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From Analog to Digital Communications (1)

 Analog systems: direct link from the analog source signal to the analog RF

 Many drawbacks:
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gnal and vice versa through analog circuits

Analog circuits are complex
Analog circuits are noisy

Analog circuits can only
realize a very limited set
of signal processing

functions Analog microelectronics

e Analog FM modulation /
de-modulation
 Basic filtering only

L ()




From Analog to Digital Communications (2)

* Digital systems: a digitized source signal generates a digital baseband
signal that is then converted to an analog RF signal and vice versa

 Advantages:

= Digital Signal Processing
(DSP) provides unlimited
flexibility for processing
the source signal and the
baseband signal

= DSP can be kept fully
noise free and is 100%
reproducible
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Analog/RF IC
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Baseband RF

Digital Signal Processing

« Data compression

Digital modulation /
de-modulation
Equalization + DSP

Channel access contro

(«

e RF up-downconversion

Protection against errors
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Requirements for Digital Signal Processing

* Analog (physical) signals: continuous in time and amplitude.
» They can not be processed directly by a computer

* Digital Signal Processing requires digital signals.
= Adigital signal is often meant as a sufficiently close representation of an analog signal

« Digital signals: discrete in time and in amplitude.

D0 I N 1 R |

Analog Digital
(cont. Time and Amplitude) (discrete in amplitude) (discrete in time) (discrete in time and amplitude)
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Discrete Time / Sampled Signals

« A sampled signal describes the value of an originally continuous time signal
only attimes t=n-Tg, where we call T, the “sampling period”, and where
n=-—oo,.., 4+ IS an integer.

« Two options to think of the sampled version of the signal g(t)

Sampled Signal Discrete Time Signal
A continuous time, but “sampled” A list of values g[n] with
waveform g(t) with t € R n = —oo, ..., +00 and sampling period T

;’If;'? FT ‘ \T ) " --nn-u---n-
1 T T .ij ¥ L] L) L] T
P> 125 119 1
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Sampled Signal

 Obtain a sampled, but still continuous time representation of a signal by
multiplying the signal g(t) with a pulse-train

= Sampling period is T , i.e., sampling frequency f, = 1

Ts
= Asuitable pulse trainis 6, (t) = Y32 o 6(t —n - Ts)
+ 00 +00
O =g 5,0= ) gO)-8t-n-T)= ) gln-T)-8(t—n-T)
n=-—oo n=—oo

= Keeps only information about g(t) at the sample points
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Spectrum of a Sampled Signal

* Derive the spectrum of the sampled signal (with bandwidth B < z.lT , B < %fs)

= Multiplication in time domain with pulse-train & convolution in FD of the spectra

= Recall spectrum of a pulse-train with spacing T : Fid7 . (t)| = 1s (t) with f, = 1
S Ts fs T

S

2fs U =B 1/ 2/ - '
X - g
b . W e W
i | ) i —2fs -1, Lf 2f
I I 0 I
. L S .
-2f, 1 1 1fy  2f

 Observation: sampling creates periodic “images” of the spectrum with
period f = Tl leading to a periodic spectrum
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Perfect Reconstruction of a Sampled Signal (FD)

 Thereconstruction of a sampled signal is easy to find in the FD by
comparing at the spectra of the sampled and the original signal

= Need to remove the replica of the spectrum around n - f, forn = —c0, -1, 41, ..., +0

* Only the spectrum around DC for f = [—%fs, +%ﬁ9] remains

* FD: A brick-wall low-pass filter H(f) = Il (f) with cut-off frequency %fg

perfectly recovers G(f)
e TD: see next slide
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Perfect Reconstruction (DAC) of a Sampled Signal

 Thereconstruction is performed in the TD by simply applying the brick-wall
low-pass filter derived in the FD.
= Brick-wall low-pass filter in FD, corresponding to a SINC filter h(f) in TD
» The zero-crossing duration of the TD filter impulse response results from the BW of the brick-
wall width f; in the FD as fi =T,
sinrt - T - t
m-Ts -t

h(t) =

9O =hOx GO = ) gln]-h(t=n-T)

n=—oo

1 t=20

- Notethath(t)z{o t=n-T-.n%0
=n-T,
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Nyquist-Shannon Theorem (1)

 We have considered signals with bandwidth B < %fs (slide 10), but why?

« Consider sampling of a signal with bandwidth B > %fs:

G L\

—_—t——— ' $ - I : _——t— AESEES S -

—2fs  —1f; 1 Lfs 2fs —2f. —1f, ‘ 1 | 1f. 21,
%jﬁ é]rh _%f\ %H

* Observation: the original spectrum and all periodic “images” overlap

= Width of the overlapping spectrum region: 2 (B — %fg) = 2B — [,
This overlap of images of the spectrum is called “ALIASING”

=PrL




Nyquist-Shannon Theorem (2)

 When a signal is sampled with f; < 2 - B, aliasing “destroys” the original

spectrum in the overlapping bands around n % .

« These parts of the spectrum affected by aliasing
can not be restored

= Faithful reconstruction of the original signal is

no |OngerpOSSib|e! —— H.' et “: — :HF: ! '.r:*: :

Sampling theorem*:
Perfect reconstruction of signal from its samples
taken at sampling frequency f,, requires that

the signal must have a bandwidth B < %fs

6(Ifl >5fs)=0

=PrL *Thisis actually only the case if no further information (e.g., sparsity) is available




Discrete Time Representation

 The representation of a sampled signal as a continuous time signal g(t)
with Dirac-pulses at n - T is often convenient for illustration

 But, we typically prefer to simply express a sampled signal through the
value at the discrete sampling points g[n]

* The integer index n now replaces the time t
* We need to separately keep track of the sampling period T to relate backtot =n - T,

 We can go back and forth between the two representations as

§® =) glnl-s(t—n-T)

n=—oo

g[n] — g(n ) Ts)
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Discrete Fourier Transform (1)

We are often interested in numerically computing the spectrum of a sampled
signal, typically based on a limited number of samples

As the signal is sampled (frequency f;), we know that the spectrum is
periodic with period f,; = we only need to know one period of the spectrum

G(f+n-fo) =6G(f)
= While we could find any section of the spectrum we typically consider G(f) for —%fs <f< %fs

4

Any signal sampled with
redundant T redundant frequency f; can only

define the spectrum
1 1
g G(f) for =~ fs < f <3 fs
All other frequencies are
then automatically defined
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Discrete Fourier Transform (2)

Start from the sampled signal representation (assuming we have infinite
number of samples)

+00 too I
G(f) _ j g(t) Lo~ )2t gy — j z g[n] . 5(1— —n- TS) Lo~ 2Tft g —
+ o0 11=_4xh+°° . f
_ 2 g[n] . e_j.z.n.f.n.TS — 2 g[n] . e—]-z.n.n.TS
n=—oo n=-—

= Note: the FT of the sampled signal is a function of the ratio fi We therefore often consider G (%)

N S

redundant T redundant
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Discrete Fourier Transform (3)

« The spectrum G(f) is computed from an infinite number of a samples, BUT
In practice we only have a finite number of samples, so

N—-1
G~ Y gln]-ei2minT:

= Note that G(f) is still continuous in f
= HOWEVER, since we only have N samples, there can only be N independent values for G'(f)!
= All other values of G (f) can be reconstructed from those values.

« The DFT extracts only N independent (orthogonal) frequency components

= Since the spectrum is periodic with period f;, we extract f = k -%for k = —% + 1, %

f s - fio 1 4 2
G(k ' NS> =Gy = z gln] - FTENTT = Z g[n]-e W™
n=0 n=0

» Note that since the DFT spectrum is sampled, reconstruction yields a periodic TD signal
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Discrete Fourier Transform (Summary)

 The Discrete Fourier Transform (DFT) produces a discrete sampled,

spectrum with spectral components at f =k -%for k = —% +1,..,>

2
N-1
AL
Gk — z g[n] "€ J°N T A0
n=0 0wl -;’T/ T a T\T
» Fork < —g and k > g the spectrum is periodic | &
G- =Gl
 The discrete time signal can be reconstructed as ¥
N-1 .'f'.'.!!!?T]’"TTTT!.'.'f.'.'!"-
! 2T e PN
gln] = —Z G - el N B P A
N :
n=0

N N . . .
" Forn< — 3 and n > > the spectrum is periodic
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Up-Sampling (Motivation)

« Remember: the spectrum of a sampled (discrete time) signal outside ]—E fs
IS Jjust a periodic repetition of the spectrum in —%%
= Any manipulation of the sampled signal leaves the periodicity of the spectrum in tact
= To manipulate the spectrum outside ]—& &] we first have to increase the sampling rate
| qg(t)
Low-Pass Filter
T T 1 Gk x HK
oo p-om T | LRI [ 1 T T : H-%EI I In—* T T T-:-r TV
{ T 51 bt
N 1f —5f s 1f
L] SARANAETSANANAE h .
s 32l L2 34 s 6 78 el Filter affects baseband signal frequencies
TS T AT and all periodic images in the same way
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Up-Sampling

« UP-SAMPLING increases the sampling rate of a sampled signal.
* Provides access to the “images” of the original sampled signal to manipulate them
= Allows to combine/process the signal with other signals (including filters) at higher sampling rate
« Up-sampling from f to P - £, in two steps
1. Increase the number of samples, while leaving the cont. time sampled signal waveform in tact
2. Remove the now accessible image to keep only the original part of the non-periodic spectrum

1. Zero Insertion 2. Low-Pass Filtering
(k] kK
g’[k]=<gH p - meser g"'[k] = LPFn{g'[k]}
. 0 else i
& = G, G = LPF{Gy)
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Up-Sampling

« Example: up-sampling by 2x from f to 2f

Step-1:

Low-Pass Filtering Zero Insertion

Step-2:

-1
=

=P




Down-Sampling

 When a signal of interest only occupies a small part of the spectrum covered
by the Nyquist Bandwidth _Is &] we can reduce the sampling rate

= Before reducing the number of samples, we need to ensure that the Nyquist-Shannon criterion is
met also for the lower sampling rate

Down-Sampling from f to f; = fs In two steps:

1. Remove all spectral components above L (outS|de ]— %%])

2. Keep only every Pth sample

2. Low-Pass Filtering 1. Decimation
g'lk] = LPF n {g[k]} g'lkl =g'lP-k
2P
Gy = LPF N {Gy} Gl = & x Sn[k
2P iz
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Recap from Week-4

« Modern communication systems are based on sampled signals to allow for

advanced Digital Signal Processing

= DSP used for both data signals and communication waveforms

 We can think of sampled signals in two ways:

= Alist of discrete time samples (indexed with an integer, keeping the sampling period in mind)

= A continuous time sequence of weighted dirac pulses

 The spectrum of a signal sampled with f is periodic with period f,
» We refer to the periodic repetitions of the baseband spectrum around DC as “images”

redundant
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Recap from Week-4

 To be able to reconstruct a signal perfectly, it must be sampled with a
frequency that is at least twice the signal bandwidth: f, > 2 - BW
= Sampling below this frequency leads to aliasing (overlap of “images”)

* Perfect reconstruction of sampled signals: remove images with a low-pass
= Convolution with a brick-wall filter (with signal bandwidth BW)

 The (inverse) discrete fourier transfor computes a discrete spectrum of a
from a finite number of N samples

= N-—1 _]2_7Tkn . 1 N—1~ ]2_nkn
Gy = Ln=g gln]-e "N glnl = = XnZo G -e’ N
* For N samples with sampling rate f, (spaced T, = fi) we obtain a spectrum sampled at a

resolution of% => increasing the number of DFT samples increases spectrum resolution f;
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Recap from Week-4

With a sampled signal, we can only “manipulate” the spectrum between —%
and +%

To “access” the images, we need to first up-sample the signal
» [nsert zeros according to up-sampling factor

= Filter out the now “accessible” images with a low-pass filter

Gk 1) = GlE]

A i NIRRT
‘ IR VAR 7 J'r_ oo 1f of.
G'(k4;) = G'k] = G[K]
Al el
T TN TI””lefh e,
i) H'[k]
T 1 111 e 1111
7 - M R R RR R T B O I I A B B v I
T o T EYAREEY? 27,
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Applications: Software Radio (Digital) AM Receiver for Audio

« Example: A digital radio performs all modulation in the digital domain, using
a very high sampling frequency to directly output an RF signal after DA

conversion
= Multiple levels of filtering and sample rate conversion are common

=R




Applications: Software Radio (Digital) AM Transmitter for Audio

« Example: A digital radio performs all modulation in the digital domain, using
a very high sampling frequency to directly output an RF signal after DA

conversion
= Multiple levels of filtering and sample rate conversion are common

|

p—z= < n === 1 _,%_,_,(g)—}%—r

L e, )

hi 1
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Applications: Practical D-to-A Conversion / Reconstruction

* Digital-to-Analog Conversion reconstructs a continuous time signal analog
from a sampled digital signal
= Reminder: ideal reconstruction is analog LP-filtering of an ideal pulse-train (sampled signal)

Digital Analog

Pulse Generator LP Image Filter

‘!‘TTWITT@
L
 There are two main issues with this ideal setup

= An ideal Dirac-Pulse generator does not exist

= An ideal LP filter to perfectly remove images while leaving the signal spectrum in tact
also does not exist (sharp filters are difficult to realize as analog circuits)
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Applications: Practical D-to-A Conversion / Reconstruction

 To solve the pulse-generator problem, consider a non-ideal pulse generator
Pulse Generator

I
I|I T | |'I I

= The resulting analog signal is now a train of pulses p(t) and even though it is generated directly,
the pulse generator can be mathematlcally described as a filter that receives an ideal pulse train

g(t)-p(t)ngw) 5 (¢ = nTy)

» The resulting spectrum is a replica of the orlglnal spectrum at
multiples of f;, BUT filtered with the spectrum of the pulse
+ 0

~ 1
G(f) = P(O) = ) G(f —nfo)
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Applications: Practical D-to-A Conversion / Reconstruction

« To perfectly recover the original signal we need to do two things:
1. Remove the images (trivial: using a LP filter)

2. Correct the distortion of the non-ideal pulse (based on its frequency response)
within the band of interest

 Both objectives can be achieved with a single filter (“equalizer” + LP)

( T Pulse Generator Equalizer+LP
— < B : W E(f)
E(f) = { P(f) |f| gln] — } p(t) nal e
0 IfI > B I LR

= Note: since even non-ideal pulses are still short,
much shorter than T, P(f) decays slowly. The shorter the pulses, the smaller the impact
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Applications: Practical D-to-A Conversion / Reconstruction

 To solve the non-ideal LP problem, we realize that implementing an almost
Ideal LP filter is much easier in the digital than in the analog domain.

* Ildea: upsample the signal in the digital domain to “expose” the closest
Images and remove them by a digital LP filter

Digital ! Analog

gl —] 1n —] 2

T T 7 YAy AR AR
= Significantly relaxes the requirements on the analog filter
= Note: the digital filter can also contribute to the compensation of the non-ideal pulse (not shown)
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