Telecommunications Systems Exercises 5:
Solutions

May 2025

5.1 Entropy

Consider a ternary symbol set s € {a,b,c}. Two out of the three symbols have
equal probability of occurrence:

Ps(a):p, Ps(b)zp

e Probability of the third symbol Ps(c):

Since the total probability must sum to 1:

Ps(a) + Ps(b) + Ps(¢) =1=2p+ Ps(¢) =1 = Ps(c) =1—2p

So,
Ps(c)=1—2p

e Entropy H(s) of the source:

The entropy of a discrete source is given by:

H(s) = — Z Ps(i) log, Ps(i)

Substituting the values:
H(s) = —plogyp — plogy p — (1 — 2p) logy (1 — 2p)

H(s) = —2plogy p — (1 — 2p) logy (1 — 2p)

| H(s) = —2plog, p — (1 — 2p) logy(1 — 2p) |

This expression is valid for 0 < p < 0.5, since probabilities must be non-
negative and 1 — 2p > 0.



e Value of p that maximizes the entropy:

Entropy is maximized when all outcomes are equally likely. For a ternary

distribution: .
Ps(a) = Ps(b) = Ps() = 5

So the value of p that maximizes the entropy is:

p=§

5.2 Entropy and Conditional Entropy

Suppose that X is a random variable with entropy H(X) = 8 bits. Let ¥ =
f(X) be a deterministic function that maps each value of X to a unique value
of Y, i.e., f is injective.

e What is H(Y), the entropy of Y'?

Since Y is a deterministic and injective function of X, the randomness in
Y is entirely due to the randomness in X. Also, every unique value of X
maps to a unique value of Y, so they have the same distribution (up to
renaming).

|H(Y) = H(X) = 8 bits]

e What is H(Y|X), the conditional entropy of Y given X7

Since Y is a deterministic function of X, knowing X completely determines
Y. Thus, there is no uncertainty about Y once X is known:

HY|X)=0

e What is H(X|Y), the conditional entropy of X given Y?

Since f is injective (1-to-1), knowing Y uniquely determines X . Therefore,
once Y is known, there is no uncertainty about X:

H(X|Y)=0
e What is H(X,Y), the joint entropy of X and Y?
Using the identity:
H(X,Y) = H(X) + H(Y|X)
Substituting known values:

H(X,Y) =8+0 =8 bits]



5.3 BSC Mutual Information and Supported Rate

1. Consider a Binary Symmetric Channel (BSC) with crossover (error) proba-
bility p.

The maximum supported rate over a channel corresponds to its capacity. For a
BSC, the channel capacity C' (in bits per channel use) is given by:

C=1-H(p)
where H(p) is the binary entropy function:
H(p) = —plogyp — (1 —p)logy(1 —p)

Therefore, the maximum supported rate (i.e., the mutual information between
input and output when the input is uniformly distributed) is:

| R = C =1+ plogyp+ (1 — p) log,(1 — p) |

This is valid for 0 < p < 0.5. When p = 0, the channel is noiseless and C' = 1.
When p = 0.5, the channel is completely noisy (output is independent of input),
and C' = 0.

2.Consider a Binary Erasure Channel (BEC) with erasure probability p.. That
is, each transmitted bit is either received correctly or erased (with probability
Pe)-

The capacity of a Binary Erasure Channel (BEC) is the maximum reliable trans-
mission rate over the channel. Since the receiver knows which bits are erased
(but not their values), only the unerased bits contribute to the information rate.
The channel capacity C' in bits per channel use is:

Czl_pe

Therefore, the maximum supported rate is:

This expression means that to reliably communicate over the BEC, the code
rate R must satisfy:
R S 1- De

As pe — 0, the channel becomes noiseless and C — 1. As p. — 1, the channel
becomes completely unreliable and C' — 0.

5.4 Analyzing Channel Capacity and Spectral Efficiency

Given:

30—30

e Transmit power: P =30dBm =10"1© =1W

e Noise spectral density: No = 1072 W/Hz



Capacity formula:

P
CB~log2(1+NO.B>

1. Compute channel capacity:

e For B=1MHz = 10°Hz

P 1
No-B  1079-106

= 1000

C = 10% - log,(1 + 1000) ~ 10° - log,(1001) ~ 10° - 9.97 = 9.97 Mbps
e For B=5MHz =5 x 105 Hz

P p—
No-B  1079-5-106

=200

C =5-10% - log,(1 + 200) ~ 5-10° - 7.65 = 38.25 Mbps
e For B =20MHz = 20 - 106 Hz

P 1
No-B  10-92-20-106

=50

C =20-10° - logy(1 4 50) ~ 20 - 10° - 5.67 = 113.4 Mbps

2. Spectral Efficiency & in bits/s/Hz:

o B=1MHz = 29710 — 997 bps/Hy

o B =5MHz = 32510 — 7.65bps/Hz
o B =20MHz = 134x10° — 5 67hps/Hy,

3. Trend Explanation:

e As bandwidth increases, total capacity C increases.
e However, the spectral efficiency % decreases with bandwidth.

e This occurs because the SNR = ﬁ decreases with increasing B,

reducing the efficiency of information transfer per Hz.

4. Saturation of Capacity:

e As B becomes large, ﬁ < 1, and

P P P
log, 1+N0B %mdogze:(]%m-logﬁ

e This means that capacity tends to a constant value as B — oo,
regardless of further increases in bandwidth.



e In this example:

P 1 9 9
N =10 = 10°, = Cpnax = 107 -log, e = 1.44 Gbps

e This is the saturation point. Beyond this, increasing B does not yield
proportional capacity gains.

5.5 Power Increase and Channel Coding Implications

1. (a) Compute capacity at two SNR levels:
For SNR=1: C(C =logy(1+1)=1log,(2) = 1bps
For SNR =100: C =logy(1+ 100) ~ log,(101) ~ 6.6582 bps

(b) After increasing power by a factor of 4 (+6dB), SNR becomes:
Low SNR: SNR =4 = (C =logy(1+4) =log,(5) ~ 2.32bps
High SNR: SNR = 400 = C = log,(14+400) ~ log,(401) ~ 8.64 bps

(c) Interpretation:

e At low SNR, capacity increases significantly (more than doubles)
with a modest power increase.

e At high SNR, the capacity increase is marginal — higher power
becomes inefficient.

e Conclusion: In high SNR regimes, designers should focus on
bandwidth or coding gains rather than increasing power.

2. (a) Uncoded modulation schemes suffer from high bit error rates. Shan-
non capacity assumes perfect error correction. The gap (around 9
dB) represents the inefficiency of uncoded systems.

(b) Channel coding reduces the required %’) for a given error rate. It
allows operation close to Shannon capacity. It enables reliable trans-
mission even at lower power or narrower bandwidth.

(¢) Minimum %:

Ey CoR
<N0)m1 N Ilzlino R In(2) ~ 0.6931 = —1.6dB

e As R — 0, the required f,—g approaches its theoretical minimum
of —1.6dB.

e This defines the lower bound for error-free transmission regard-
less of coding or modulation.



5.6 Automatic Repeat Request
(1) Total number of bits:

File size = 200 x 8,000 = 1,600,000 bits

(2) Block error probability (single block):
Pk =1—(1—-P) ~1—eFE

Pijoek & 1 — ¢~107°1,600,000 _ 1 _ o=1.6 | _ () 9019 = 0.7981

So, there is approximately a 79.8% chance that the block contains at least one
error.

(3) Splitting the file into 100 blocks:

Each block has
I 1,600,000

100
Phloek = 1 — (1 —1076)16:000 & 1 _ 70016 & 1 _0.9841 = 0.0159

= 16,000 bits

So, each smaller block has about a 1.59% chance of being corrupted.
(4) Trade-off Discussion:
e Fewer large blocks:

— Lower overhead per block

— Higher chance of block error, which increases retransmissions
e More smaller blocks:

— Higher reliability per block (lower error probability)

— Higher relative overhead (more checksums and feedback messages)

— Lower initial latency

In practice, block size is optimized to balance throughput, reliability, and system
latency.

5.7 Detection and Correction Using Block Codes in BSC
1. Code Rate:

R =

kE_4
n 7

2. Number of detectable errors:

t' =dmin—1=3-1=2



3. Number of correctable errors:

N RR



