

EE-432

Systeme de

Telecommunication

Prof. Andreas Burg
Joachim Tapparel, Yuqing Ren, Jonathan Magnin

Sampling and Quantization

Week 4: Table of Contents

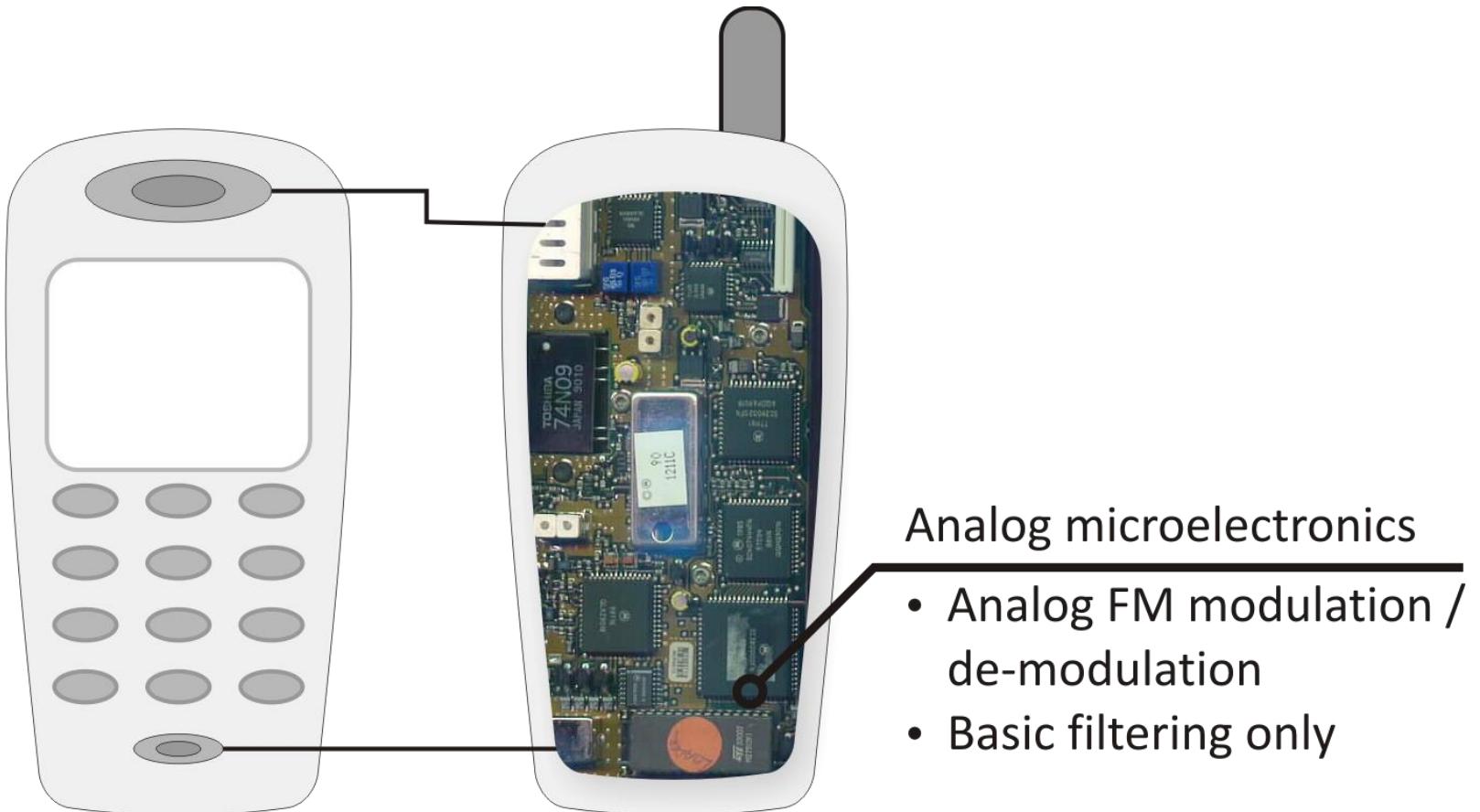
- **Sampled Signals in Time and Frequency Domain**
- **Discrete Fourier Transform**
- **Up/Down-Sampling**
- **Applications**
 - Practical Digital-to-Analog Conversion
 - Digital AM Audio Transceiver

From Analog to Digital Communications (1)

- **Analog systems:** direct link from the analog source signal to the analog RF signal and vice versa through analog circuits

- **Many drawbacks:**

- Analog circuits are complex
- Analog circuits are noisy
- Analog circuits can only realize a **very limited set of signal processing functions**

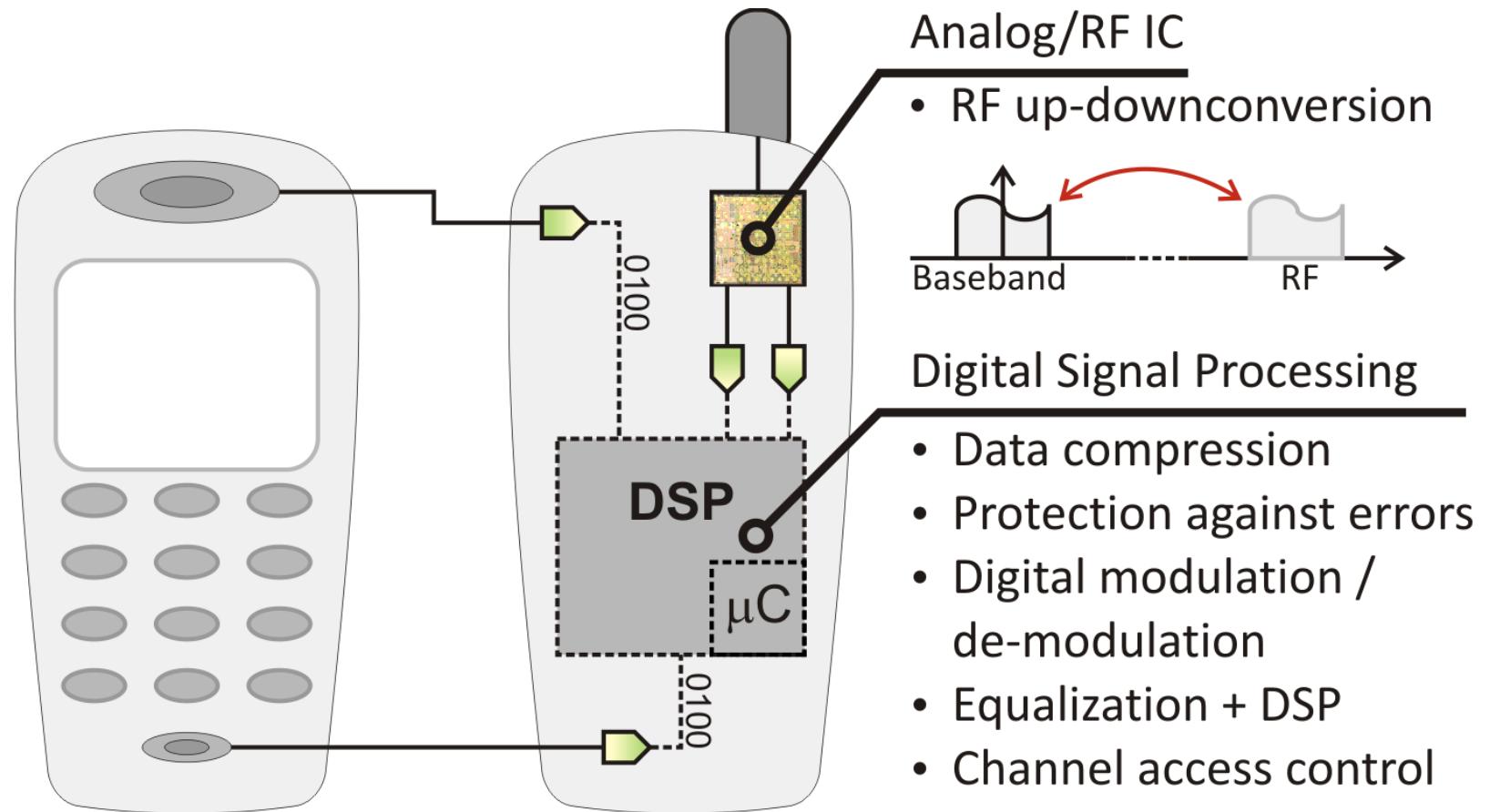


From Analog to Digital Communications (2)

- Digital systems: a digitized source signal generates a digital baseband signal that is then converted to an analog RF signal and vice versa

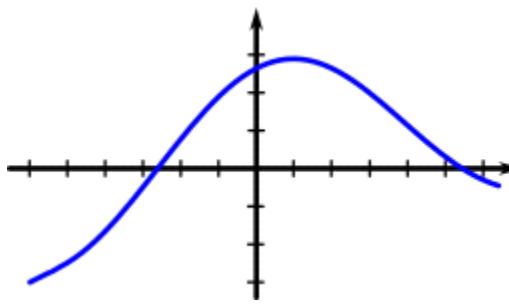
- **Advantages:**

- Digital Signal Processing (DSP) provides unlimited flexibility for processing the source signal and the baseband signal
- DSP can be kept fully noise free and is 100% reproducible

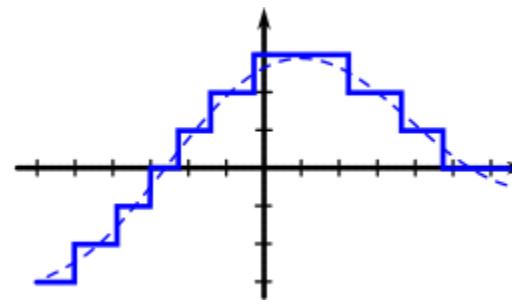


Requirements for Digital Signal Processing

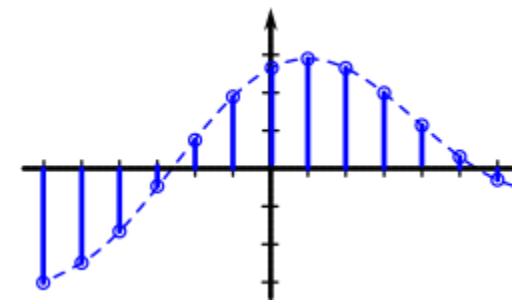
- **Analog (physical) signals: continuous in time and amplitude.**
 - They can not be processed directly by a computer
- **Digital Signal Processing requires digital signals.**
 - A digital signal is often meant as a sufficiently close representation of an analog signal
- **Digital signals: discrete in time and in amplitude.**



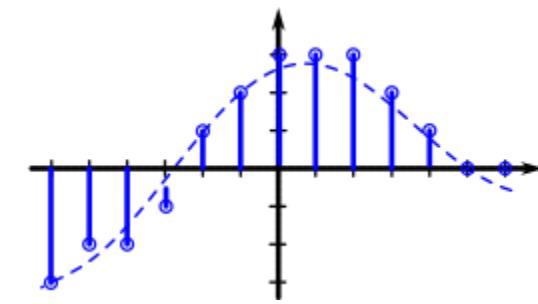
Analog
(cont. Time and Amplitude)



(discrete in amplitude)



(discrete in time)



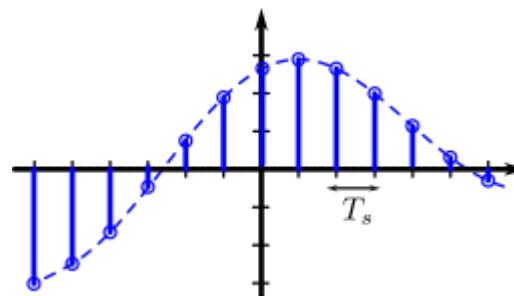
Digital
(discrete in time and amplitude)

Discrete Time / Sampled Signals

- A sampled signal describes the value of an originally continuous time signal only at times $t = n \cdot T_s$, where we call T_s the “sampling period”, and where $n = -\infty, \dots, +\infty$ is an integer.
- Two options to think of the sampled version of the signal $g(t)$

Sampled Signal

A continuous time, but “sampled” waveform $\ddot{g}(t)$ with $t \in \mathbb{R}$



Discrete Time Signal

A list of values $g[n]$ with $n = -\infty, \dots, +\infty$ and sampling period T_s

n	...	-3	-2	-1	0	1	2	3	4	...
$g[n]$...	0.4	0.5	1	1.2	1.25	1.19	1	0.6	...

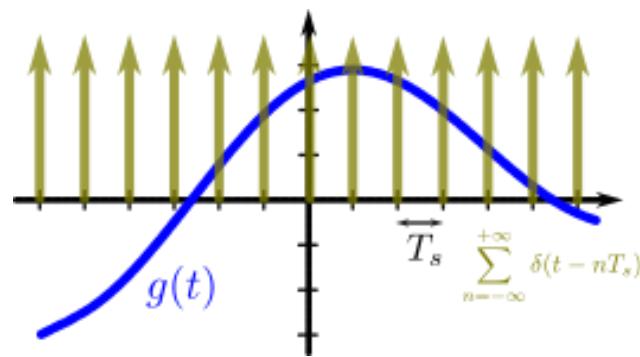
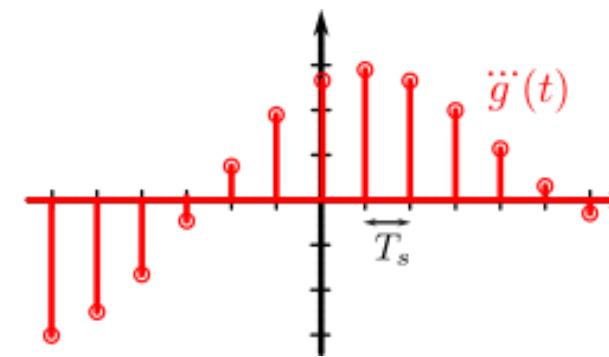
Sampled Signal

- Obtain a sampled, but still continuous time representation of a signal by multiplying the signal $g(t)$ with a pulse-train

- Sampling period is T_s , i.e., sampling frequency $f_s = \frac{1}{T_s}$

- A suitable pulse train is $\delta_{T_s}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - n \cdot T_s)$

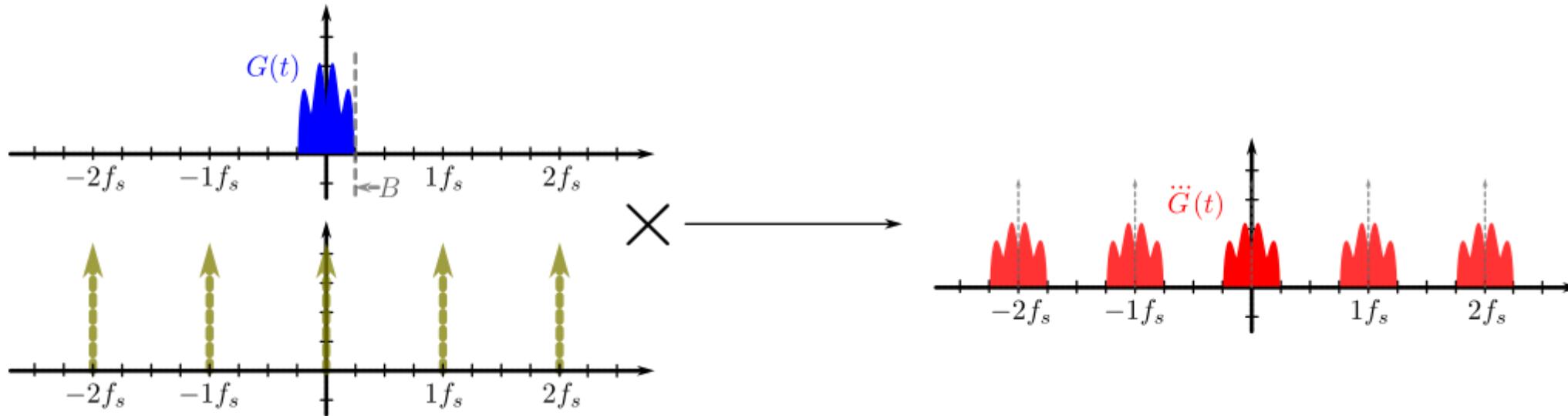
$$\ddot{g}(t) = g(t) \cdot \delta_{T_s}(t) = \sum_{n=-\infty}^{+\infty} g(t) \cdot \delta(t - n \cdot T_s) = \sum_{n=-\infty}^{+\infty} g(n \cdot T_s) \cdot \delta(t - n \cdot T_s)$$



- Keeps only information about $g(t)$ at the sample points

Spectrum of a Sampled Signal

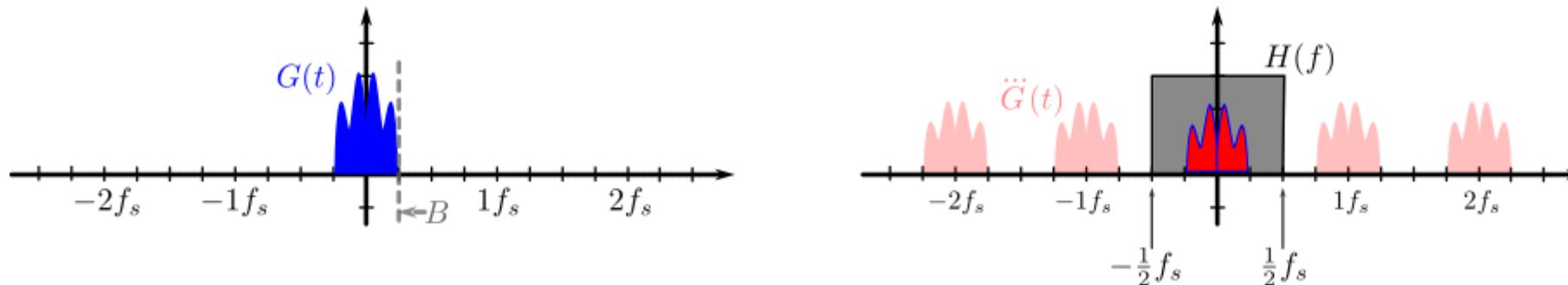
- Derive the spectrum of the sampled signal (with bandwidth $B < \frac{1}{2 \cdot T_s}$, $B < \frac{1}{2} f_s$)
 - Multiplication in time domain with pulse-train \Leftrightarrow convolution in FD of the spectra
 - Recall spectrum of a pulse-train with spacing T_s : $\mathcal{F}\{\delta_{T_s}(t)\} = \frac{1}{T_s} \delta_{f_s}(t)$ with $f_s = \frac{1}{T_s}$



- Observation: sampling creates periodic “images” of the spectrum with period $f_s = \frac{1}{T_s}$, leading to a periodic spectrum

Perfect Reconstruction of a Sampled Signal (FD)

- The reconstruction of a sampled signal is easy to find in the FD by comparing at the spectra of the sampled and the original signal



- Need to remove the replica of the spectrum around $n \cdot f_0$ for $n = -\infty, -1, +1, \dots, +\infty$
- Only the spectrum around DC for $f = \left[-\frac{1}{2}f_s, +\frac{1}{2}f_s\right]$ remains
- FD: A brick-wall low-pass filter $H(f) = \Pi_{f_s}(f)$ with cut-off frequency $\frac{1}{2}f_s$ perfectly recovers $G(f)$**
- TD: see next slide**

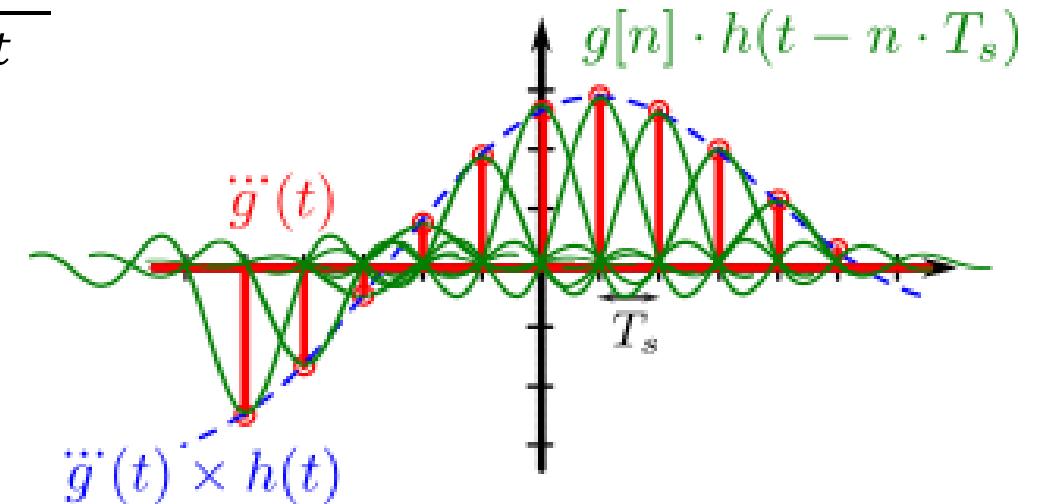
Perfect Reconstruction (DAC) of a Sampled Signal

- The reconstruction is performed in the TD by simply applying the brick-wall low-pass filter derived in the FD.

- Brick-wall low-pass filter in FD, corresponding to a SINC filter $h(f)$ in TD
- The zero-crossing duration of the TD filter impulse response results from the BW of the brick-wall width f_s in the FD as $\frac{1}{f_s} = T_s$

$$h(t) = \frac{\sin \pi \cdot T_s \cdot t}{\pi \cdot T_s \cdot t}$$

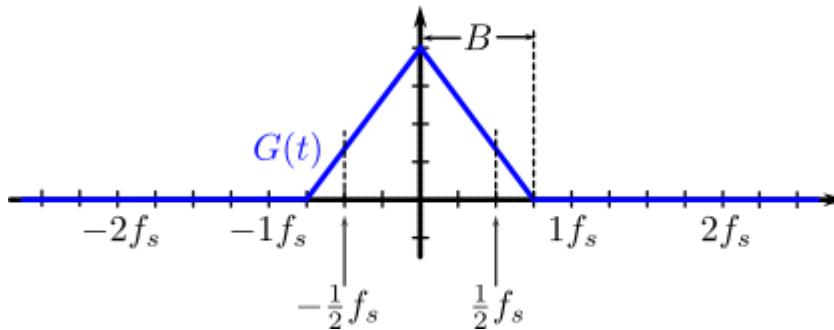
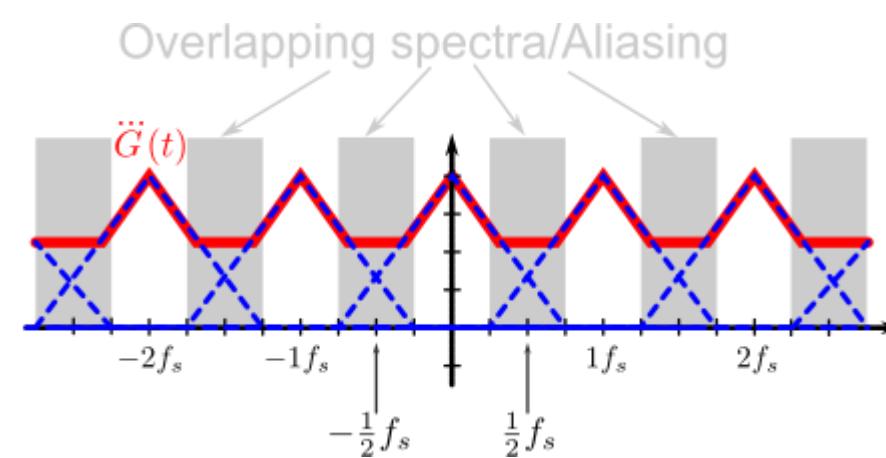
$$g(t) = h(t) \times \ddot{g}(t) = \sum_{n=-\infty}^{+\infty} g[n] \cdot h(t - n \cdot T_s)$$



- Note that $h(t) = \begin{cases} 1 & t = 0 \\ 0 & t = n \cdot T_s, n \neq 0 \end{cases}$

Nyquist-Shannon Theorem (1)

- We have considered signals with bandwidth $B < \frac{1}{2}f_s$ (slide 10), but why?
- Consider sampling of a signal with bandwidth $B > \frac{1}{2}f_s$:

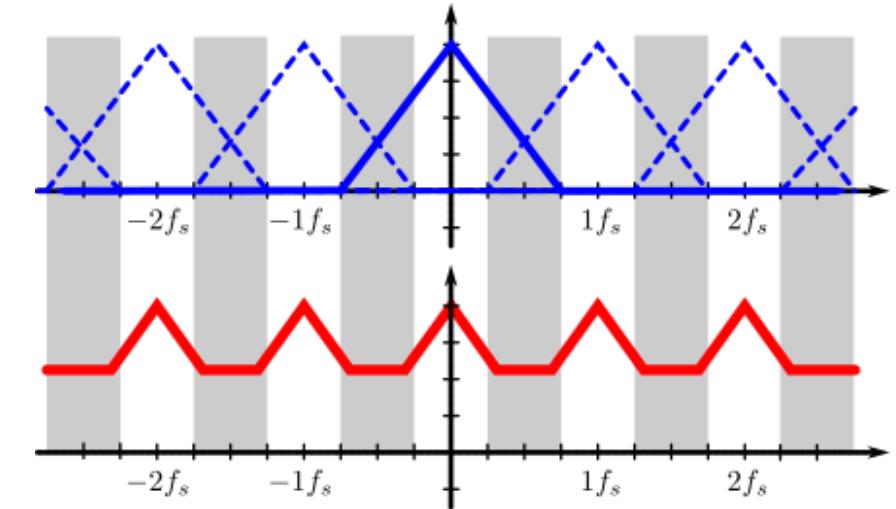


- Observation: the original spectrum and all periodic “images” overlap
 - Width of the overlapping spectrum region: $2\left(B - \frac{1}{2}f_s\right) = 2B - f_s$

This overlap of images of the spectrum is called “ALIASING”

Nyquist-Shannon Theorem (2)

- When a signal is sampled with $f_s < 2 \cdot B$, aliasing “destroys” the original spectrum in the overlapping bands around $n \cdot \frac{f_s}{2}$.
- These parts of the spectrum affected by aliasing can not be restored
 - Faithful reconstruction of the original signal is no longer possible!



Sampling theorem*:

Perfect reconstruction of signal from its samples taken at sampling frequency f_s , requires that

the signal must have a bandwidth $B < \frac{1}{2}f_s$

$$G(|f| > \frac{1}{2}f_s) = 0$$

Discrete Time Representation

- The representation of a sampled signal as a continuous time signal $\ddot{g}(t)$ with Dirac-pulses at $n \cdot T_s$ is often convenient for illustration
- But, we typically prefer to simply express a sampled signal through the value at the discrete sampling points $g[n]$
 - The integer index n now replaces the time t
 - We need to separately keep track of the sampling period T_s to relate back to $t = n \cdot T_s$
- We can go back and forth between the two representations as

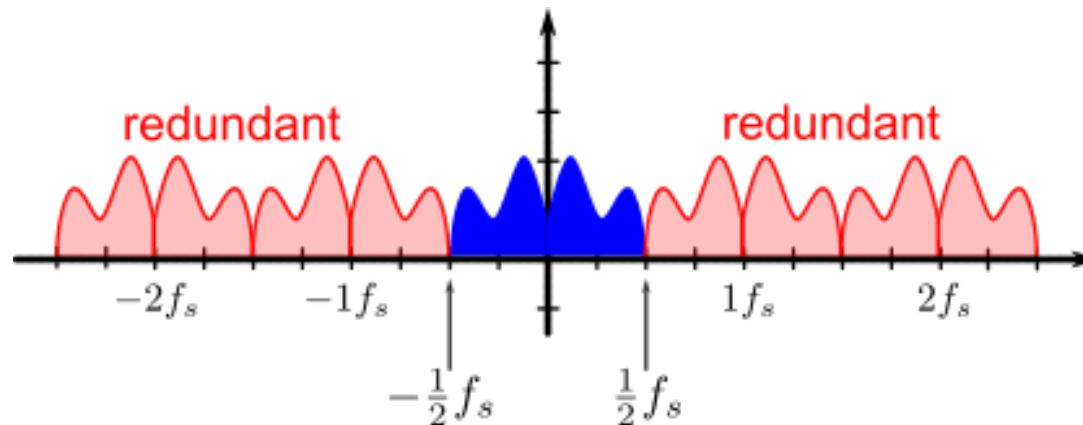
$$\ddot{g}(t) = \sum_{n=-\infty}^{+\infty} g[n] \cdot \delta(t - n \cdot T_s)$$
$$g[n] = \ddot{g}(n \cdot T_s)$$

Discrete Fourier Transform (1)

- We are often interested in numerically computing the spectrum of a sampled signal, typically based on a limited number of samples
- As the signal is sampled (frequency f_s), we know that the spectrum is periodic with period f_s → we only need to know one period of the spectrum

$$G(f + n \cdot f_s) = G(f)$$

- While we could find any section of the spectrum we typically consider $G(f)$ for $-\frac{1}{2}f_s < f < \frac{1}{2}f_s$



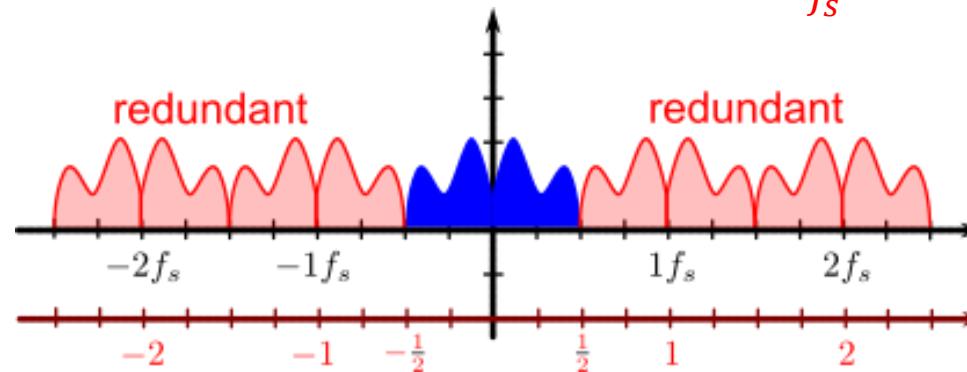
Any signal sampled with frequency f_s can only define the spectrum $G(f)$ for $-\frac{1}{2}f_s < f < \frac{1}{2}f_s$. All other frequencies are then automatically defined

Discrete Fourier Transform (2)

- Start from the sampled signal representation (assuming we have infinite number of samples)

$$\begin{aligned}\ddot{G}(f) &= \int_{-\infty}^{+\infty} \ddot{g}(t) \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t} dt = \int_{-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} g[n] \cdot \delta(t - n \cdot T_s) \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot t} dt = \\ &= \sum_{n=-\infty}^{+\infty} g[n] \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot n \cdot T_s} = \sum_{n=-\infty}^{+\infty} g[n] \cdot e^{-j \cdot 2 \cdot \pi \cdot n \cdot \frac{f}{f_s}}\end{aligned}$$

- Note: the FT of the sampled signal is a function of the ratio $\frac{f}{f_s}$. We therefore often consider $G\left(\frac{f}{f_s}\right)$



Discrete Fourier Transform (3)

- The spectrum $\ddot{G}(f)$ is computed from an infinite number of samples, BUT in practice we only have a finite number of samples, so

$$\ddot{G}(f) \approx \sum_{n=0}^{N-1} g[n] \cdot e^{-j \cdot 2 \cdot \pi \cdot f \cdot n \cdot T_s}$$

- Note that $\ddot{G}(f)$ is still continuous in f
 - **HOWEVER, since we only have N samples, there can only be N independent values for $\ddot{G}(f)$!**
 - All other values of $\ddot{G}(f)$ can be reconstructed from those values.
- **The DFT extracts only N independent (orthogonal) frequency components**

- Since the spectrum is periodic with period f_s , we extract $f = k \cdot \frac{f_s}{N}$ for $k = -\frac{N}{2} + 1, \dots, \frac{N}{2}$

$$\ddot{G}\left(k \cdot \frac{f_s}{N}\right) = \ddot{G}_k = \sum_{n=0}^{N-1} g[n] \cdot e^{-j \cdot 2 \cdot \pi \cdot k \cdot \frac{f_s}{N} \cdot n \cdot \frac{1}{f_s}} = \sum_{n=0}^{N-1} g[n] \cdot e^{-j \cdot \frac{2 \cdot \pi}{N} \cdot k \cdot n}$$

- Note that since the DFT spectrum is sampled, reconstruction yields a periodic TD signal

Discrete Fourier Transform (Summary)

- The Discrete Fourier Transform (DFT) produces a discrete sampled, spectrum with spectral components at $f = k \cdot \frac{f_s}{N}$ for $k = -\frac{N}{2} + 1, \dots, \frac{N}{2}$

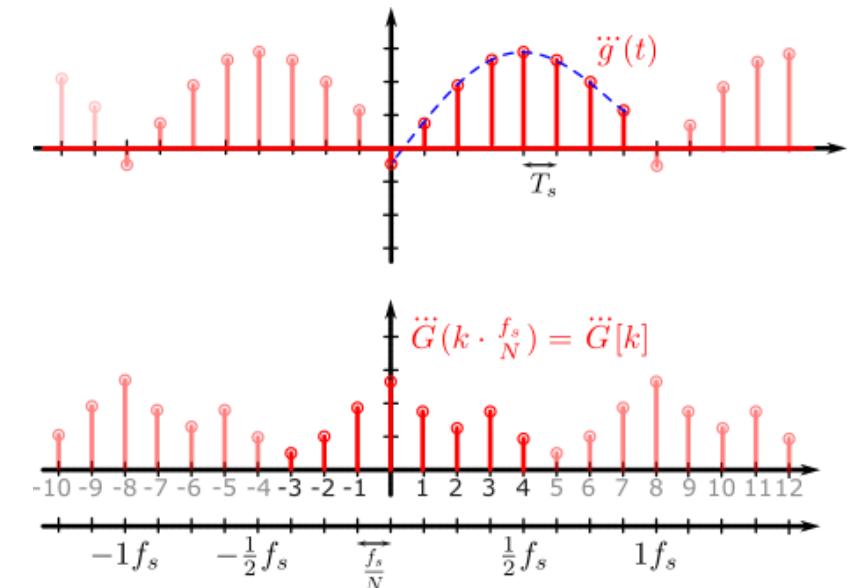
$$\ddot{G}_k = \sum_{n=0}^{N-1} g[n] \cdot e^{-j \cdot \frac{2 \cdot \pi}{N} \cdot k \cdot n}$$

- For $k < -\frac{N}{2}$ and $k > \frac{N}{2}$ the spectrum is periodic

- The discrete time signal can be reconstructed as

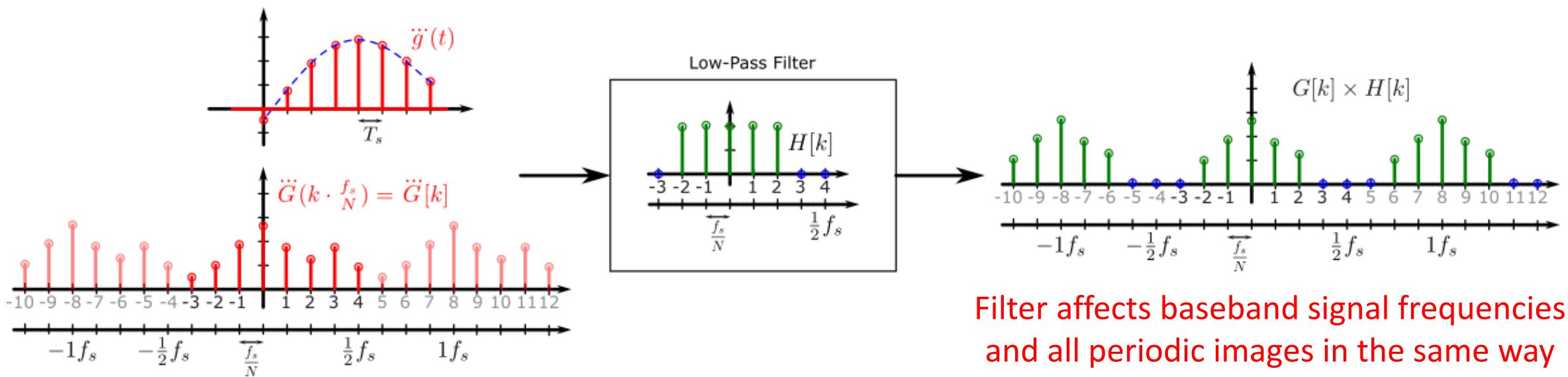
$$g[n] = \frac{1}{N} \sum_{n=0}^{N-1} \ddot{G}_k \cdot e^{j \cdot \frac{2 \cdot \pi}{N} \cdot k \cdot n}$$

- For $n < -\frac{N}{2}$ and $n > \frac{N}{2}$ the spectrum is periodic



Up-Sampling (Motivation)

- Remember: the spectrum of a sampled (discrete time) signal outside $\left]-\frac{f_s}{2}, \frac{f_s}{2}\right]$ is just a periodic repetition of the spectrum in $\left]-\frac{f_s}{2}, \frac{f_s}{2}\right]$.
 - Any manipulation of the sampled signal leaves the periodicity of the spectrum in tact
 - To manipulate the spectrum outside $\left]-\frac{f_s}{2}, \frac{f_s}{2}\right]$ we first have to increase the sampling rate



Up-Sampling

- **UP-SAMPLING increases the sampling rate of a sampled signal.**
 - Provides access to the “images” of the original sampled signal to manipulate them
 - Allows to combine/process the signal with other signals (including filters) at higher sampling rate
- **Up-sampling from f_s to $P \cdot f_s$ in two steps**
 1. Increase the number of samples, while leaving the cont. time sampled signal waveform in tact
 2. Remove the now accessible image to keep only the original part of the non-periodic spectrum

1. Zero Insertion

$$g'[k] = \begin{cases} g\left[\frac{k}{P}\right] & \frac{k}{P} = \text{integer} \\ 0 & \text{else} \end{cases}$$

$$\ddot{G}'_k = \ddot{G}_k$$

2. Low-Pass Filtering

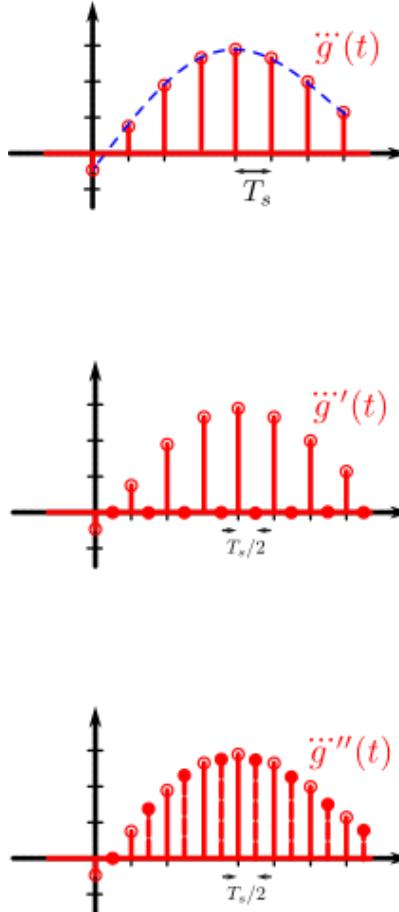
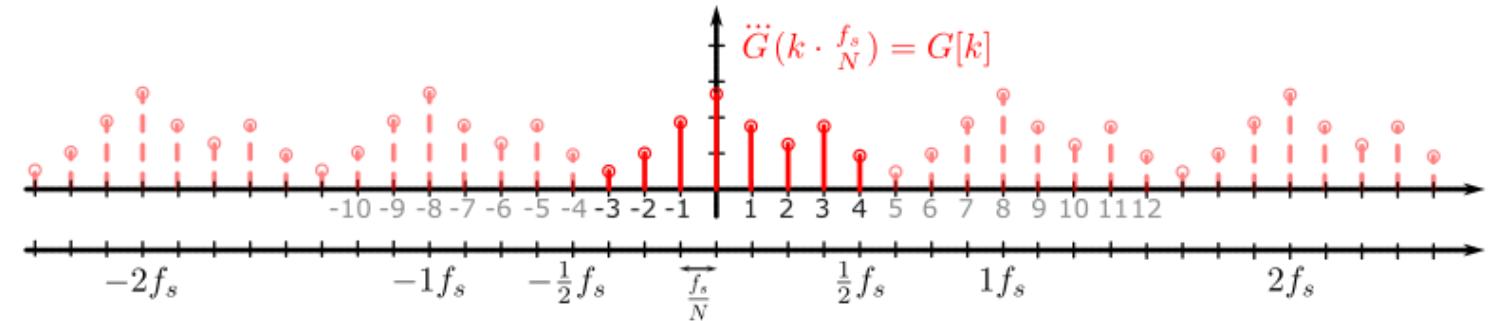
$$g''[k] = \text{LPF}_{\frac{N}{2}}\{g'[k]\}$$

$$\ddot{G}''_k = \text{LPF}_{\frac{N}{2}}\{\ddot{G}'_k\}$$

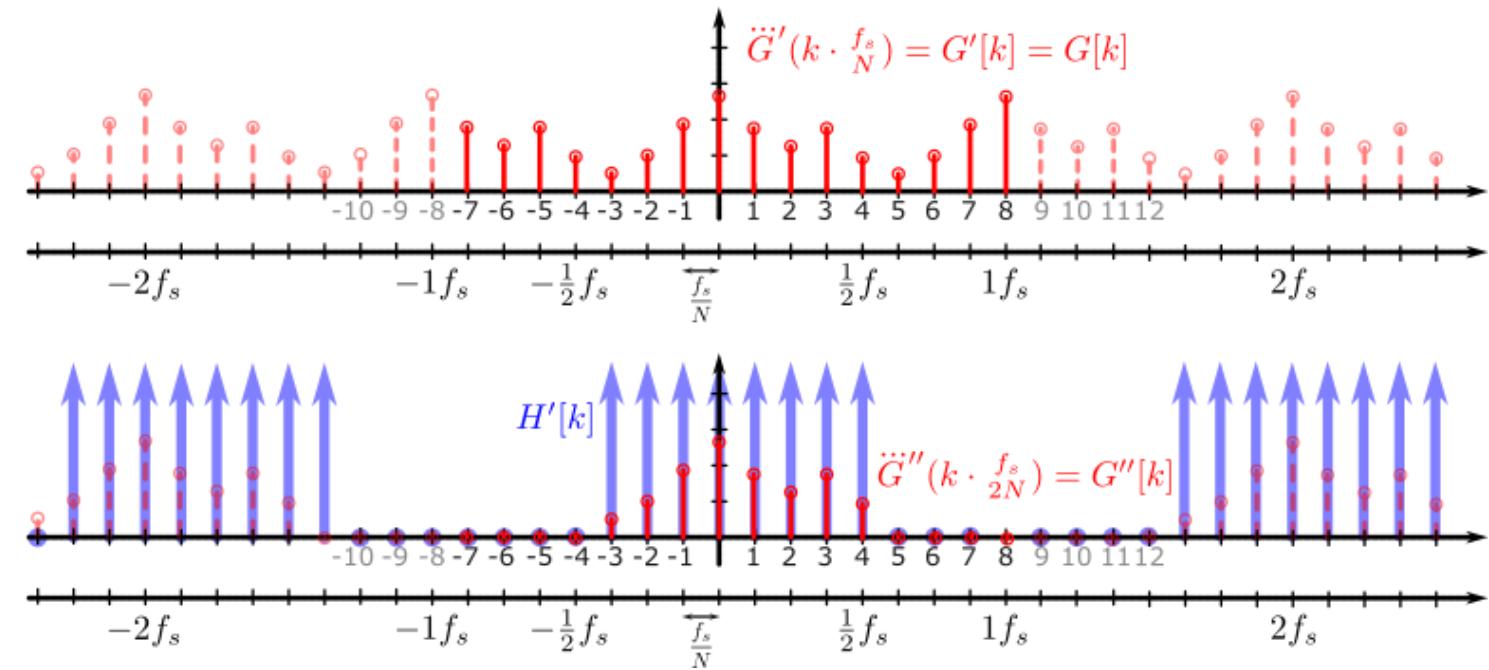
Up-Sampling

- Example: up-sampling by 2x from f_s to $2f_s$

Step-1:
Zero Insertion



Step-2:
Low-Pass Filtering



Down-Sampling

- When a signal of interest only occupies a small part of the spectrum covered by the Nyquist Bandwidth $\left]-\frac{f_s}{2}, \frac{f_s}{2}\right]$ we can reduce the sampling rate
 - Before reducing the number of samples, we need to ensure that the Nyquist-Shannon criterion is met also for the lower sampling rate
- Down-Sampling from f_s to $f'_s = \frac{f_s}{P}$ in two steps:
 1. Remove all spectral components above $\frac{f'_s}{2}$ (outside $\left]-\frac{f'_s}{2}, \frac{f'_s}{2}\right]$)
 2. Keep only every P th sample

2. Low-Pass Filtering

$$g'[k] = \text{LPF}_{\frac{N}{2P}}\{g[k]\}$$

$$\ddot{G}'_k = \text{LPF}_{\frac{N}{2P}}\{\ddot{G}_k\}$$

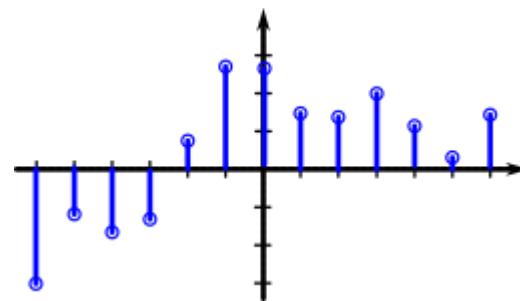
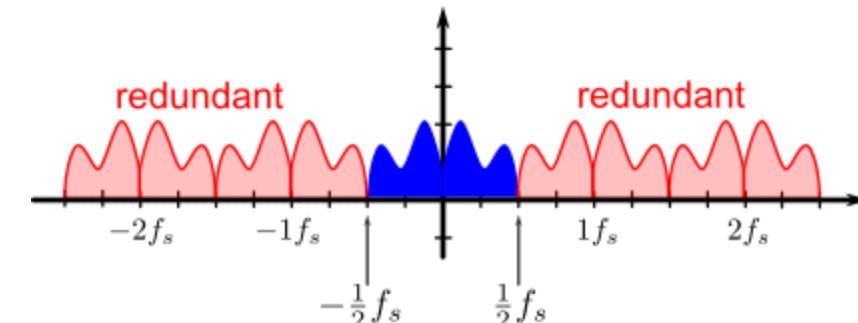
1. Decimation

$$g''[k] = g'[P \cdot k]$$

$$\ddot{G}''_k = \ddot{G}'_k \times \delta_{\frac{N}{P}}[k]$$

Recap from Week-4

- **Modern communication systems are based on sampled signals to allow for advanced Digital Signal Processing**
 - DSP used for both data signals and communication waveforms
- **We can think of sampled signals in two ways:**
 - A list of discrete time samples (indexed with an integer, keeping the sampling period in mind)
 - A continuous time sequence of weighted dirac pulses
- **The spectrum of a signal sampled with f_s is periodic with period f_s**
 - We refer to the periodic repetitions of the baseband spectrum around DC as “images”



Recap from Week-4

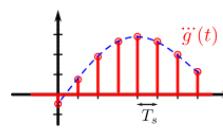
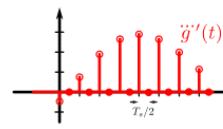
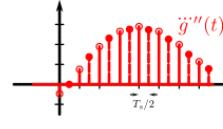
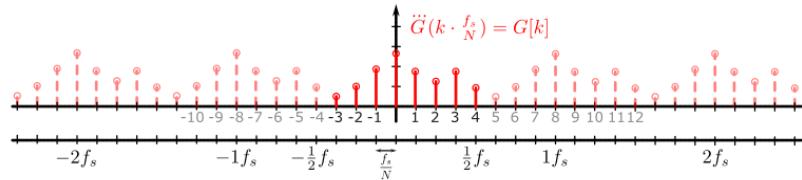
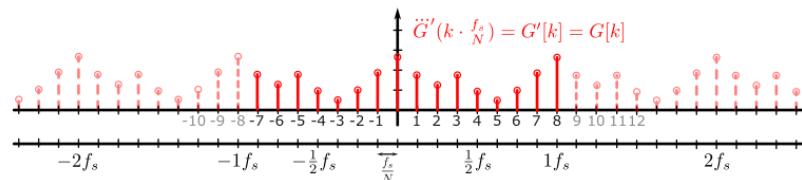
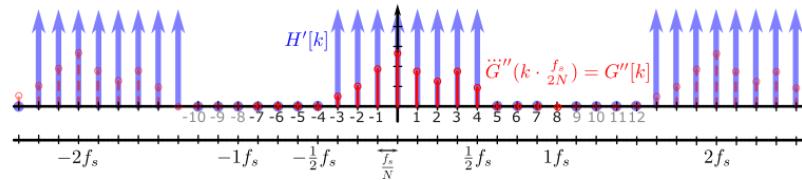
- To be able to reconstruct a signal perfectly, it must be sampled with a frequency that is at least twice the signal bandwidth: $f_s > 2 \cdot BW$
 - Sampling below this frequency leads to aliasing (overlap of “images”)
- Perfect reconstruction of sampled signals: remove images with a low-pass
 - Convolution with a brick-wall filter (with signal bandwidth BW)
- The (inverse) discrete fourier transform computes a discrete spectrum of a from a finite number of N samples

$$\ddot{G}_k = \sum_{n=0}^{N-1} g[n] \cdot e^{-j \cdot \frac{2\pi}{N} \cdot k \cdot n} \quad g[n] = \frac{1}{N} \sum_{n=0}^{N-1} \ddot{G}_k \cdot e^{j \cdot \frac{2\pi}{N} \cdot k \cdot n}$$

- For N samples with sampling rate f_s (spaced $T_s = \frac{1}{f_s}$) we obtain a spectrum sampled at a resolution of $\frac{f_s}{N}$ => increasing the number of DFT samples increases spectrum resolution f_s

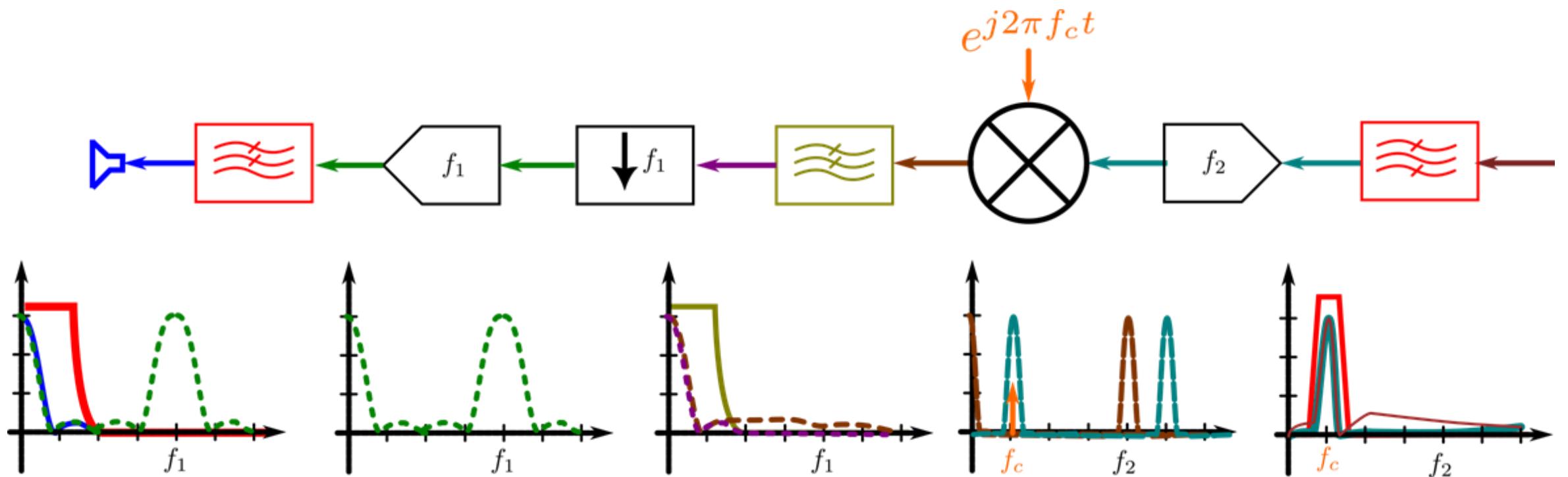
Recap from Week-4

- With a sampled signal, we can only “manipulate” the spectrum between $-\frac{f_s}{2}$ and $+\frac{f_s}{2}$
- To “access” the images, we need to first up-sample the signal
 - Insert zeros according to up-sampling factor
 - Filter out the now “accessible” images with a low-pass filter



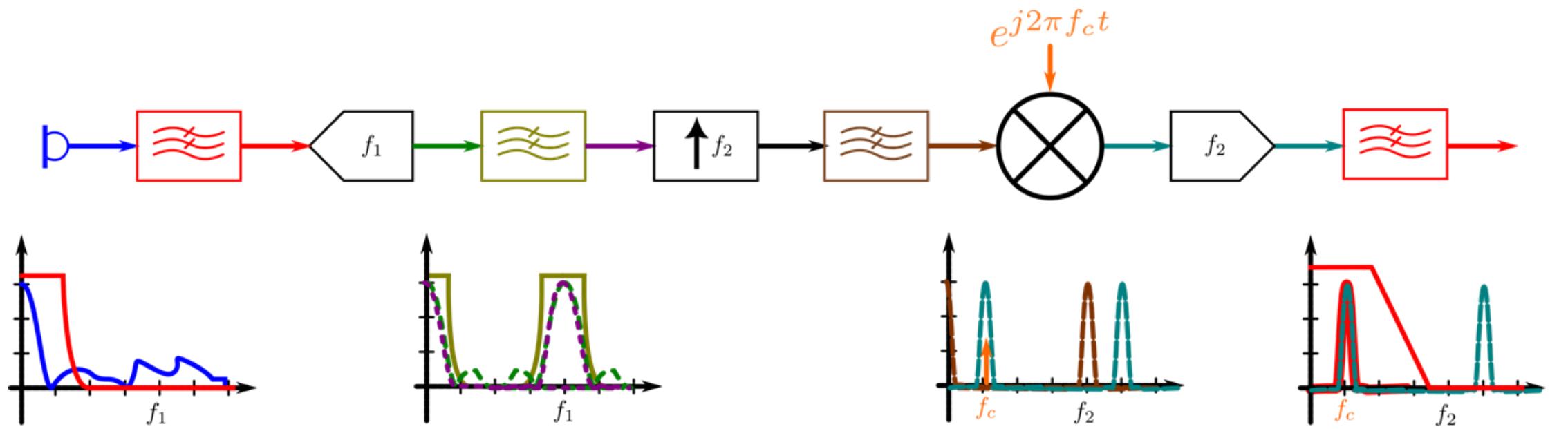
Applications: Software Radio (Digital) AM Receiver for Audio

- Example: A digital radio performs all modulation in the digital domain, using a very high sampling frequency to directly output an RF signal after DA conversion
 - Multiple levels of filtering and sample rate conversion are common



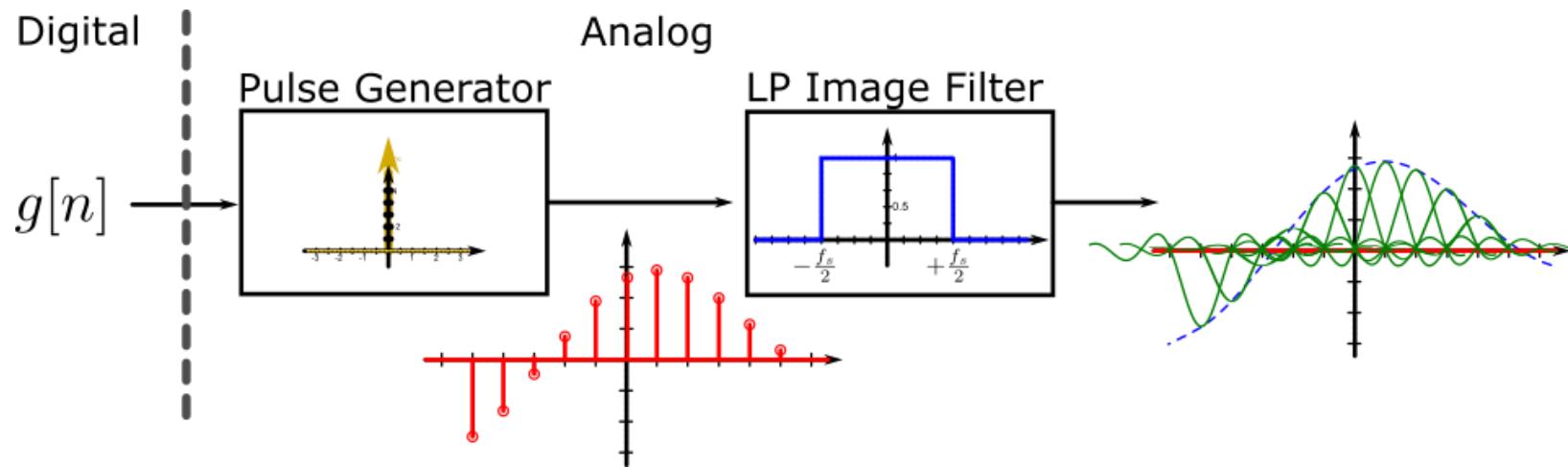
Applications: Software Radio (Digital) AM Transmitter for Audio

- Example: A digital radio performs all modulation in the digital domain, using a very high sampling frequency to directly output an RF signal after DA conversion
 - Multiple levels of filtering and sample rate conversion are common



Applications: Practical D-to-A Conversion / Reconstruction

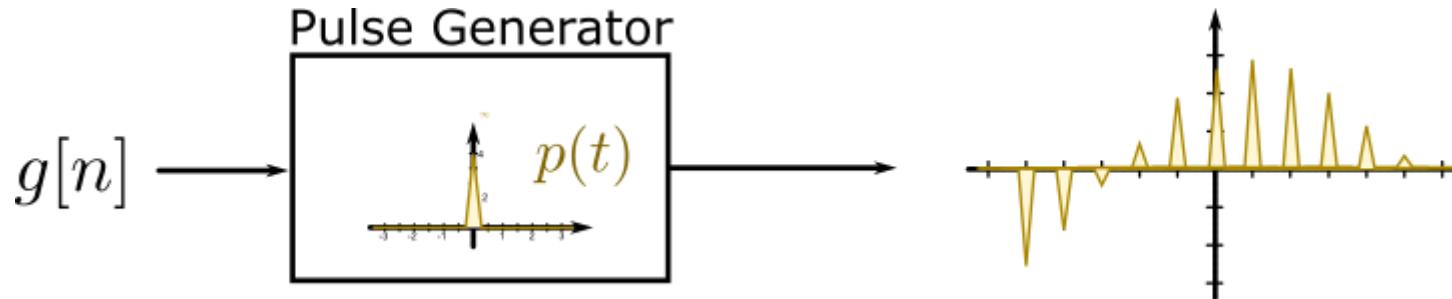
- **Digital-to-Analog Conversion reconstructs a continuous time signal analog from a sampled digital signal**
 - Reminder: ideal reconstruction is analog LP-filtering of an ideal pulse-train (sampled signal)



- **There are two main issues with this ideal setup**
 - An ideal Dirac-Pulse generator does not exist
 - An ideal LP filter to perfectly remove images while leaving the signal spectrum in tact also does not exist (sharp filters are difficult to realize as analog circuits)

Applications: Practical D-to-A Conversion / Reconstruction

- To solve the **pulse-generator problem**, consider a non-ideal pulse generator

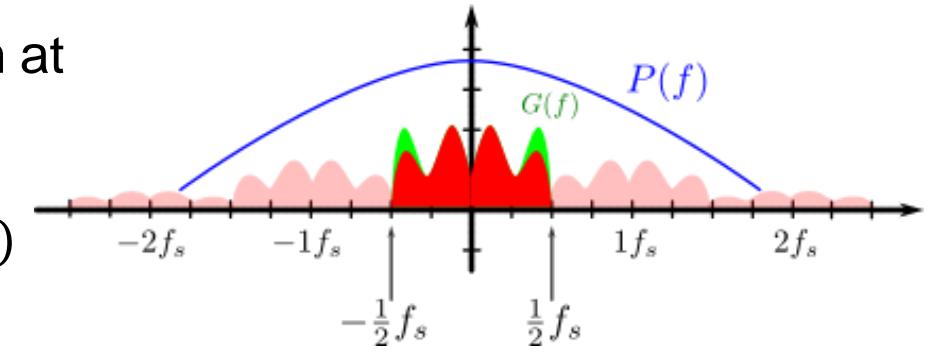


- The resulting analog signal is now a train of pulses $p(t)$ and even though it is generated directly, the pulse generator can be mathematically described as a filter that receives an ideal pulse train

$$\tilde{g}(t) = p(t) \times \sum_{-\infty}^{+\infty} g(nT_s) \cdot \delta(t - nT_s)$$

- The resulting spectrum is a replica of the original spectrum at multiples of f_s , BUT filtered with the spectrum of the pulse

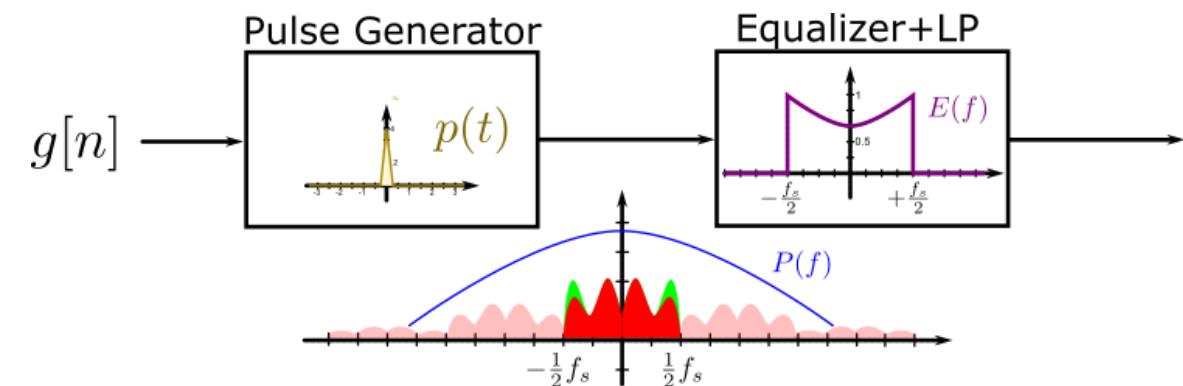
$$\tilde{G}(f) = P(f) \cdot \frac{1}{T_s} \sum_{-\infty}^{+\infty} G(f - nf_s)$$



Applications: Practical D-to-A Conversion / Reconstruction

- **To perfectly recover the original signal we need to do two things:**
 1. Remove the images (trivial: using a LP filter)
 2. Correct the distortion of the non-ideal pulse (based on its frequency response) within the band of interest
- **Both objectives can be achieved with a single filter (“equalizer” + LP)**

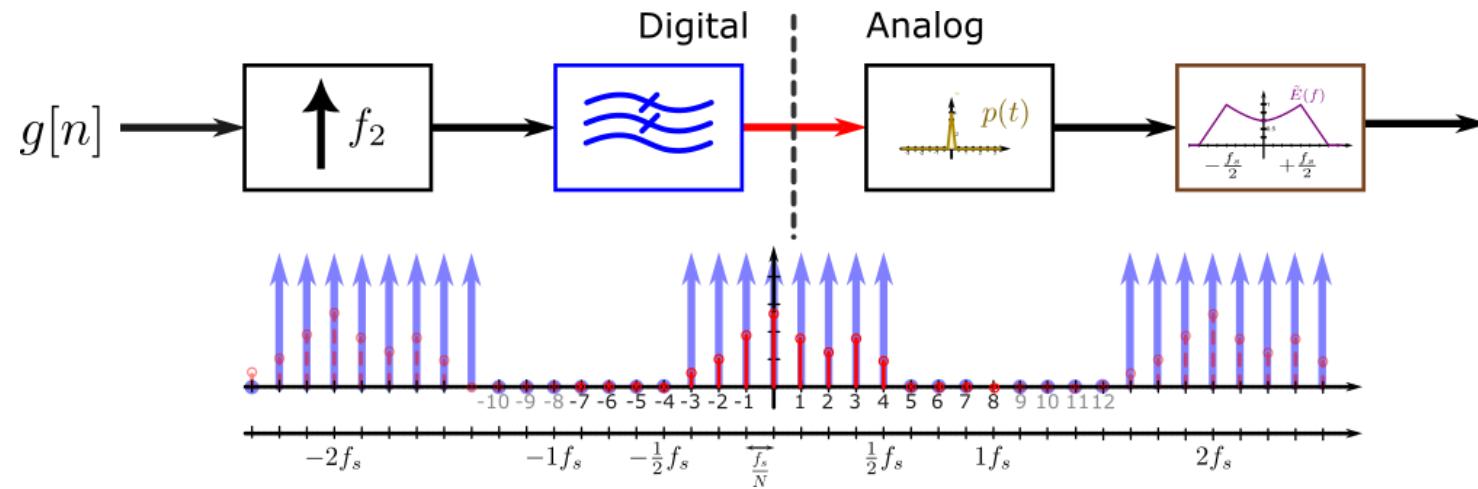
$$E(f) = \begin{cases} \frac{T_s}{P(f)} & |f| < B \\ 0 & |f| > B \end{cases}$$



- Note: since even non-ideal pulses are still short, much shorter than T_s , $P(f)$ decays slowly. The shorter the pulses, the smaller the impact

Applications: Practical D-to-A Conversion / Reconstruction

- To solve the non-ideal LP problem, we realize that implementing an almost ideal LP filter is much easier in the digital than in the analog domain.
- Idea: upsample the signal in the digital domain to “expose” the closest images and remove them by a digital LP filter



- Significantly relaxes the requirements on the analog filter
- Note: the digital filter can also contribute to the compensation of the non-ideal pulse (not shown)