = G2Ps.

4) White Noise and Power Spectral Density
White noise has a flat power spectral density (PSD), meaning:

Sn(f) = constant, ∀f.

This indicates equal power distribution across all frequencies.

5) Effect of Noise on Received Signal
The received signal is:

y(t) = x(t) + n(t).
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Since the power of independent signals adds up:

Py = Px + Pn.

6) Noise Mitigation through Filtering
Filtering can reduce noise by eliminating unwanted frequency components. A
low-pass filter, for instance, removes high-frequency noise while retaining the
signal of interest.

4 Parseval’s Theorem and Signal Energy

1) Energy of a Rectangular Pulse in Time Domain

The energy of x(t) is computed as:

Ex =

∫ ∞

−∞
|x(t)|2dt.

Since x(t) = 1 for 0 ≤ t < 1 and 0 otherwise:

Ex =

∫ 1

0

12dt =

∫ 1

0

dt = 1.

Thus, the total energy of the pulse is:

Ex = 1.

2) Energy in the Frequency Domain and Parseval’s Theorem Veri-
fication

Remark: Considering computing this integral is difficult, a precise calcu-
lation is not required for this question. It is sufficient to understand that,
according to Parseval’s Theorem, the energy in the frequency domain is equal
to the energy in the time domain.

3) Energy of Modulated Signal in Frequency Domain

A modulated signal is given by:

s(t) = x(t)ej2πf0t.

The Fourier transform property states that modulation shifts the frequency
spectrum:

S(f) = X(f − f0).
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Using Parseval’s theorem:

Es =

∫ ∞

−∞
|S(f)|2df =

∫ ∞

−∞
|X(f − f0)|2df.

Thus, the energy remains unchanged by modulation.

4) Practical Relevance of Parseval’s Theorem

Parseval’s theorem is crucial in signal processing and communications:

� It ensures energy conservation between time and frequency domains.

� It helps in analyzing signal power distribution in frequency-selective chan-
nels.

� It is used to design filters that minimize energy loss in communication
systems.

5 Orthogonality in Modulation and Its Effects

1) Orthogonality of cos(2πf0t) and sin(2πf0t)

Evaluating the integral over one period T = 1
f0
:∫ 1/f0

0

cos(2πf0t) sin(2πf0t)dt.

Using the identity:
2 cosA sinA = sin(2A),

we rewrite the integral as:

1

2

∫ 1/f0

0

sin(4πf0t)dt.

Since sin(4πf0t) completes full cycles over the integral limits, the result is zero,
proving orthogonality.

2) Quadrature Amplitude Modulation (QAM) and Orthogonality

QAM is based on the combination of two orthogonal signals, typically:

s(t) = I(t) cos(2πf0t) +Q(t) sin(2πf0t),

where I(t) and Q(t) are independent data streams.

Since cos(2πf0t) and sin(2πf0t) are orthogonal, they can be separated at the
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receiver without interference. This property allows efficient bandwidth usage
and increased data transmission rates.

3) Effect of Noise n(t) in Demodulation

When noise n(t) is present in the received signal:

y(t) = s(t) + n(t),

applying matched filtering with the orthogonal basis functions helps in extract-
ing I(t) and Q(t) independently, reducing interference effects. Since noise is
typically spread across frequencies, the orthogonal components remain largely
unaffected, improving signal demodulation and reducing error rates.

6 Orthogonality in CDMA-like Waveforms

6.1 Compute the Inner Product

1) The inner product of two signals is defined as:

⟨ϕ1, ϕ2⟩ =
∫ T

0

ϕ1(t)ϕ2(t) dt.

Breaking the integral into appropriate intervals:

⟨ϕ1, ϕ2⟩ =
∫ T/4

0

(1)(1)dt+

∫ T/2

T/4

(1)(−1)dt+

∫ 3T/4

T/2

(−1)(−1)dt+

∫ T

3T/4

(−1)(1)dt.

Evaluating each term: ∫ T/4

0

dt = T/4,∫ T/2

T/4

−dt = −T/4,∫ 3T/4

T/2

dt = T/4,∫ T

3T/4

−dt = −T/4.

Summing the values:

⟨ϕ1, ϕ2⟩ =
T

4
− T

4
+

T

4
− T

4
= 0.
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2) Since the inner product is zero, the signals are fully orthogonal.

6.2 Signal Separation in a CDMA-like System

A received composite signal is given by:

r(t) = a1ϕ1(t) + a2ϕ2(t).

1) Extracting a1

Taking the inner product with ϕ1(t):

⟨r, ϕ1⟩ =
∫ T

0

r(t)ϕ1(t)dt.

Substituting r(t):

⟨r, ϕ1⟩ =
∫ T

0

(a1ϕ1(t) + a2ϕ2(t))ϕ1(t)dt.

Using linearity and orthogonality:

⟨r, ϕ1⟩ = a1⟨ϕ1, ϕ1⟩+ a2⟨ϕ2, ϕ1⟩.

Since ⟨ϕ2, ϕ1⟩ = 0:
⟨r, ϕ1⟩ = a1⟨ϕ1, ϕ1⟩.

Thus,

a1 =
⟨r, ϕ1⟩
⟨ϕ1, ϕ1⟩

.

2) Extracting a2

Similarly, taking the inner product with ϕ2(t):

a2 =
⟨r, ϕ2⟩
⟨ϕ2, ϕ2⟩

.

3) Effect of Non-Orthogonality

If the signals were not orthogonal, the cross-term ⟨ϕ1, ϕ2⟩ would be nonzero,
leading to interference. This would make it impossible to perfectly separate a1
and a2, degrading performance in a CDMA system.
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