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From Analog to Digital Communications (1)

• Analog systems: direct link from the analog source signal to the analog RF 

signal and vice versa through analog circuits

• Many drawbacks:

▪ Analog circuits are complex

▪ Analog circuits are noisy

▪ Analog circuits can only 

realize a very limited set 

of signal processing 

functions



From Analog to Digital Communications (2)

• Digital systems: a digitized source signal generates a digital baseband 

signal that is then converted to an analog RF signal and vice versa

• Advantages: 

▪ Digital Signal Processing 

(DSP) provides unlimited 

flexibility for processing 

the source signal and the 

baseband signal

▪ DSP can be kept fully 

noise free and is 100% 

reproducible



Requirements for Digital Signal Processing

• Analog (physical) signals: continuous in time and amplitude.

▪ They can not be processed directly by a computer

• Digital Signal Processing requires digital signals.

▪ A digital signal is often meant as a sufficiently close representation of an analog signal

• Digital signals: discrete in time and in amplitude.

Analog
(cont. Time and Amplitude) (discrete in amplitude) (discrete in time)

Digital
(discrete in time and amplitude)



Discrete Time / Sampled Signals

• A sampled signal describes the value of an originally continuous time signal 

only at times 𝐭 = 𝐧 ⋅ 𝑻𝒔, where we call 𝑻𝒔 the “sampling period”, and where 

𝒏 = −∞, … , +∞ is an integer.

• Two options to think of the sampled version of the signal 𝒈 𝒕

Sampled Signal

A continuous time, but “sampled” 

waveform ഺ𝑔 𝑡  with 𝑡 ∈ ℝ

Discrete Time Signal

A list of values 𝑔 𝑛  with 

𝑛 = −∞, … , +∞ and sampling period 𝑇𝑠 

𝑛 ... -3 -2 -1 0 1 2 3 4 ...

𝑔 𝑛  ... 0.4 0.5 1 1.2 1.25 1.19 1 0.6 ...



Sampled Signal

• Obtain a  sampled, but still continuous time representation of a signal by 

multiplying the signal 𝒈 𝒕  with a pulse-train 

▪ Sampling period is 𝑇𝑠 , i.e., sampling frequency 𝒇𝑠 =
𝟏

𝑻𝑠

▪ A suitable pulse train is 𝛿𝑇𝑠
𝑡 = σ𝑛=−∞

+∞ 𝛿 𝑡 − 𝑛 ⋅ 𝑇𝑠

ഺ𝑔 𝑡 = 𝑔 𝑡 ⋅ 𝛿𝑇𝑠
𝑡 = ෍

𝑛=−∞

+∞

𝑔 𝑡 ⋅ 𝛿 𝑡 − 𝑛 ⋅ 𝑇𝑠 = ෍

𝑛=−∞

+∞

𝑔 𝑛 ⋅ 𝑇𝑠 ⋅ 𝛿 𝑡 − 𝑛 ⋅ 𝑇𝑠

▪ Keeps only information about 𝒈 𝒕  at the sample points



Spectrum of a Sampled Signal

• Derive the spectrum of the sampled signal (with bandwidth 𝑩 <
𝟏

𝟐⋅𝑻𝑠
, 𝑩 <

𝟏

𝟐
𝑓𝑠)

▪ Multiplication in time domain with pulse-train ⇔ convolution in FD of the spectra

▪ Recall spectrum of a pulse-train with spacing 𝑇𝑠 : 𝓕 𝜹𝑻𝑠
𝒕 =

𝟏

𝑻𝑠
𝜹𝒇𝑠

𝒕  with 𝒇𝑠 =
𝟏

𝑻𝑠

• Observation: sampling creates periodic “images” of the spectrum with 

period 𝒇𝑠 =
𝟏

𝑻𝑠
, leading to a periodic spectrum



Perfect Reconstruction of a Sampled Signal (FD)

• The reconstruction of a sampled signal is easy to find in the FD by 

comparing at the spectra of the sampled and the original signal

▪ Need to remove the replica of the spectrum around 𝑛 ⋅ 𝑓0 for 𝑛 = −∞, −1, +1, … , +∞ 

▪ Only the spectrum around DC for 𝑓 = −
1

2
𝑓𝑠, +

1

2
𝑓𝑠  remains

• FD: A brick-wall low-pass filter 𝐻 𝑓 = Π𝑓𝑠
𝑓  with cut-off frequency 

1

2
𝑓𝑠 

perfectly recovers 𝐺 𝑓

• TD: see next slide



Perfect Reconstruction (DAC) of a Sampled Signal

• The reconstruction is performed in the TD by simply applying the brick-wall 

low-pass filter derived in the FD.

▪ Brick-wall low-pass filter in FD, corresponding to a SINC filter ℎ 𝑓  in TD

▪ The zero-crossing duration of the TD filter impulse response results from the BW of the brick-

wall width 𝑓𝑠 in the FD as 
1

𝑓𝑠
= 𝑇𝑠

ℎ 𝑡 =
sin 𝜋 ⋅ 𝑇𝑠 ⋅ 𝑡

𝜋 ⋅ 𝑇𝑠 ⋅ 𝑡

𝑔 𝑡 = ℎ 𝑡 × ഺ𝑔 𝑡 = ෍

𝑛=−∞

+∞

𝑔 𝑛 ⋅ ℎ 𝑡 − 𝑛 ⋅ 𝑇𝑠

▪ Note that ℎ 𝑡 = ቊ
1 𝑡 = 0
0 𝑡 = 𝑛 ⋅ 𝑇𝑠, 𝑛 ≠ 0



Nyquist-Shannon Theorem (1)

• We have considered signals with bandwidth 𝑩 <
𝟏

𝟐
𝒇𝒔 (slide 10), but why?

• Consider sampling of a signal with bandwidth 𝑩 >
𝟏

𝟐
𝒇𝒔:

• Observation: the original spectrum and all periodic “images” overlap

▪ Width of the overlapping spectrum region: 2 𝐵 −
1

2
𝑓𝑠 = 2𝐵 − 𝑓𝑠

This overlap of images of the spectrum is called “ALIASING”



Nyquist-Shannon Theorem (2)

• When a signal is sampled with 𝑓𝑠 < 𝟐 ⋅ 𝑩, aliasing “destroys” the original 

spectrum in the overlapping bands around n ⋅
𝑓𝑠

2
 . 

• These parts of the spectrum affected by aliasing 

can not be restored 

▪ Faithful reconstruction of the original signal is 

no longer possible!

Sampling theorem*: 

Perfect reconstruction of signal from its samples 

taken at sampling frequency 𝒇𝒔, requires that 

the signal must have a bandwidth 𝐁 <
𝟏

𝟐
𝒇𝒔 

𝑮 𝒇 >
𝟏

𝟐
𝒇𝒔 = 𝟎 

* This is actually only the case if no further information (e.g., sparsity) is available



Discrete Time Representation

• The representation of a sampled signal as a continuous time signal ഺ𝑔 𝑡  
with Dirac-pulses at 𝒏 ⋅ 𝑻𝒔 is often convenient for illustration

• But, we typically prefer to simply express a sampled signal through the 

value at the discrete sampling points 𝑔 𝑛  

▪ The integer index 𝑛 now replaces the time 𝑡

▪ We need to separately keep track of the sampling period 𝑇𝑠 to relate back to 𝑡 = 𝑛 ⋅ 𝑇𝑠

• We can go back and forth between the two representations as 

ഺ𝑔 𝑡 = ෍

𝑛=−∞

+∞

𝑔 𝑛 ⋅ 𝛿 𝑡 − 𝑛 ⋅ 𝑇𝑠

𝑔 𝑛 = ഺ𝑔 𝑛 ⋅ 𝑇𝑠



Discrete Fourier Transform (1)

• We are often interested in numerically computing the spectrum of a sampled 

signal, typically based on a limited number of samples

• As the signal is sampled (frequency 𝒇𝒔), we know that the spectrum is 

periodic with period 𝒇𝒔 ➔ we only need to know one period of the spectrum 

𝑮 𝒇 + 𝒏 ⋅ 𝒇𝟎 = 𝑮 𝒇

▪ While we could find any section of the spectrum we typically consider 𝑮 𝒇  for −
1

2
𝒇𝑠 < 𝑓 <

1

2
𝒇𝑠

Any signal sampled with 
frequency 𝑓𝑠 can only 
define the spectrum 

𝐺 𝑓  for −
1

2
𝑓𝑠 < 𝑓 <

1

2
𝑓𝑠 

All other frequencies are
then automatically defined 



Discrete Fourier Transform (2)

• Start from the sampled signal representation (assuming we have infinite 

number of samples)

ሸ𝐺 𝑓 = න
−∞

+∞

ഺ𝑔 𝑡 ⋅ 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑡 𝑑𝑡 = න
−∞

+∞

෍

𝑛=−∞

+∞

𝑔 𝑛 ⋅ 𝛿 𝑡 − 𝑛 ⋅ 𝑇𝑠 ⋅ 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑡 𝑑𝑡 =

= ෍

𝑛=−∞

+∞

𝑔 𝑛 ⋅ 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑛⋅𝑇𝑠 = ෍

𝑛=−∞

+∞

𝑔 𝑛 ⋅ 𝑒
−𝑗∙2∙𝜋∙𝑛⋅

𝑓
𝑓𝑠

▪ Note: the FT of the sampled signal is a function of the ratio 
𝑓

𝑓𝑠
. We therefore often consider 𝐺

𝑓

𝑓𝑠



Discrete Fourier Transform (3)

• The spectrum ሸ𝐺 𝑓  is computed from an infinite number of a samples, BUT 

in practice we only have a finite number of samples, so 

ሸ𝐺 𝑓 ≈ ෍

𝑛=0

𝑁−1

𝑔 𝑛 ⋅ 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑛⋅𝑇𝑠

▪ Note that ሸ𝐺 𝑓  is still continuous in 𝑓

▪ HOWEVER, since we only have 𝑁 samples, there can only be 𝑁 independent values for ሸ𝐺′ 𝑓 !

▪ All other values of ሸ𝐺 𝑓  can be reconstructed from those values.

• The DFT extracts only 𝑁 independent (orthogonal) frequency components

▪ Since the spectrum is periodic with period 𝑓𝑠, we extract 𝑓 = 𝑘 ⋅
𝑓𝑠

𝑁
 for 𝑘 = −

𝑁

2
+ 1, … ,

𝑁

2

ሸ𝐺 𝑘 ⋅
𝑓𝑠

𝑁
= ሸ𝐺𝑘 = ෍

𝑛=0

𝑁−1

𝑔 𝑛 ⋅ 𝑒
−𝑗∙2∙𝜋∙𝑘⋅

𝑓𝑠
𝑁∙𝑛⋅

1
𝑓𝑠 = ෍

𝑛=0

𝑁−1

𝑔 𝑛 ⋅ 𝑒−𝑗∙
2∙𝜋
𝑁 ⋅𝑘∙𝑛

▪ Note that since the DFT spectrum is sampled, reconstruction yields a periodic TD signal



Discrete Fourier Transform (Summary)

• The Discrete Fourier Transform (DFT) produces a discrete sampled, 

spectrum with spectral components at 𝑓 = 𝑘 ⋅
𝑓𝑠

𝑁
 for 𝑘 = −

𝑁

2
+ 1, … ,

𝑁

2

ሸ𝐺𝑘 = ෍

𝑛=0

𝑁−1

𝑔 𝑛 ⋅ 𝑒−𝑗∙
2∙𝜋
𝑁 ⋅𝑘∙𝑛

▪ For 𝑘 < −
𝑁

2
 and 𝑘 >

𝑁

2
 the spectrum is periodic

• The discrete time signal can be reconstructed as

𝑔 𝑛 =
1

𝑁
෍

𝑛=0

𝑁−1

ሸ𝐺𝑘 ⋅ 𝑒𝑗∙
2∙𝜋
𝑁 ⋅𝑘∙𝑛

▪ For 𝑛 < −
𝑁

2
 and 𝑛 >

𝑁

2
 the spectrum is periodic



Up-Sampling (Motivation)

• Remember: the spectrum of a sampled (discrete time) signal outside −
𝒇𝒔

𝟐
,

𝒇𝒔

𝟐
 

is just a periodic repetition of the spectrum in −
𝒇𝒔

𝟐
,

𝒇𝒔

𝟐
.

▪ Any manipulation of the sampled signal leaves the periodicity of the spectrum in tact

▪ To manipulate the spectrum outside −
𝒇𝒔

𝟐
,

𝒇𝒔

𝟐
 we first have to increase the sampling rate 

Filter affects baseband signal frequencies
and all periodic images in the same way



Up-Sampling

• UP-SAMPLING increases the sampling rate of a sampled signal.

▪ Provides access to the “images” of the original sampled signal to manipulate them

▪ Allows to combine/process the signal with other signals (including filters) at higher sampling rate

• Up-sampling from 𝒇𝒔 to 𝐏 ⋅ 𝐟𝐬 in two steps

1. Increase the number of samples, while leaving the cont. time sampled signal waveform in tact 

2. Remove the now accessible image to keep only the original part of the non-periodic spectrum

1. Zero Insertion

𝑔′ 𝑘 = ൞
𝑔

𝑘

𝑃

𝑘

𝑃
= integer

0 𝑒𝑙𝑠𝑒

ሸ𝐺𝑘
′ = ሸ𝐺𝑘

2. Low-Pass Filtering

𝑔′′ 𝑘 = LPFN
2

𝑔′ 𝑘

ሸ𝐺𝑘
′′ = LP𝐹𝑁

2

ሸ𝐺𝑘
′



Up-Sampling

• Example: up-sampling by 2x from 𝒇𝒔 to 𝟐𝒇𝒔
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Down-Sampling

• When a signal of interest only occupies a small part of the spectrum covered 

by the Nyquist Bandwidth −
𝒇𝒔

𝟐
,

𝒇𝒔

𝟐
 we can reduce the sampling rate

▪ Before reducing the number of samples, we need to ensure that the Nyquist-Shannon criterion is 

met also for the lower sampling rate

• Down-Sampling from 𝒇𝒔 to 𝒇𝒔
′ =

𝒇𝒔

𝑷
 in two steps:

1. Remove all spectral components above 
𝒇𝒔

′

𝟐
 (outside −

𝒇𝒔
′

𝟐
,

𝒇𝒔
′

𝟐
) 

2. Keep only every 𝑷th sample

1. Decimation

𝑔′′ 𝑘 = 𝑔′ 𝑃 ⋅ 𝑘

ሸ𝐺𝑘
′′ = ሸ𝐺𝑘

′ × 𝛿𝑁
𝑃

𝑘

2. Low-Pass Filtering

𝑔′ 𝑘 = LPF N
2P

𝑔 𝑘

ሸ𝐺𝑘
′ = LP𝐹 N

2P

ሸ𝐺𝑘



Recap from Week-4

• Modern communication systems are based on sampled signals to allow for 

advanced Digital Signal Processing 

▪ DSP used for both data signals and communication waveforms

• We can think of sampled signals in two ways: 

▪ A list of discrete time samples (indexed with an integer, keeping the sampling period in mind)

▪ A continuous time sequence of weighted dirac pulses 

• The spectrum of a signal sampled with 𝒇𝒔 is periodic with period 𝒇𝒔 

▪ We refer to the periodic repetitions of the baseband spectrum around DC as “images”



Recap from Week-4

• To be able to reconstruct a signal perfectly, it must be sampled with a 

frequency that is at least twice the signal bandwidth: 𝒇𝒔 > 𝟐 ⋅ 𝑩𝑾 

▪ Sampling below this frequency leads to aliasing (overlap of “images”)

• Perfect reconstruction of sampled signals: remove images with a low-pass

▪ Convolution with a brick-wall filter (with signal bandwidth 𝑩𝑾)

• The (inverse) discrete fourier transfor computes a discrete spectrum of a 

from a finite number of 𝑵 samples

ሸ𝐺𝑘 = σ𝑛=0
𝑁−1 𝑔 𝑛 ⋅ 𝑒−𝑗∙

2∙𝜋

𝑁
⋅𝑘∙𝑛

 𝑔 𝑛 =
1

𝑁
σ𝑛=0

𝑁−1 ሸ𝐺𝑘 ⋅ 𝑒𝑗∙
2∙𝜋

𝑁
⋅𝑘∙𝑛

▪ For 𝑵 samples with sampling rate 𝒇𝒔 (spaced T𝑠 =
1

𝑓𝑠
) we obtain a spectrum sampled at a 

resolution of 
𝑓𝑠

𝑁
 => increasing the number of DFT samples increases spectrum resolution 𝑓𝑠



Recap from Week-4

• With a sampled signal, we can only “manipulate” the spectrum between −
𝒇𝒔

𝟐
 

and +
𝒇𝒔

𝟐

• To “access” the images, we need to first up-sample the signal

▪ Insert zeros according to up-sampling factor

▪ Filter out the now “accessible” images with a low-pass filter



Applications: Software Radio (Digital) AM Receiver for Audio

• Example: A digital radio performs all modulation in the digital domain, using 

a very high sampling frequency to directly output an RF signal after DA 

conversion

▪ Multiple levels of filtering and sample rate conversion are common



Applications: Software Radio (Digital) AM Transmitter for Audio

• Example: A digital radio performs all modulation in the digital domain, using 

a very high sampling frequency to directly output an RF signal after DA 

conversion

▪ Multiple levels of filtering and sample rate conversion are common



Applications: Practical D-to-A Conversion / Reconstruction

• Digital-to-Analog Conversion reconstructs a continuous time signal analog 

from a sampled digital signal

▪ Reminder: ideal reconstruction is analog LP-filtering of an ideal pulse-train (sampled signal)

• There are two main issues with this ideal setup

▪ An ideal Dirac-Pulse generator does not exist

▪ An ideal LP filter to perfectly remove images while leaving the signal spectrum in tact 

also does not exist (sharp filters are difficult to realize as analog circuits)



Applications: Practical D-to-A Conversion / Reconstruction

• To solve the pulse-generator problem, consider a non-ideal pulse generator

▪ The resulting analog signal is now a train of pulses 𝑝 𝑡  and even though it is generated directly, 

the pulse generator can be mathematically described as a filter that receives an ideal pulse train

෤𝑔 𝑡 = 𝑝 𝑡 × ෍

−∞

+∞

𝑔 𝑛𝑇𝑠 ⋅ 𝛿 𝑡 − 𝑛𝑇𝑠

▪ The resulting spectrum is a replica of the original spectrum at 

multiples of 𝑓𝑠, BUT filtered with the spectrum of the pulse

෨𝐺 𝑓 = 𝑃 𝑡 ⋅
1

𝑇𝑠
෍

−∞

+∞

𝐺 𝑓 − 𝑛𝑓𝑠



Applications: Practical D-to-A Conversion / Reconstruction

• To perfectly recover the original signal we need to do two things:

1. Remove the images (trivial: using a LP filter)

2. Correct the distortion of the non-ideal pulse (based on its frequency response) 

within the band of interest

• Both objectives can be achieved with a single filter (“equalizer” + LP)

  𝐸 𝑓 = ቐ

𝑇𝑠

𝑃 𝑓
⋅ 𝑓 < 𝐵

0 𝑓 > 𝐵

▪ Note: since even non-ideal pulses are still short, 

much shorter than 𝑇𝑠, 𝑃 𝑓  decays slowly. The shorter the pulses, the smaller the impact



Applications: Practical D-to-A Conversion / Reconstruction

• To solve the non-ideal LP problem, we realize that implementing an almost 

ideal LP filter is much easier in the digital than in the analog domain.

• Idea: upsample the signal in the digital domain to “expose” the closest 

images and remove them by a digital LP filter

▪ Significantly relaxes the requirements on the analog filter

▪ Note: the digital filter can also contribute to the compensation of the non-ideal pulse (not shown)
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