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5.1 Entropy

Consider a ternary symbol set s ∈ {a, b, c}. Two out of the three symbols have
equal probability of occurrence:

PS(a) = p, PS(b) = p

• Probability of the third symbol PS(c):

Since the total probability must sum to 1:

PS(a) + PS(b) + PS(c) = 1 ⇒ 2p+ PS(c) = 1 ⇒ PS(c) = 1− 2p

So,

PS(c) = 1− 2p

• Entropy H(s) of the source:

The entropy of a discrete source is given by:

H(s) = −
∑
i

PS(i) log2 PS(i)

Substituting the values:

H(s) = −p log2 p− p log2 p− (1− 2p) log2(1− 2p)

H(s) = −2p log2 p− (1− 2p) log2(1− 2p)

H(s) = −2p log2 p− (1− 2p) log2(1− 2p)

This expression is valid for 0 < p < 0.5, since probabilities must be non-
negative and 1− 2p ≥ 0.
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• Value of p that maximizes the entropy:

Entropy is maximized when all outcomes are equally likely. For a ternary
distribution:

PS(a) = PS(b) = PS(c) =
1

3

So the value of p that maximizes the entropy is:

p =
1

3

5.2 Entropy and Conditional Entropy

Suppose that X is a random variable with entropy H(X) = 8 bits. Let Y =
f(X) be a deterministic function that maps each value of X to a unique value
of Y , i.e., f is injective.

• What is H(Y ), the entropy of Y ?

Since Y is a deterministic and injective function of X, the randomness in
Y is entirely due to the randomness in X. Also, every unique value of X
maps to a unique value of Y , so they have the same distribution (up to
renaming).

H(Y ) = H(X) = 8 bits

• What is H(Y |X), the conditional entropy of Y given X?

Since Y is a deterministic function ofX, knowingX completely determines
Y . Thus, there is no uncertainty about Y once X is known:

H(Y |X) = 0

• What is H(X|Y ), the conditional entropy of X given Y ?

Since f is injective (1-to-1), knowing Y uniquely determines X. Therefore,
once Y is known, there is no uncertainty about X:

H(X|Y ) = 0

• What is H(X,Y ), the joint entropy of X and Y ?

Using the identity:

H(X,Y ) = H(X) +H(Y |X)

Substituting known values:

H(X,Y ) = 8 + 0 = 8 bits
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5.3 BSC Mutual Information and Supported Rate

1. Consider a Binary Symmetric Channel (BSC) with crossover (error) proba-
bility p.
The maximum supported rate over a channel corresponds to its capacity. For a
BSC, the channel capacity C (in bits per channel use) is given by:

C = 1−H(p)

where H(p) is the binary entropy function:

H(p) = −p log2 p− (1− p) log2(1− p)

Therefore, the maximum supported rate (i.e., the mutual information between
input and output when the input is uniformly distributed) is:

Rmax = C = 1 + p log2 p+ (1− p) log2(1− p)

This is valid for 0 < p < 0.5. When p = 0, the channel is noiseless and C = 1.
When p = 0.5, the channel is completely noisy (output is independent of input),
and C = 0.
2.Consider a Binary Erasure Channel (BEC) with erasure probability pϵ. That
is, each transmitted bit is either received correctly or erased (with probability
pϵ).
The capacity of a Binary Erasure Channel (BEC) is the maximum reliable trans-
mission rate over the channel. Since the receiver knows which bits are erased
(but not their values), only the unerased bits contribute to the information rate.
The channel capacity C in bits per channel use is:

C = 1− pϵ

Therefore, the maximum supported rate is:

Rmax = 1− pϵ

This expression means that to reliably communicate over the BEC, the code
rate R must satisfy:

R ≤ 1− pϵ

As pϵ → 0, the channel becomes noiseless and C → 1. As pϵ → 1, the channel
becomes completely unreliable and C → 0.

5.4 Analyzing Channel Capacity and Spectral Efficiency

Given:

• Transmit power: P = 30dBm = 10
30−30

10 = 1W

• Noise spectral density: N0 = 10−9 W/Hz
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Capacity formula:

C = B · log2
(
1 +

P

N0 ·B

)
1. Compute channel capacity:

• For B = 1MHz = 106 Hz

P

N0 ·B
=

1

10−9 · 106
= 1000

C = 106 · log2(1 + 1000) ≈ 106 · log2(1001) ≈ 106 · 9.97 = 9.97Mbps

• For B = 5MHz = 5× 106 Hz

P

N0 ·B
=

1

10−9 · 5 · 106
= 200

C = 5 · 106 · log2(1 + 200) ≈ 5 · 106 · 7.65 = 38.25Mbps

• For B = 20MHz = 20 · 106 Hz

P

N0 ·B
=

1

10−9 · 20 · 106
= 50

C = 20 · 106 · log2(1 + 50) ≈ 20 · 106 · 5.67 = 113.4Mbps

2. Spectral Efficiency C
B in bits/s/Hz:

• B = 1MHz ⇒ 9.97×106

106 = 9.97 bps/Hz

• B = 5MHz ⇒ 38.25×106

5·106 = 7.65 bps/Hz

• B = 20MHz ⇒ 113.4×106

20·106 = 5.67 bps/Hz

3. Trend Explanation:

• As bandwidth increases, total capacity C increases.

• However, the spectral efficiency C
B decreases with bandwidth.

• This occurs because the SNR = P
N0B

decreases with increasing B,
reducing the efficiency of information transfer per Hz.

4. Saturation of Capacity:

• As B becomes large, P
N0B

≪ 1, and

log2

(
1 +

P

N0B

)
≈ P

N0B
· log2 e ⇒ C ≈ P

N0
· log2 e

• This means that capacity tends to a constant value as B → ∞,
regardless of further increases in bandwidth.

4



• In this example:

P

N0
=

1

10−9
= 109, ⇒ Cmax ≈ 109 · log2 e ≈ 1.44Gbps

• This is the saturation point. Beyond this, increasing B does not yield
proportional capacity gains.

5.5 Power Increase and Channel Coding Implications

1. (a) Compute capacity at two SNR levels:

For SNR = 1 : C = log2(1 + 1) = log2(2) = 1 bps

For SNR = 100 : C = log2(1 + 100) ≈ log2(101) ≈ 6.6582 bps

(b) After increasing power by a factor of 4 (+6 dB), SNR becomes:

Low SNR: SNR = 4 ⇒ C = log2(1 + 4) = log2(5) ≈ 2.32 bps

High SNR: SNR = 400 ⇒ C = log2(1+400) ≈ log2(401) ≈ 8.64 bps

(c) Interpretation:

• At low SNR, capacity increases significantly (more than doubles)
with a modest power increase.

• At high SNR, the capacity increase is marginal — higher power
becomes inefficient.

• Conclusion: In high SNR regimes, designers should focus on
bandwidth or coding gains rather than increasing power.

2. (a) Uncoded modulation schemes suffer from high bit error rates. Shan-
non capacity assumes perfect error correction. The gap (around 9
dB) represents the inefficiency of uncoded systems.

(b) Channel coding reduces the required Eb

N0
for a given error rate. It

allows operation close to Shannon capacity. It enables reliable trans-
mission even at lower power or narrower bandwidth.

(c) Minimum Eb

N0
:(

Eb

N0

)
min

= lim
R→0

2R − 1

R
= ln(2) ≈ 0.6931 ⇒ −1.6 dB

• As R → 0, the required Eb

N0
approaches its theoretical minimum

of −1.6 dB.

• This defines the lower bound for error-free transmission regard-
less of coding or modulation.
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5.6 Automatic Repeat Request

(1) Total number of bits:

File size = 200× 8,000 = 1,600,000 bits

(2) Block error probability (single block):

Pblock = 1− (1− Pe)
L ≈ 1− e−Pe·L

Pblock ≈ 1− e−10−6·1,600,000 = 1− e−1.6 ≈ 1− 0.2019 = 0.7981

So, there is approximately a 79.8% chance that the block contains at least one
error.

(3) Splitting the file into 100 blocks:
Each block has

L =
1,600,000

100
= 16,000 bits

Pblock = 1− (1− 10−6)16,000 ≈ 1− e−0.016 ≈ 1− 0.9841 = 0.0159

So, each smaller block has about a 1.59% chance of being corrupted.

(4) Trade-off Discussion:

• Fewer large blocks:

– Lower overhead per block

– Higher chance of block error, which increases retransmissions

• More smaller blocks:

– Higher reliability per block (lower error probability)

– Higher relative overhead (more checksums and feedback messages)

– Lower initial latency

In practice, block size is optimized to balance throughput, reliability, and system
latency.

5.7 Detection and Correction Using Block Codes in BSC

1. Code Rate:

R =
k

n
=

4

7

2. Number of detectable errors:

t′ = dmin − 1 = 3− 1 = 2
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3. Number of correctable errors:

t =

⌊
dmin − 1

2

⌋
=

⌊
2

2

⌋
= 1
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