

EE-432 Solutions – DS/SS Exercises

Spring Semester 2025

8.1 DS/SS with Constant Energy/Symbol and Variable Bandwidth in AWGN

- (a) $B_c = \frac{G}{T_s} = \frac{1}{T_c}$
- (b) Signal energy per chip: $\frac{E_s}{G}$; noise energy per chip: N_0
- (c) Spectrum: flat over B_c , narrows after despreading
- (d) After despreading: signal energy E_s , noise energy N_0
- (e) SNR before: $\frac{E_s}{GN_0}$; after: $\frac{E_s}{N_0}$
- (f) Only noise in the useful bandwidth affects the SNR after despreading

8.2 DS/SS with Narrow Band Interferer

- (b) Interferer energy per chip: $\frac{E_I}{G}$
- (c) Spectrum: interferer spreads across B_c after mixing
- (d) After despreading: PSD $\frac{N_I}{G}$, bandwidth $\frac{1}{T_s}$, total energy $\frac{E_I}{G}$
- (e) SIR before: $\frac{E_s}{E_I}$; after: $\frac{GE_s}{E_I}$

8.3 Numerical Example

- (a) $R_c = R_s \cdot G = 10 \text{ kchips/s}$, $B_c = 10 \text{ kHz}$
- (b) $\text{SNR} = \frac{E_s}{N_0} = 10^3 = 30 \text{ dB}$
- (c) $\text{SIR} = \frac{E_s}{E_I/G} = 10 = 10 \text{ dB}$

8.4 DSSS with Constant Power and Fixed Bandwidth

- (a) $E_{s,\text{chip}} = P_s \cdot T_c$
- (b) $E_{n,\text{chip}} = N_0$
- (c) SNR before: $\frac{P_s}{N_0}$
- (d) Spectrum before: flat over B_c ; after despreading: narrows to $\frac{B_c}{G}$
- (e) Bandwidth after despreading: $\frac{B_c}{G}$
- (f) $E_{s,\text{symbol}} = P_s \cdot G \cdot T_c$
- (g) $E_{n,\text{symbol}} = N_0$
- (h) SNR after: $\frac{P_s G T_c}{N_0}$
- (i) Only noise in the reduced post-despreading bandwidth affects detection
- (j) SNR improves linearly with G

8.5 Despreading with Two Users

- (a) $\hat{b}^{(1)} = \sum c_i^{(1)} y_i$
- (b) $\hat{b}^{(1)} = b^{(1)} \sum c_i^{(1)} c_i^{(1)} + b^{(2)} \sum c_i^{(1)} c_i^{(2)}$
- (c) If $c^{(1)}$ and $c^{(2)}$ are orthogonal, interference from user 2 is eliminated
- (d) Example of a third orthogonal sequence:

$$c^{(3)} = \left[+\frac{1}{\sqrt{4}}, -\frac{1}{\sqrt{4}}, -\frac{1}{\sqrt{4}}, +\frac{1}{\sqrt{4}} \right]$$

- (e) Maximum number of orthogonal sequences of length $G = 4$ is 4