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1 Stochastic signals: Noise in Wireless

1. The input noise X(t) is modeled as white noise, meaning it has a flat
power spectral density:

PX(f) =
N0

2
, for all f

The noise passes through an ideal low-pass filter with impulse response
h(t) and cutoff frequency Bc, whose frequency response is:

H(f) =

{
1, |f | ≤ Bc

0, otherwise

The output noise Y (t) is given by the convolution Y (t) = X(t) ∗ h(t). In
the frequency domain, the PSD of Y (t) is:

PY (f) = PX(f) · |H(f)|2 =

{
N0

2 , |f | ≤ Bc

0, otherwise

Since the PSD of Y (t) is not flat over all frequencies but limited to the band
[−Bc, Bc], the noise is no longer white. Instead, it is called colored noise,
as the power is not uniformly distributed across the frequency spectrum.

2. The autocorrelation function of the output noise is given as:

RY (τ) = A · sin(2πBcτ)

2πBcτ

This function is a sinc function, which indicates that the noise samples
are correlated over time. The width of the main lobe of the sinc function
is inversely proportional to Bc.

When Bc increases, the sinc function becomes narrower. This means the
noise values at different times decorrelate more quickly, and the noise
behaves more like white noise. When Bc decreases, the sinc function
becomes wider. This leads to stronger time-domain correlation between
noise samples, and the noise appears more smooth or correlated over time.
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2 Digitalize your AM signal

1. When a baseband signal m(t), band-limited to B Hz, is modulated using
a sinusoidal carrier at frequency f0, the modulated signal is:

smod(t) = m(t) cos(2πf0t)

In the frequency domain, this corresponds to a spectrum:

Smod(f) =
1

2
M(f − f0) +

1

2
M(f + f0)

where M(f) is the Fourier transform of m(t). This means the baseband
spectrum is shifted to both +f0 and −f0, resulting in two symmetric
sidebands centered around ±f0, each of bandwidth B.

2. (a) The square wave can be expanded into its Fourier series:

sq(t) =

∞∑
k=1,3,5,...

4

πk
sin(2πkf0t)

It contains only odd harmonics of the fundamental frequency f0, i.e.,
components at f0, 3f0, 5f0, . . ..

(b) The modulated signal becomes:

smod(t) = m(t) · sq(t) =
∞∑

k=1,3,5,...

4

πk
m(t) sin(2πkf0t)

Using the modulation property in frequency domain (multiplication
in time → convolution in frequency), each harmonic sin(2πkf0t) shifts
the baseband signal to ±kf0.

(c) Therefore, the output spectrum will contain copies of M(f) centered
at ±f0,±3f0,±5f0, . . ., each scaled by 2

πk (since sin modulation gives
imaginary components at ±kf0).

3. Although square wave mixing introduces spectral components at 3f0, 5f0, . . .,
these components are far from the main carrier f0 and can be easily sepa-
rated in frequency. The receiver typically uses low-pass filters to isolate the
desired band around f0, effectively rejecting the out-of-band harmonics.

4. A low-pass filter centered at f0 with bandwidth slightly wider than the
message signal B can be used to suppress the higher-order harmonics.
This filter allows only the desired spectral component to pass through
while attenuating 3f0, 5f0, . . ..

5. Square waves (e.g., CLK signal) are easier and more power-efficient to
generate in CMOS circuits, making them a practical choice.
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3 Digitalize your AM signal

1. First, m(t) can be conveniently expressed as a sum of sinuses:

m(t) =
1

2
[sin(2π(fc + f1)t) + sin(2π(fc − f1)t)]

Which leads to a straightforward expression of the Fourier transform:

M(f) =
1

4j
[δ(f − fc − f1)− δ(f + fc + f1)

+ δ(f − (fc − f1))− δ(f + fc − f1)]

The Fourier transform of the sampled signal then consist of the continuous
Fourier transform repeated around multiples of fs, we can expand it and
then only keep the terms within ±fs/2:

M̃(f) =
1

4j

+∞∑
l=−∞

[δ(f − fc − f1 − lfs)− δ(f + fc + f1 − lfs)

+δ(f − (fc − f1)− lfs)− δ(f + fc − f1 − lfs)]

=
1

4j
[δ(f − (fc − f1))− δ(f + fc − f1)

+ δ(f − fc − f1 + fs)− δ(f + fc + f1 − fs)]

=
1

4j
[δ(f − 750 · 103)− δ(f + 750 · 103)

+ δ(f − 850 · 103)− δ(f + 850 · 103)]
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Figure 1: Spectrum M̃(f), in blue, the original elements of M(f) and in red,
the repetitions of M(f) due to sampling.
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We can see in Fig. 1 that the elements sinus in ±(fc + f1) is lost beyond
fs/2, but its repetition around±fs are re-injected between±fs/2, creating
a new frequency component at ±(fc + f1 − fs).

2. By taking the inverse Fourier transform of ˜M(f), we obtain :

F−1{M̃(f)} =
1

2
sin(2π(fc − f1)t) +

1

2
sin(2π(fc + f1 − fs)t)

We can indeed see that the sine of fc + f1 = 750 kHz is lost, but a new
sine of tc + f1 − fs = 850 kHz appeared. It is the phenomenon of aliasing.

3. Aliasing is caused by attempting to sample signals with a too low sampling
frequency and thus violating the Nyquist theorem. It can be avoided by:

• augmenting fs beyond 2 · (f1 + fc);

• using a low-pass filter which cut-offs every component of the signal
above fs

2 .

4 You can’t have the cake and eat it too

1. The sent signal is:

s(t)

t
0 τ/2−τ/2

5

2. The Fourier transform of the rectangle s(t) is

S(f) = 5τ sinc(fτ)

Ans its graph is:
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5τ

|S(f)|

f
0 1/τ−1/τ−2/τ−3/τ−4/τ 2/τ 3/τ 4/τ

3. Because the sinc is non-zero until infinity, it would require an infinite
sampling frequency to sample it, which is impossible.

5 Time to sing

The spectrum is drawn below, it evolves in the following way:

• The ideal low-pass filter removes everything that is beyond ±f0.

• The ADC turns the continuous spectrum in samples, and repeats it around
fs.

• The up-sampler interleaves zeros in the time domain as such :

x(2)[n] =

{
x[r], n = 2r, r ∈ Z∗

0,

Consider the discrete time Fourier transform of x[n] defined as X(ejω).
The discrete Fourier transform of x[n] over time period T is therefore :

X[k] = X(ej
2πfk
fs ) = X(ej

2πk
M ) = X(ej

2πk
Tfs )

Where M is the number of samples of the signal acquired in period T . We
can see that

fk =
k

T

which means that the frequency resolution is of 1
T [Hz]. When up-sampling

the signal into x(2)[n], thew pulsation ω is now defined relative to 2fs in-
stead of fs and the total number of samples becomes 2M because there are
twice as much samples in the same period T . Using the Fourier transform
identity for up-sapling, we have:
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X(2)(e
jω) = X((ejω)2)

X(2)(e
j
2πfk
2fs ) = X(ej

2πfk
fs )

X(2)(e
j 2πk

2M ) = X(ej
2πk
M )

X(2)(e
j 2πk
2fsT ) = X(ej

2πk
fsT )

X(2)[k] = X[k], k < M

Carefully note that the last line only holds for k < M because when k
reaches M , X has made a period and starts over but X(2) has not. In
other words, we have covered the whole ω for X but only half of it for
X(2). So what of the terms in k = M, ..., 2M − 1 ? Well, they are 0,
because they are ”created” by the up-sampling process but no additional
information can be created out of nowhere. In the end, the up-sampling
process maintained the same frequency resolution, and simply increased
the bandwidth available without new information. We therefore see on
the graph that the repeated spectra simply got further apart from each
other and the ”free space” was filled with zeros. Such an operation can be
useful when some further operations will be applied to the signal and might
create higher frequency components, in this case, up-sampling allows one
to avoid the creation of aliasing.

You might then say ”okay, if interleaving zeroes adds bandwidth, then
padding a bunch of zeros at the end of my signal to increase the acquisition
time will result in a finer frequency resolution 1

T !”. Nice try ! But
unfortunately, your zero-padded signal still contains the same information,
the zeros didn’t add any. You will ultimately end up with a finer discrete
Fourier transform, true, but the additional points will correspond to an
interpolation of the discrete Fourier transform with the minimum amount
of samples to contain all the useful signal.

• Finally, the modulator shifts the signal on the pass-band, which we rep-
resent by changing the labels with fc.
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