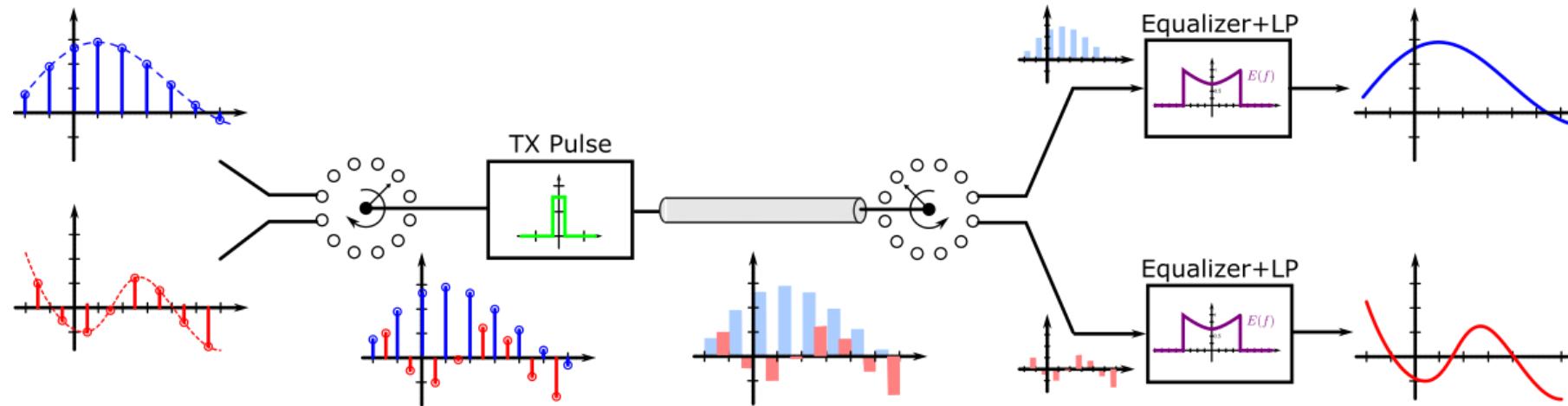


# Recap from Week-5

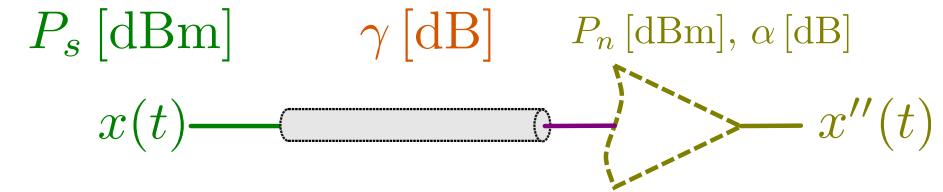
- Communication networks are often built as stars-of-stars
- Between local stars, multiple signals are multiplexed onto a single wire
- Pulse modulation is a straightforward way to “MUX” and “DE-MUX” provided that the bandwidth of the shared wire is sufficient (often the case)



# Recap from Week-5

- Transmitting signals over long wires leads to attenuation and degrades the signal-to-noise ratio

$$SNR''[dB] = P_s[dBm] + \gamma[dB] - P_n[dBm]$$



- Periodic analog repeaters can not recover the SNR and even degrade SNR



$$SNR''[dB] = \underbrace{P_s[dBm] + \gamma[dB] - P_n[dBm]}_{\text{No repeaters}} - 10 \log_{10} N$$

# **EE-432**

# **Systeme de**

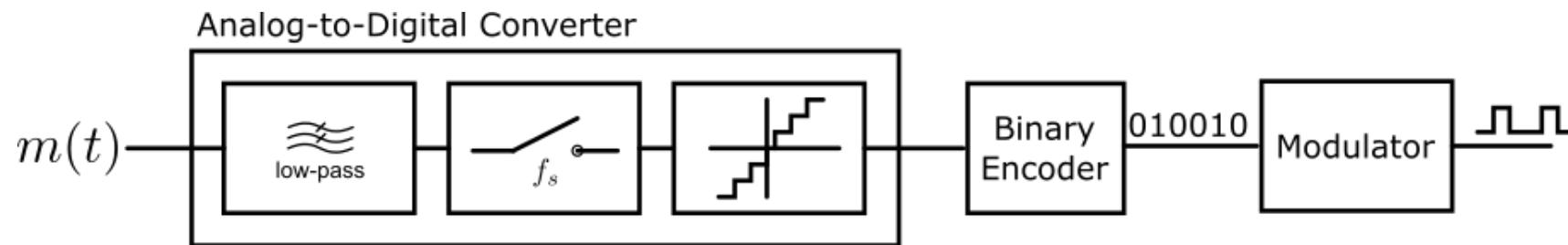
# **Telecommunication**

**Prof. Andreas Burg**  
**Joachim Tapparel, Yuqing Ren, Jonathan Magnin**

**Quantization**

# Motivation: Binary Pulse Code Modulation (PCM)

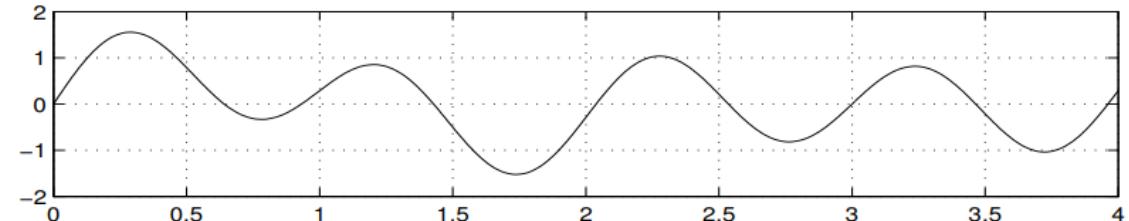
- **Binary PCM: sends a sequence of pulses that encode a binary digits (0/1)**
  - PCM can be generalized to non-binary digits, but we will use the term for binary-PCM
- **Binary PCM transmission of an analog signal**
  1. Analog-to-digital conversion (filtering, sampling, quantization)
  2. Binary encoding as sequence of bits 0/1 (binary-PCM)
  3. Modulation: representing bits as waveform (baseband or RF as appropriate)



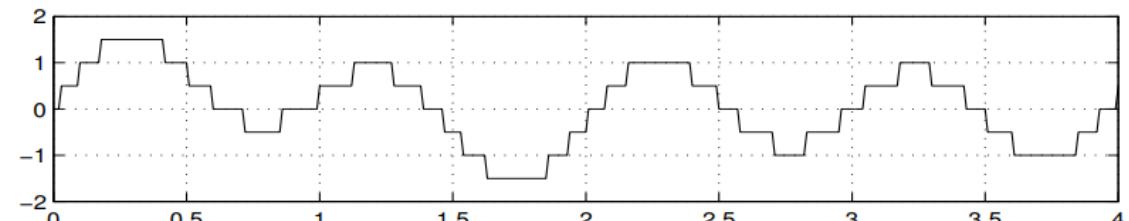
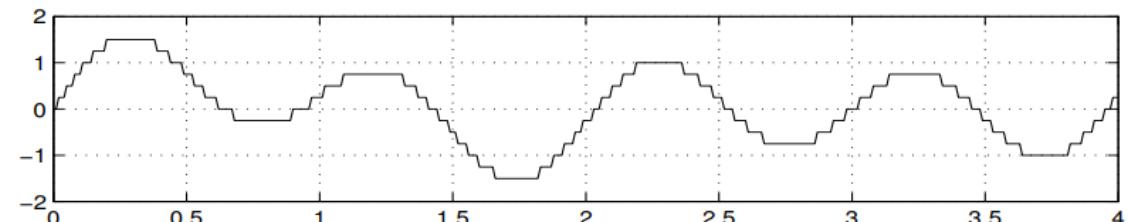
# Quantization

- Physical signals are analog. Hence  $g(t) \in \mathbb{R}$  and  $g[n] \in \mathbb{R}$
- To represent samples  $g[n]$  in a digital computer, they must be quantized\*
  - Quantized values are chosen from a finite set of symbols  $\mathcal{Q}$
  - The number of symbols  $L$  in this set is called the cardinality of the set:  $|\mathcal{Q}| = L$
- In general, more quantization levels allow for a better representation of the signal, but also require more bandwidth for transmission

$$|\mathcal{Q}| = 7$$

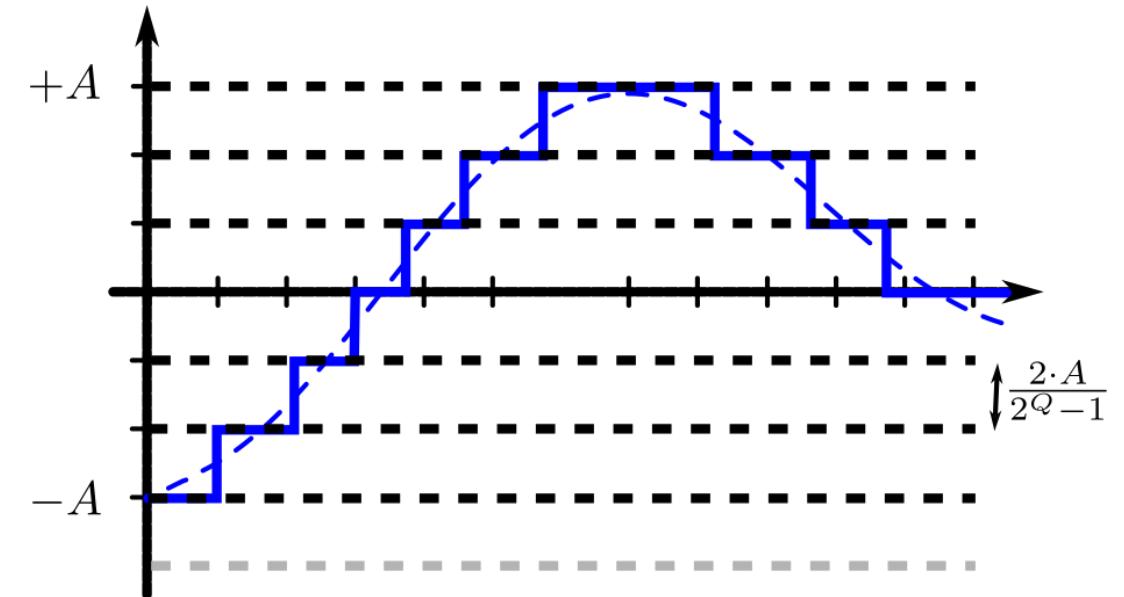


$$|\mathcal{Q}| = 13$$



# Uniform Quantization

- Computers typically represent quantized values as sequence of binary digits
  - For efficient binary representation, symbol sets often have power-of-two cardinality  $|Q| = 2^Q$
  - For efficient computation, we often use uniform quantization
- Signals with maximum and minimum values  $\pm A$  are often DC free and symmetric around zero
  - The range of such signals is  $2A$
  - As signals are symmetric, we often use only  $2^Q - 1$  from  $2^Q$  available symbols to have also a symmetric quantized range



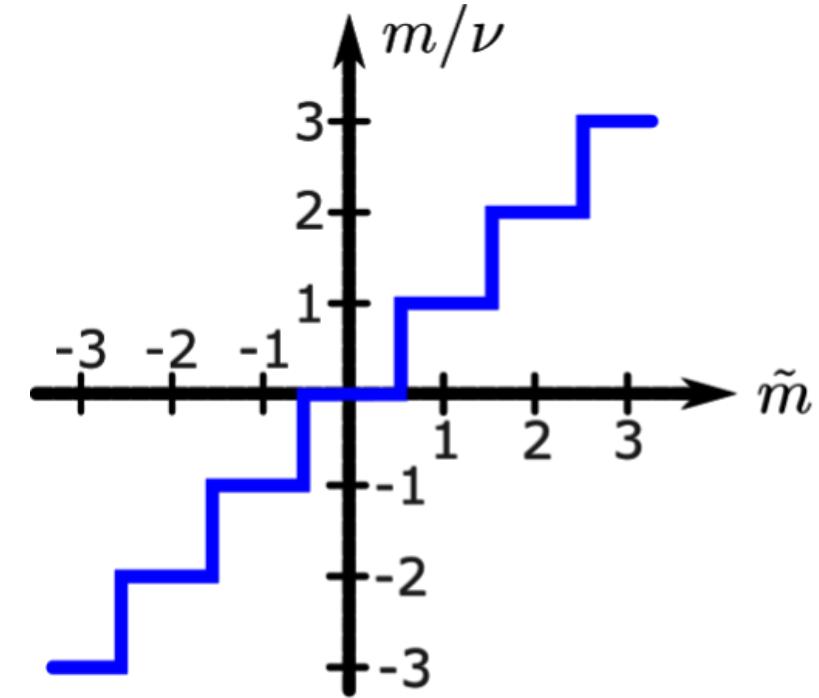
# Uniform Symmetric Quantizer for Binary Symbols

- Uniform symmetric quantizer maps values  $m[t]$  to signed integers  $\tilde{m}[t]$

- Bits per sample:  $Q$
- Effective number of levels:  $2^Q - 1$
- Signal range:  $\pm A$
- Quantization interval:  $\nu = \frac{2 \cdot A}{2^Q - 1}$

$$\tilde{m}[t] = \begin{cases} -N & m[t] < -N\nu \\ n & \left(n - \frac{1}{2}\right)\nu \leq m[t] < \left(n + \frac{1}{2}\right)\nu \\ N & m[t] \geq N\nu \end{cases}$$

$$m[t] \in [-A, +A] \mapsto \tilde{m}[t] \in \left\{ -\frac{2^Q}{2} + 1, \dots, +\frac{2^Q}{2} - 1 \right\}$$



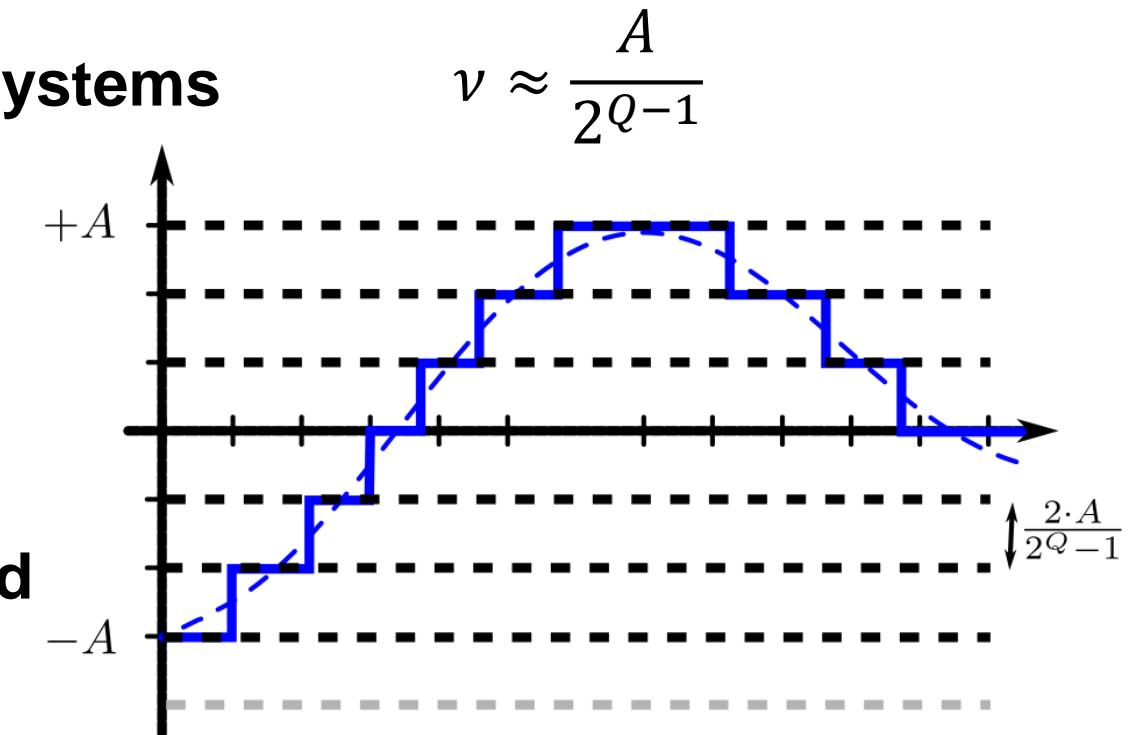
# Uniform Quantizer Error (Maximum)

- Quantizers are **nonlinear** time invariant systems

- The maximum quantization error is

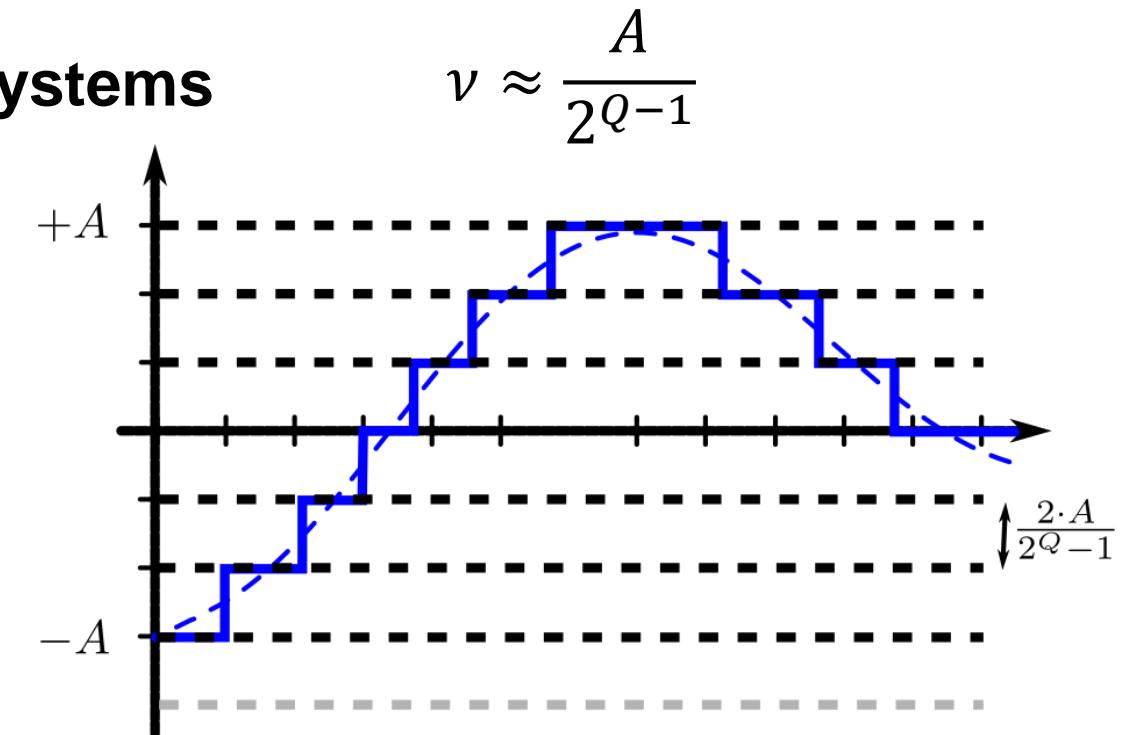
$$\max_m \{ |\tilde{m} \cdot v - m| \} = \frac{A}{2^{Q-1}} \approx \frac{A}{2^Q}$$

- Accurate calculation of the mean squared quantization error is difficult
  - Signal dependent non-linear function



# Uniform Quantizer Error (Mean)

- Quantizers are **nonlinear** time invariant systems
- Accurate calculation of the mean squared quantization error is difficult
  - Signal dependent non-linear function
- **Approximation of the mean squared quantization error:**
  - Assume that the signal is uniformly distributed between two quantization levels



$$MSE_Q = \frac{1}{v} \int_{-\frac{v}{2}}^{\frac{v}{2}} |x|^2 dx = \frac{v^2}{12} = \frac{1}{12} \cdot \frac{A^2}{2^{2Q-2}} = \frac{1}{3} \cdot \frac{A^2}{2^{2Q}}$$

# Signal-Quantization-Ratio (SQR)

- For quantized signals we are interested in the Signal-to-Quantization Ratio

- Assuming that the signal power is proportional to  $A^2$

- Mean squared quantization error is given by  $MSE_Q = \frac{1}{3} \cdot \frac{A^2}{2^{2Q}}$

$$SQR \propto \frac{A^2}{\frac{1}{3} \cdot \frac{A^2}{2^{2Q}}} \propto 2^{2Q}$$

$$SQR_{\text{dB}} = c + Q \cdot \underbrace{2 \cdot \log_{10} 2}_{6\text{dB}} = c + Q \cdot 6\text{dB}$$

Increasing the resolution of the quantizer by 1-bit improves the SQR by 6dB

# Signal Quality for Binary PCM

- We assume that the transmission of the PCM signal is error free
- The quality is given by the number of bits we can use for a given channel
- Example: we have the following
  - Audio signal  $m(t)$  with bandwidth  $BW_m$  → Sampling rate  $f_s = 2 \cdot BW_m$
  - Communication channel with bandwidth  $BW_{ch}$  → Bit rate  $f_{bit} = 2 \cdot BW_{ch}$

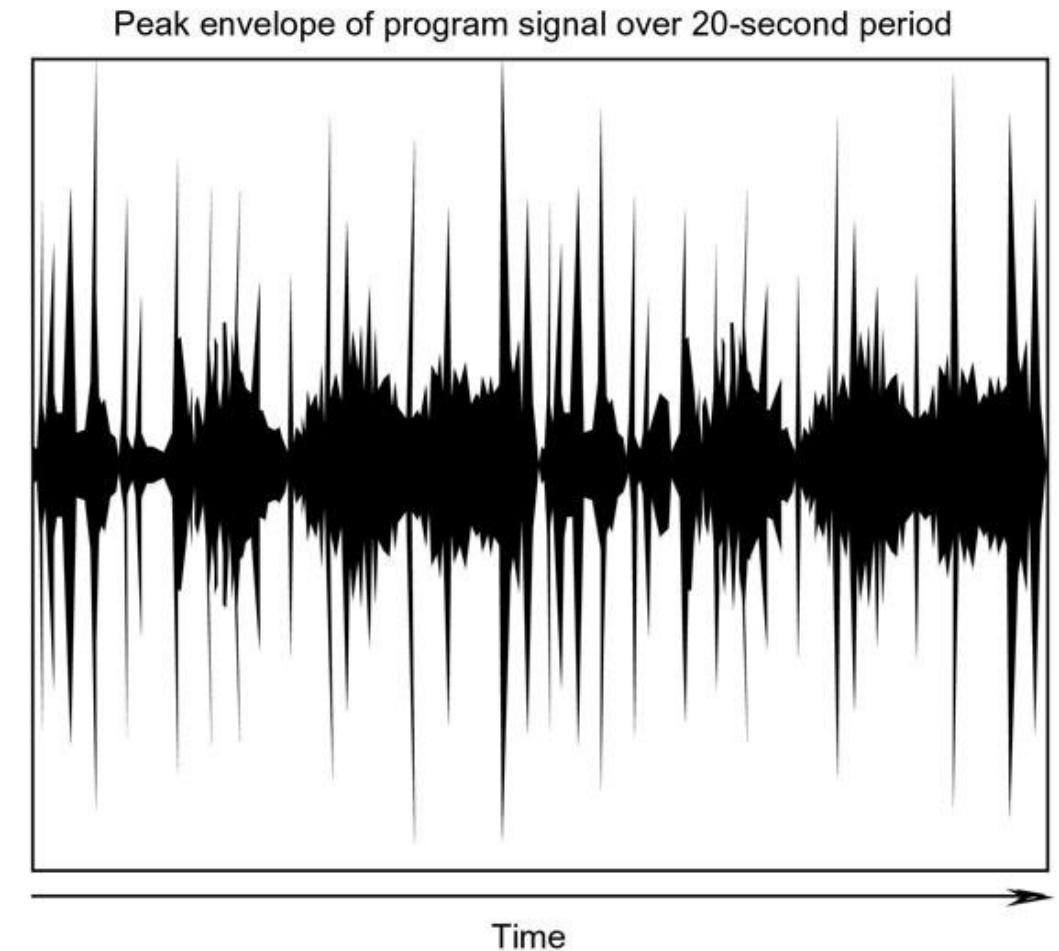
$$Q_{max} = \frac{2 \cdot BW_{ch}}{2 \cdot BW_m} = \frac{BW_{ch}}{BW_m}$$

$$SQR_{dB} = c + \frac{BW_{ch}}{BW_m} \cdot 6dB$$

- Increasing the communication channel BW by  $BW_m$  allows to increase the signal quality by 6dB

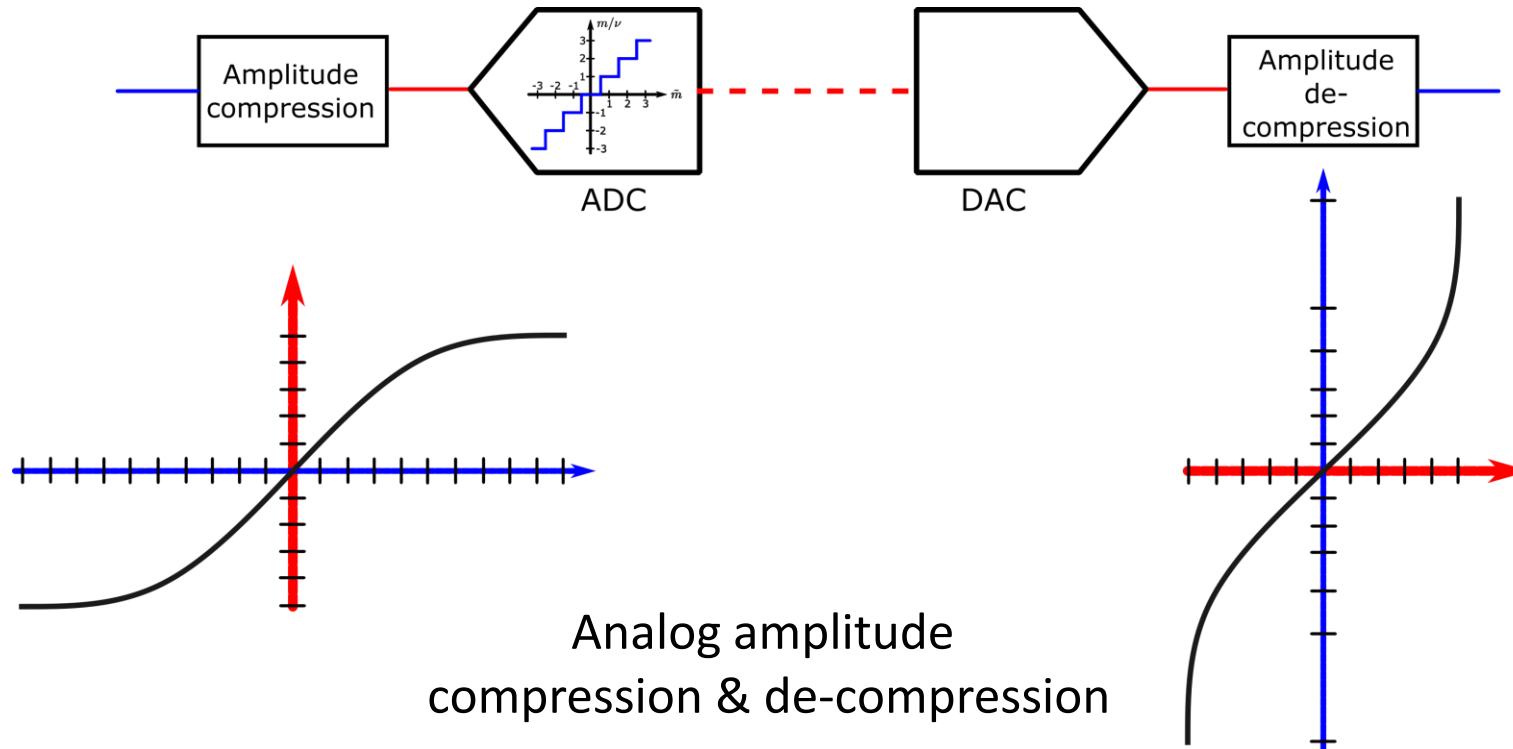
# Quantization of Speech Signals

- **Linear quantization step size adapted to peak amplitude**
- **Linear quantization wastes resolution on large amplitudes**, where human hearing is less sensitive
- **Speech signals** are mostly low amplitude  
→ **need better resolution near zero**
- **Solution:** Non-uniform quantization



# Non-linear Quantization with Amplitude Compression

- **Basic idea:** compress analog signal into a smaller range prior to quantization
  - Analog compression: prior to sampling & quantization
  - Digital compression: first sample with a high resolution, then compress and re-quantize



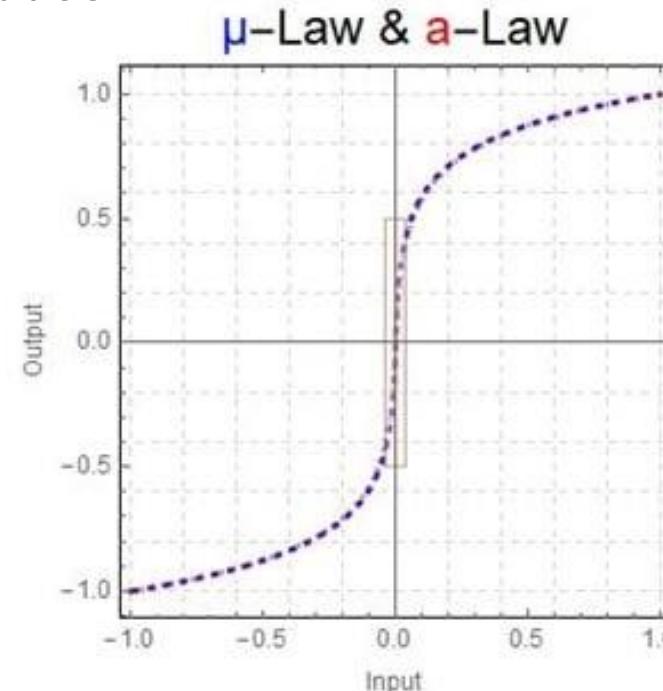
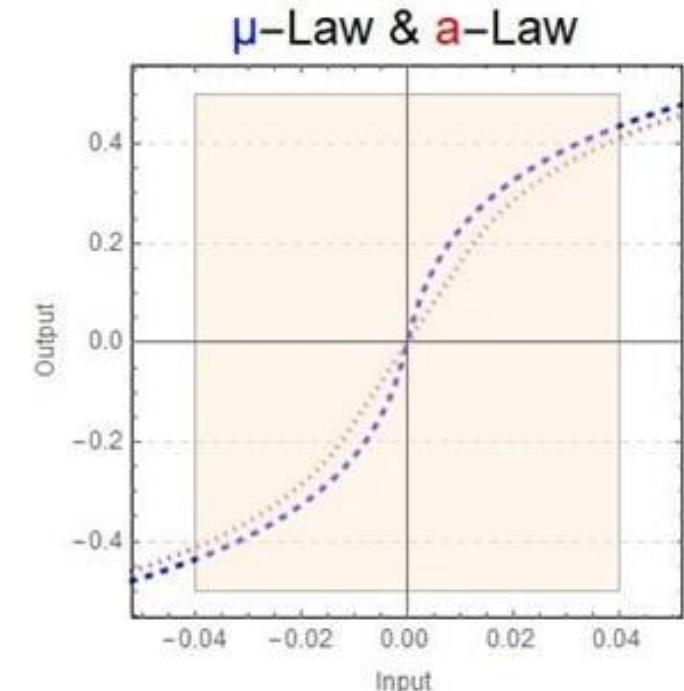
# Non-linear Quantization: $\mu$ -Law and A-Law

- **Two popular compressions:  $\mu$ -law and A-law with log-like behaviour**
  - Very similar, especially at high magnitudes
  - Slight differences for low magnitudes
- **U-Law (North America, Japan)**

$$F(x) = \text{sign}(x) \cdot \frac{\ln(1+\mu|x|)}{\ln(1+\mu)}, \mu = 255$$

- **A-Law (Europe, ITU-T global)**

$$F(x) = \begin{cases} \frac{A|x|}{1+\ln A} & |x| < \frac{1}{A} \\ \frac{1+\ln A|x|}{1+\ln A} & \frac{1}{A} \leq |x| \leq 1 \end{cases}, A = 87.6$$



# **EE-432**

# **Systeme de**

# **Telecommunication**

**Prof. Andreas Burg**  
**Joachim Tapparel, Yuqing Ren, Jonathan Magnin**

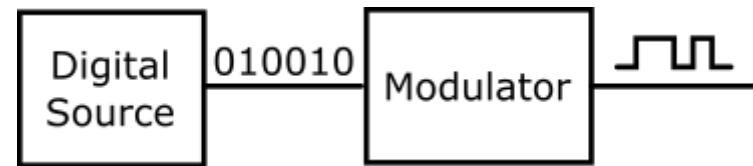
**Digital Data Transmission & Error Rates  
in the Baseband**

# Week 5: Table of Contents

- **PCM Pulse Shapes and their Bandwidths**
- **Higher Order Digital PAM (M-PAM) for Higher Data Rates**
- **Applications**

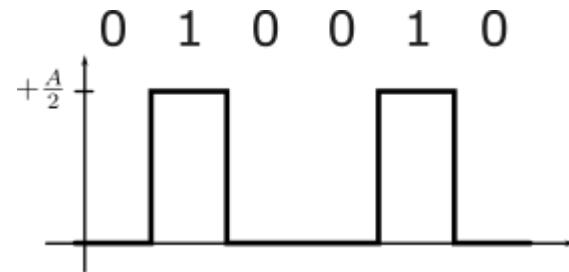
# PCM Modulator: Unipolar vs. Bipolar

- PCM encodes bits (0/1) into analog values, chosen from a binary alphabet



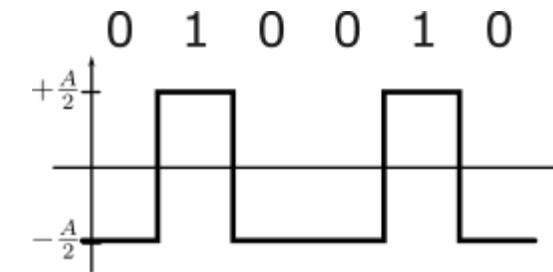
- We distinguish between unipolar (only positive symbols) and bipolar (positive and negative, symmetric symbols) alphabets
  - For reasons we will see later, we keep the “distance” between two symbols the same

Unipolar binary alphabet



$$\{0,1\} \rightarrow \{0, A\}$$

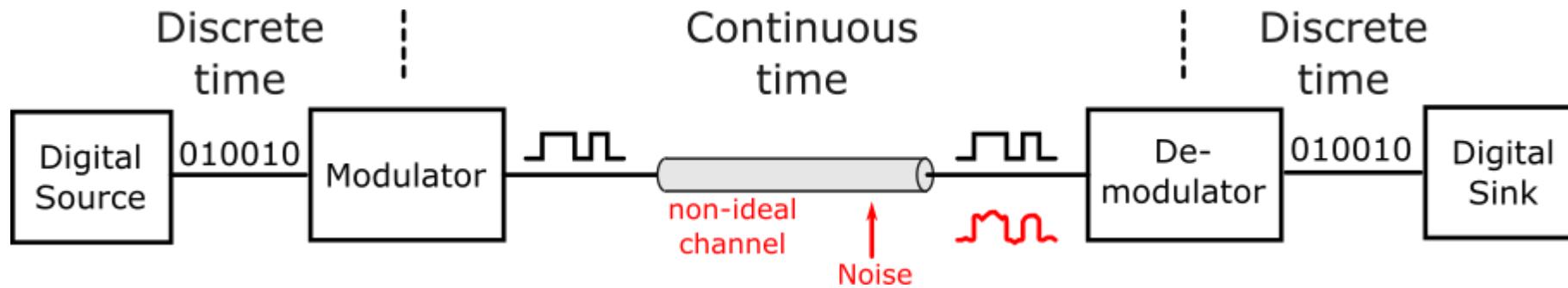
Bipolar binary alphabet



$$\{0,1\} \rightarrow \left\{ -\frac{A}{2}, +\frac{A}{2} \right\}$$

# PCM Modulator: Pulse Shapes

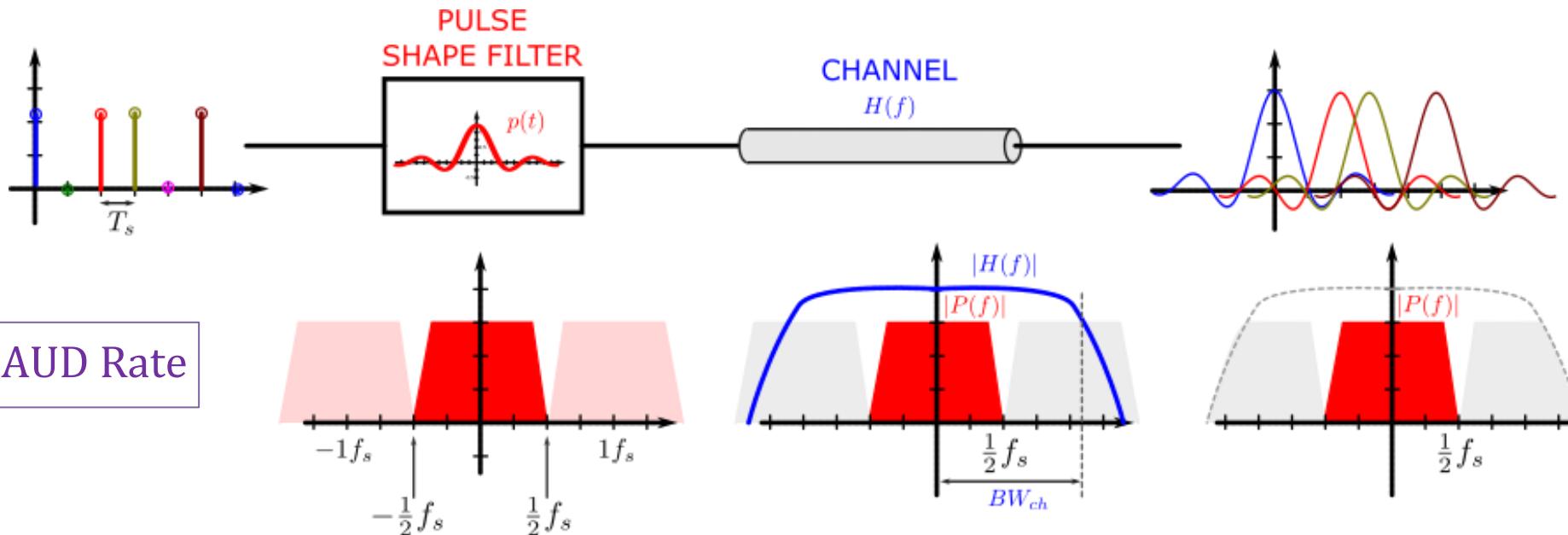
- PCM transmits a series of bits over a continuous time / analog channel**
  - Transmitter: convert discrete time bits into bits as a series of continuous time pulses
  - Receiver: Recover the discrete time bits from the continuous time pulses through sampling



- Transmission channel: distorts the signal by**
  - its typically low-pass frequency characteristics
  - adding noise (actually added at the receiver, but considered part of the channel)

# PCM Modulator: Pulse Shapes

- Conversion of discrete bits into a continuous time signal of “pulses” so that
  - are not or almost not affected by the low-pass frequency characteristics of the channel
  - can be recovered easily (independently of each other) at the receiver



- Choose **pulse-shape filter** and **baud rate (sampling frequency)** so that the fundamental spectrum of the signal is not affected by the low-pass channel

$$f_s \leq 2 \cdot BW_{ch}$$

# PCM Modulator: Ideal SINC Pulse

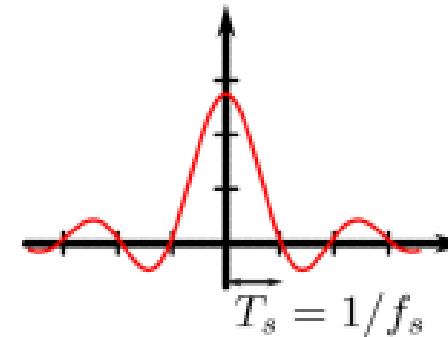
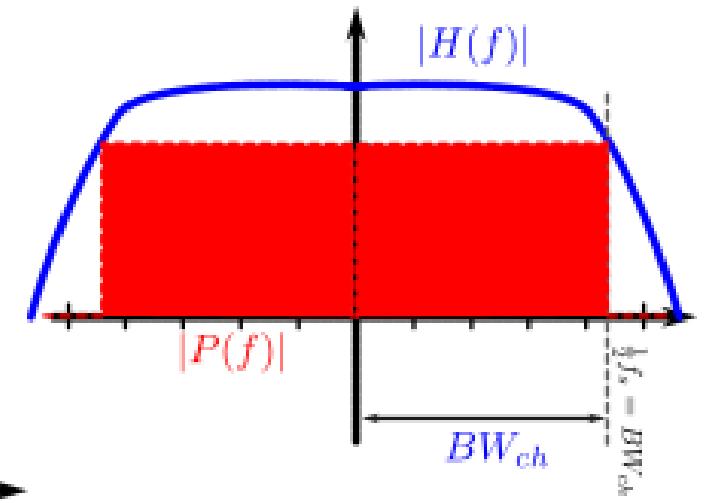
- For  $f_s = 2 \cdot BW_{ch}$  we need an ideal (brick-wall) pulse shape filter with the bandwidth of the channel

$$P(f) = \prod \left( \frac{f}{2 \cdot BW_{ch}} \right) = \prod \left( \frac{f}{f_s} \right)$$

- Pulse shape impulse response:

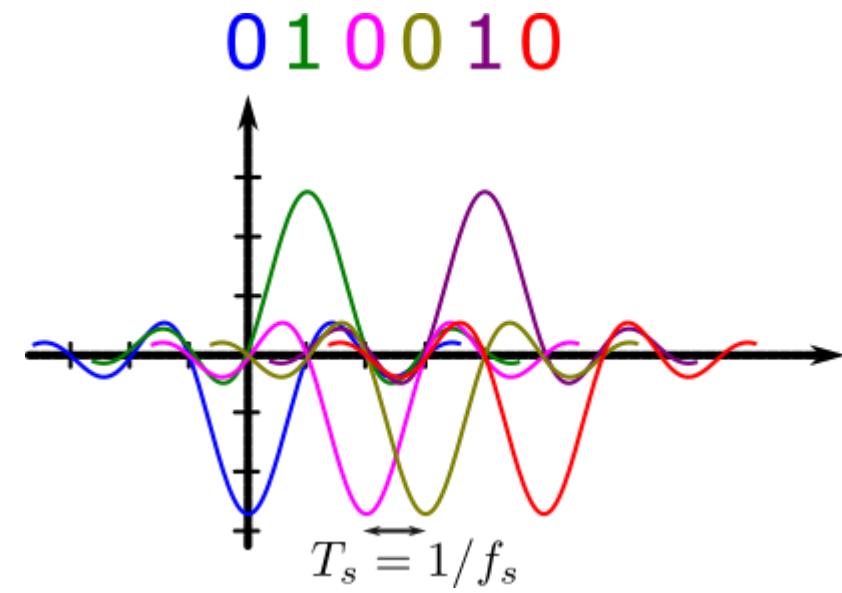
$$p(t) = \frac{\sin(\pi \cdot f_s \cdot t)}{\pi \cdot f_s \cdot t}$$

- Data sequence with bipolar alphabet:  $a_k \in \left\{ -\frac{A}{2}, +\frac{A}{2} \right\}$



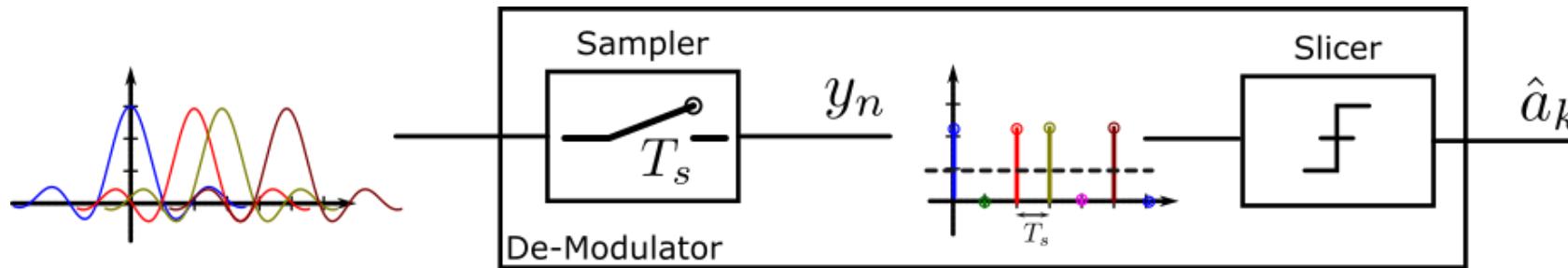
- Received signal is the superposition of weighted transmit pulses delayed by  $k \cdot T_s$

$$y(t) = \sum_{k=-\infty}^{+\infty} a_k \cdot p(t - k \cdot T_s)$$

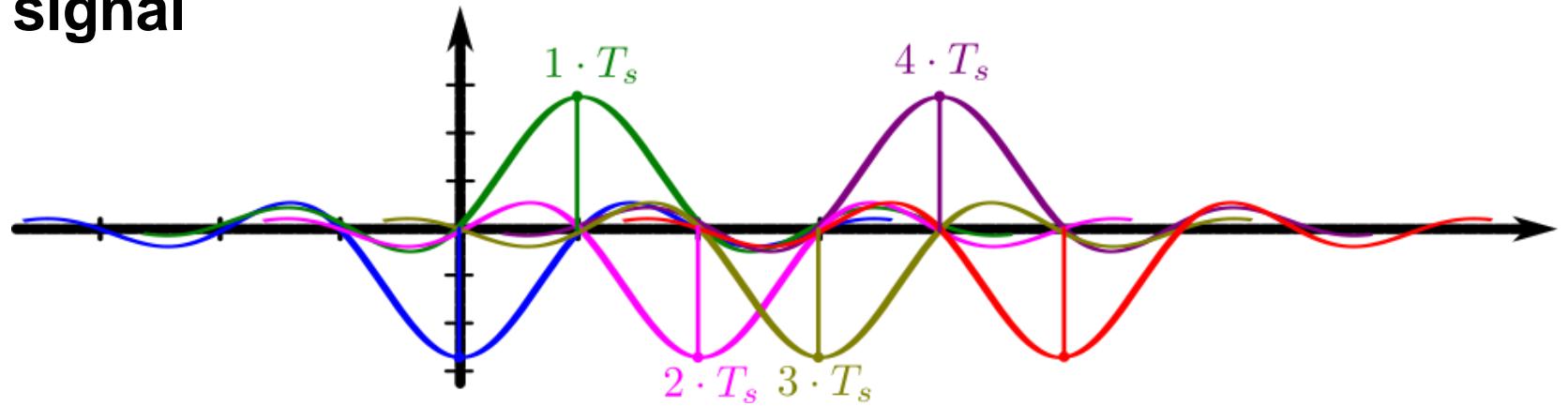


# PCM Demodulation with SINC Pulse

- Despite the overlap between Nyquist pulses, we can perfectly recover the original transmitted symbols by sampling at the right moment in time



- At  $t = n \cdot T_s$ , all overlapping symbols except one are zero and have no impact on the received signal



# PCM Demodulation with SINC Pulse

- Despite the overlap between Nyquist pulses, we can perfectly recover the original transmitted symbols by sampling at the right moment in time
- Proof:

- Remember:  $\frac{\sin(k \cdot \pi)}{k \cdot \pi} = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$

$$y_k = y(t) \Big|_{t=k \cdot T_s} = \sum_{l=-\infty}^{+\infty} a_k \cdot \frac{\sin(\pi \cdot f_s \cdot (n - l) \cdot T_s)}{\pi \cdot f_s \cdot (n - l) \cdot T_s} =$$
$$+ a_k \cdot \underbrace{\frac{\sin(\pi \cdot f_s \cdot (0) \cdot T_s)}{\pi \cdot f_s \cdot (0) \cdot T_s}}_1 + \sum_{l \neq k} a_k \cdot \underbrace{\frac{\sin(\pi \cdot f_s \cdot (l - k) \cdot T_s)}{\pi \cdot f_s \cdot (l - k) \cdot T_s}}_0$$

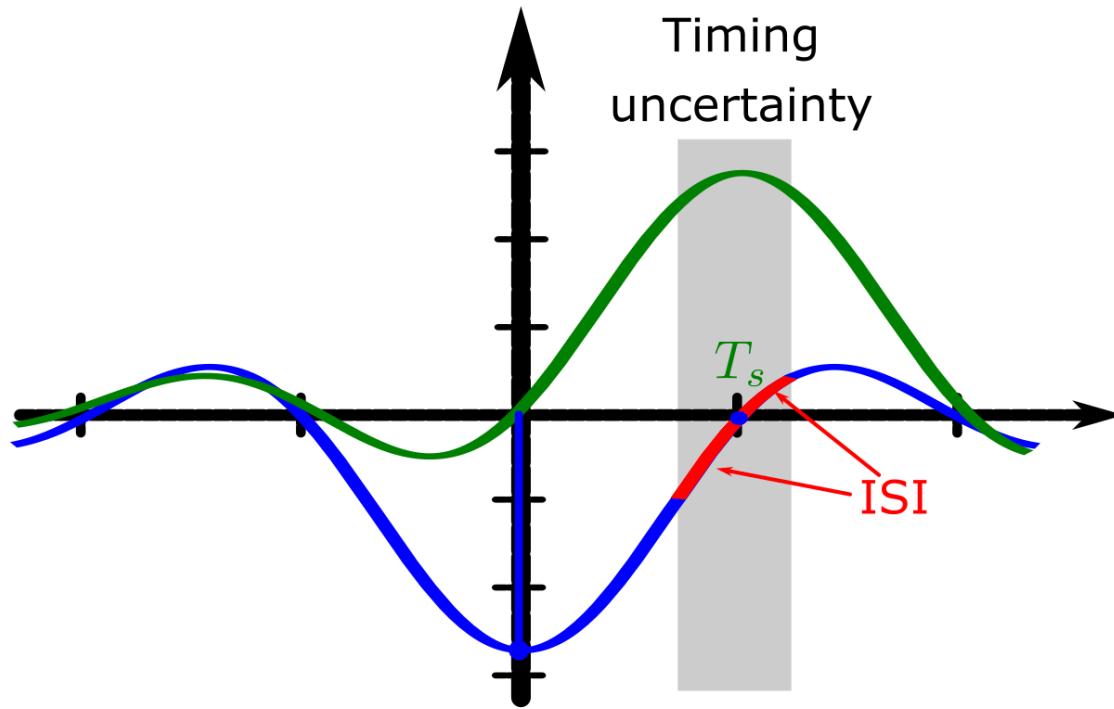
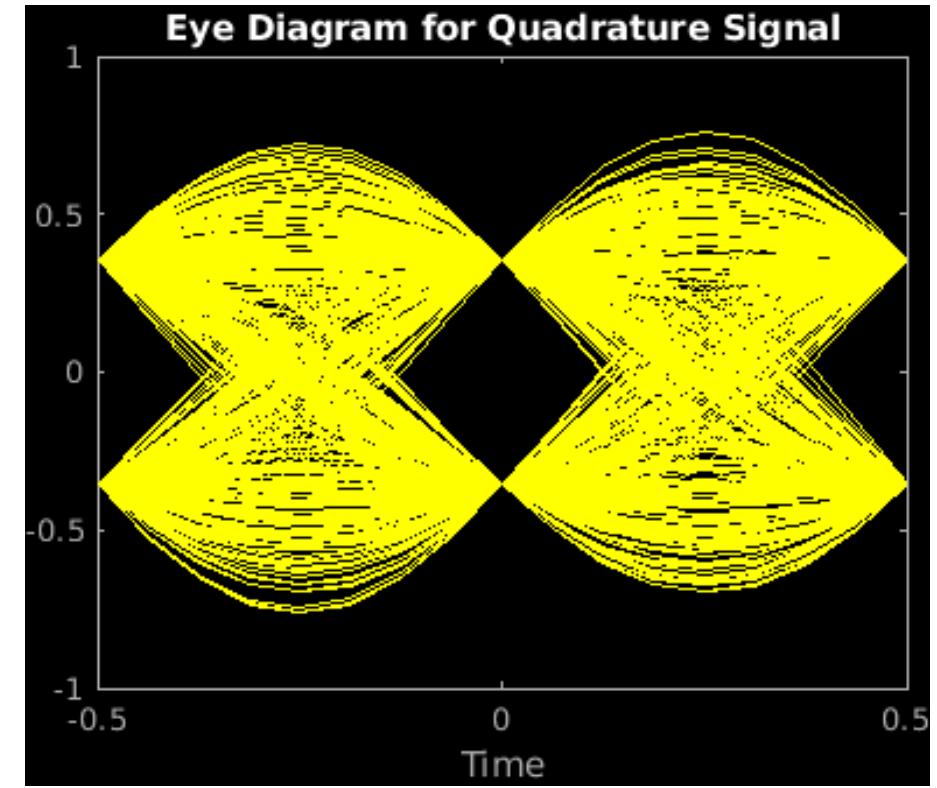
# PCM with Non-Ideal SINC Pulses

- **A SINC uses the available bandwidth in the best possible (optimal) way:**
  - For a given baud rate  $f_s$ , it uses the least possible bandwidth  $BW_{ch} \geq f_s/2$
  - For a given channel bandwidth  $BW_{ch}$  it allows for the highest baud rate  $f_s \leq 2 \cdot BW_{ch}$
- **Nevertheless, SINC pulses also have a practical disadvantage:**
  1. Any non-ideal sampling instant at the receiver leads to strong interference between symbols
  2. Cutting the tail impacts the spectrum (no longer an ideal brick-wall with strong spectral components far away from the intended bandwidth)

See next 2 slides

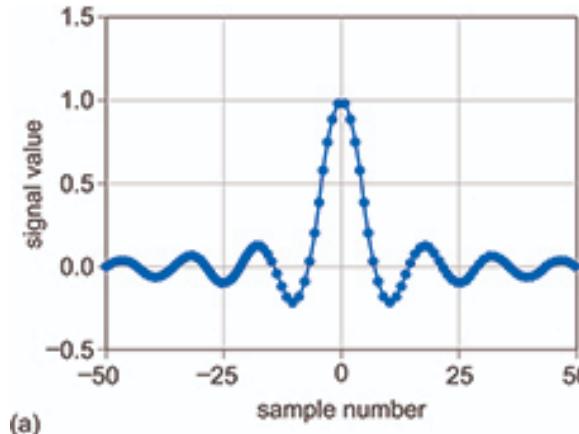
# PCM with Non-SINC (non-ideal) Pulses

1. Any non-ideal sampling instant at the receiver leads to strong interference between symbols

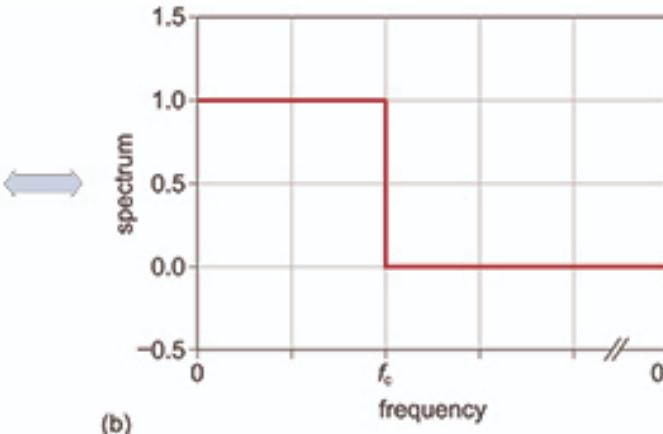


# PCM with Non-SINC (non-ideal) Pulses

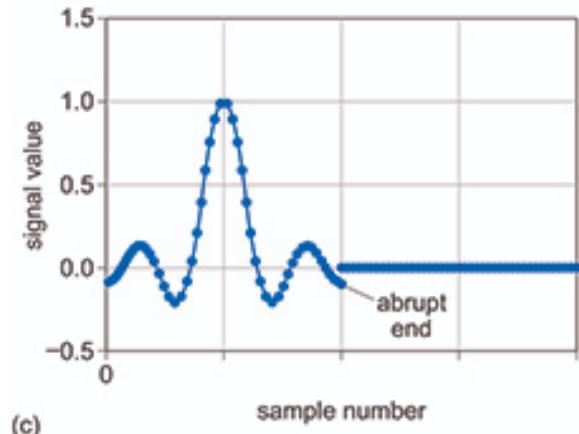
2. Cutting the tail impacts the spectrum (no longer an ideal brick-wall with strong spectral components far away from the intended bandwidth)



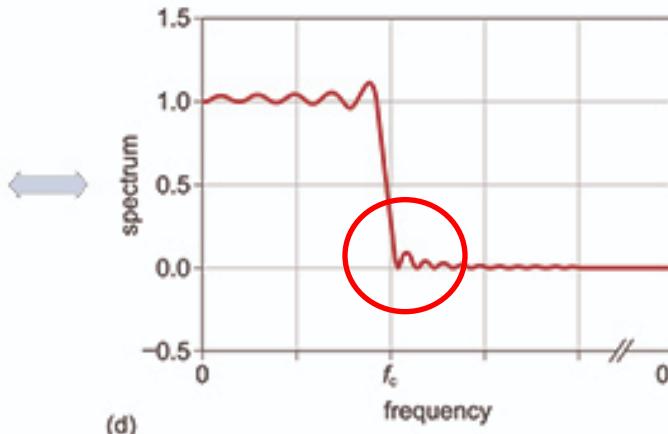
(a)



(b)



(c)



(d)

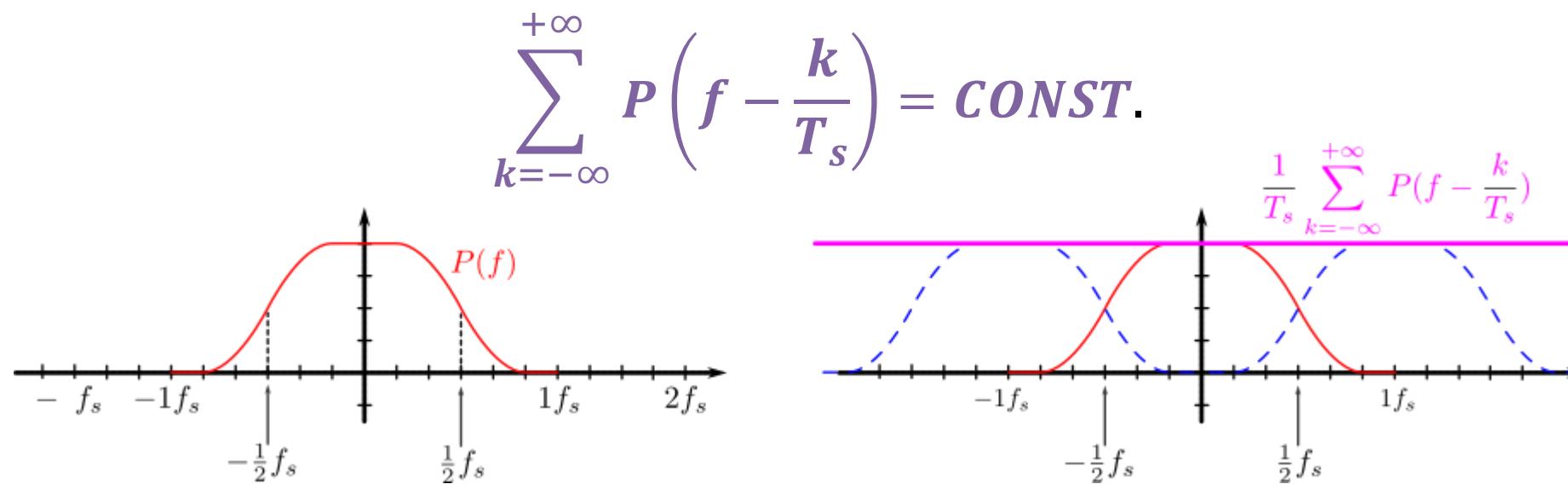
Source: <https://www.open.edu/openlearn/science-maths-technology/electronic-applications/content-section-3.7>

# Alternative (Non-Sinc) Pulse Shapes

- To achieve ISI free transmission, we actually only require:

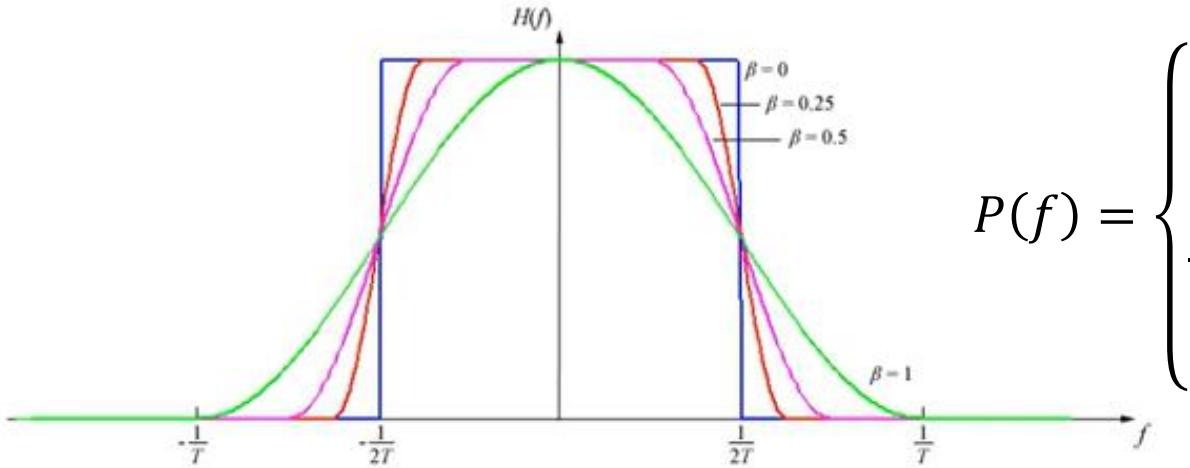
$$p(k \cdot T_s) = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

- Any pulse with this criterion should be able to perfectly reconstruct the symbols  $a_k$  at  $t = k \cdot T_s$
- The 2nd Nyquist criterion defines such non-SINC pulses, that are ISI free, but have a BW that is greater than half the sampling frequency  $BW_p > \frac{f_s}{2}$

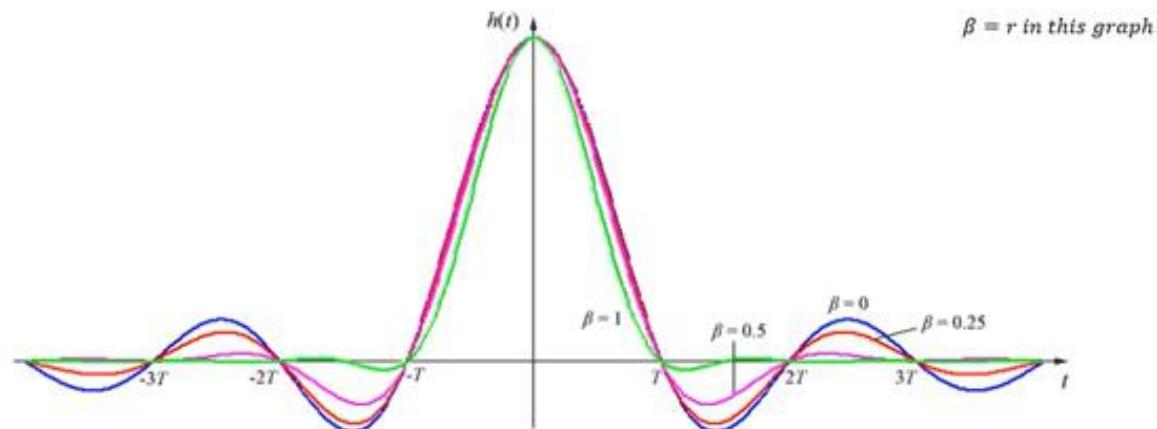


# Raised Cosine Pulse (1)

- The most famous Non-SINC pulse is the Raised Cosine Pulse



$$P(f) = \begin{cases} 1 & |f| < \frac{1-\beta}{2T_s} \\ \frac{1}{2} \left[ 1 + \cos \left( \frac{\pi T_s}{\beta} \left[ |f| - \frac{1-\beta}{2T_s} \right] \right) \right] & \frac{1-\beta}{2T_s} < |f| \leq \frac{1+\beta}{2T_s} \\ 0 & \text{else} \end{cases}$$

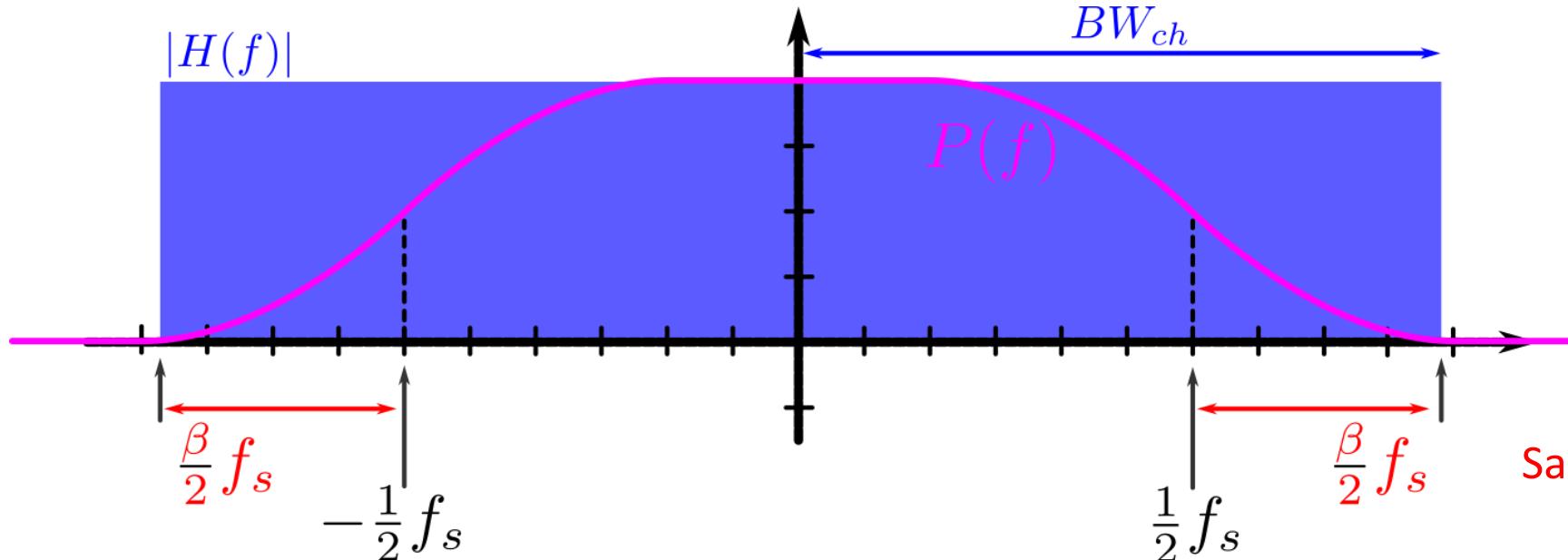


$$p(f) = \begin{cases} \frac{\pi}{4T_s} \operatorname{sinc} \frac{1}{2\beta} & t = \pm \frac{T}{2\beta} \\ \frac{1}{T_s} \operatorname{sinc} \frac{t}{T_s} \frac{\cos \left( \frac{2\beta t}{T_s} \right)}{1 - \left( \frac{2\beta t}{T_s} \right)^2} & \text{else} \end{cases}$$

# Raised Cosine Pulse (2)

- For  $|f| > \frac{1+\beta}{2T_s} = \frac{1}{2T_s} + \frac{\beta}{2T_s}$ , there are no spectral components

- The first part  $\frac{1}{2T_s}$  corresponds to the spectrum used by the ideal SINC filter
- The second part  $\frac{\beta}{2T_s}$  corresponds to the **excess spectrum**



$$\frac{1 + \beta}{2} f_s < BW_{ch}$$

$$f_s < \frac{2 \cdot BW_{ch}}{1 + \beta}$$

Sampling rate with a band-limited channel and Raised Cosine  $\beta$

# Relationship Between Baud Rate and Bandwidth

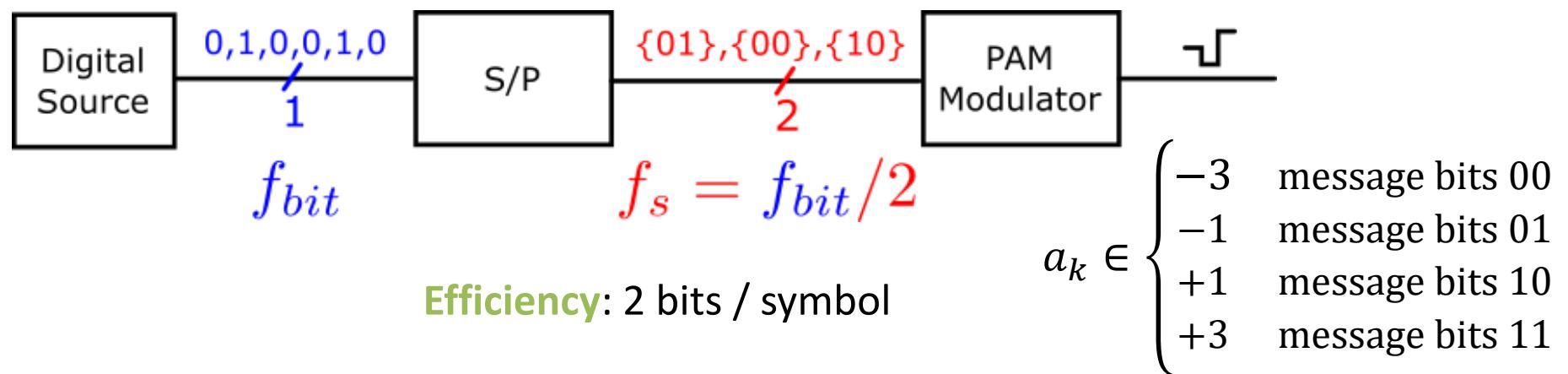
|                                   | Maximum baud rate $f_s$ ,<br>given a channel bandwidth<br>$BW_{ch}$ | Occupied spectrum $BW$<br>given a baud rate<br>$f_s$ |
|-----------------------------------|---------------------------------------------------------------------|------------------------------------------------------|
| Theoretical                       | $f_s = 2 \cdot BW_{ch}$                                             | $BW = \frac{1}{2} f_s$                               |
| Realistic<br>(rolloff $\beta^*$ ) | $f_s = \frac{2}{1 + \beta} \cdot BW_{ch}$                           | $BW = \frac{1 + \beta}{2} f_s$                       |

\* Typical rolloff factors are  $\beta = 0.6 - 0.8$

BW is the bandwidth that is occupied by the signal, regardless of if the channel supports it

# Higher-Order Pulse Amplitude Modulation (M-PAM)

- For a given bandwidth, the data rate with binary PCM is limited by the bandwidth as we send only 1 bit for every “symbol” ( $a_k \in \left\{-\frac{A}{2}, +\frac{A}{2}\right\}$ )
- Higher order symbol alphabets: grouping of multiple bits into one symbol
  - Grouping of bits represented as serial-to-parallel (S/P) conversion
- Example 4-PAM: grouping of 2 bits into one symbol with bit rate  $f_{bit}$  [bits/s]



# M-PAM Constellation Points & Alphabets

- Grouping  $Q$  bits into one symbol increases the throughput  $Q$ -times, but requires an alphabet with  $M = 2^Q$  elements (levels)

Information throughput per symbol

$$I_M = Q = \log_2 M$$

- For a given baud-rate  $f_s$  we have  $f_{bit} = I_M \cdot f_s$
- Values that represent a combination of bits are called **constellation points**
- The set of constellation points  $\mathcal{O}$  to represent groups of  $Q = \log_2 M = \log_2 |\mathcal{O}|$  bits is called a **constellation alphabet**

$$\mathcal{O} = \{x_0, x_1, x_2, \dots, x_{M-1}\}$$

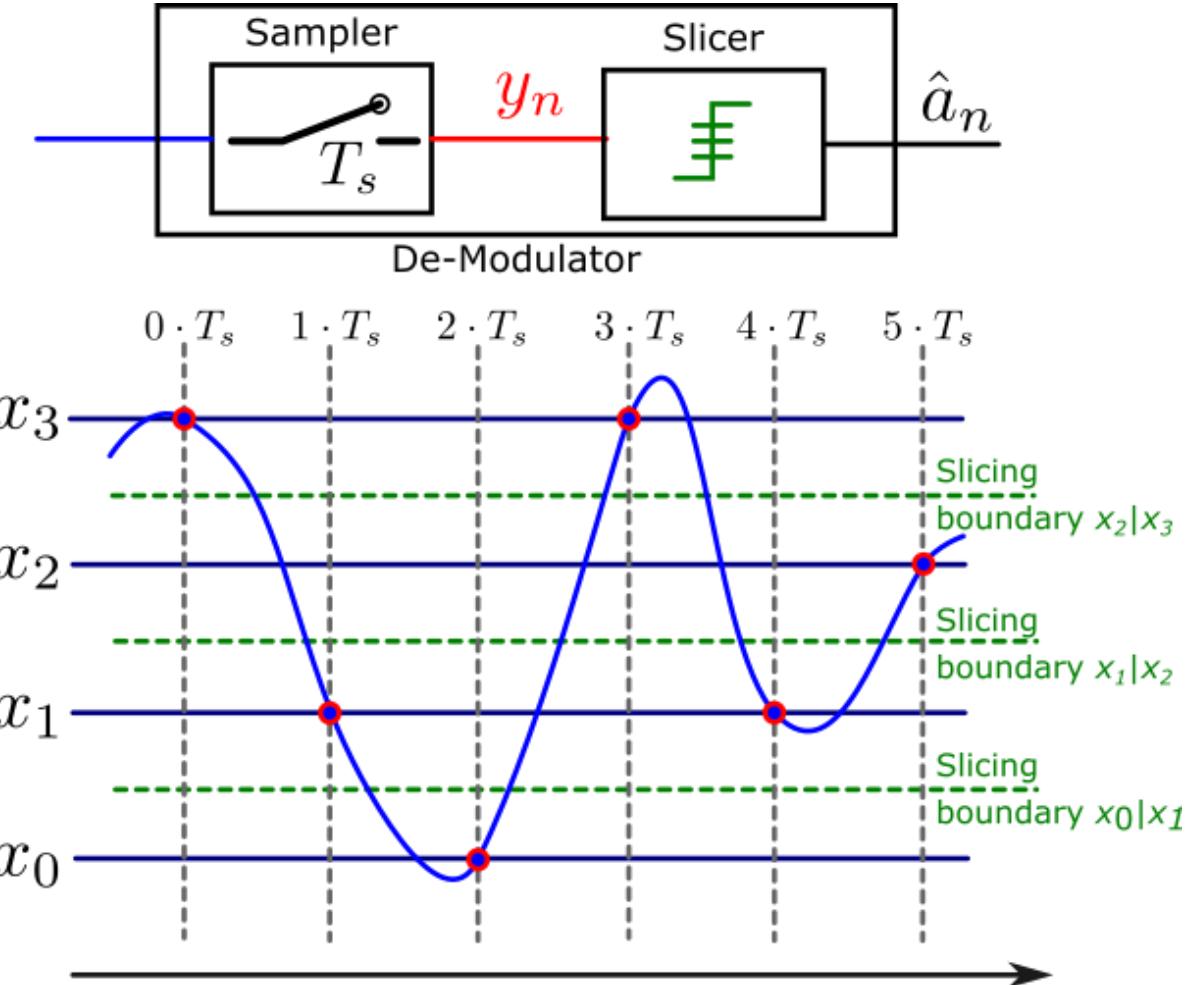
# M-PAM Signal Reception w/o Noise

- Consider a 4-PAM signal (received without noise and without attenuation)

- Demodulation

- Sampler:** sample signal at the correct time instant to reveal the transmitted symbol without interference
- Slicer:** decide on the closest valid constellation point based on decision boundaries

$$a_m = k \text{ if } \left( y_n > \frac{x_m + x_{m-1}}{2} \right) \text{ and } \left( y_n < \frac{x_m + x_{m-1}}{2} \right)$$
$$x_{-1} = -\infty ; x_M = +\infty$$



# M-PAM Signal Power

- **As symbols are different, the power of each symbol may also be different**
  - Consider the power of the sampled signal:  $P_n = |a_n|^2$
- **In general, we are mostly interested in the average signal power  $\bar{P}_s$** 
  - For a specific signal example (but with many samples)

$$\bar{P}_s = \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{k=0}^{N-1} |a_k|^2$$

- To be more general, it is reasonable to assume that the symbols  $a_k \in \mathcal{O}$  are all equally likely

$$\Pr(a_k = x_i) = \frac{1}{N} \text{ for all } i = 0, \dots, M - 1$$

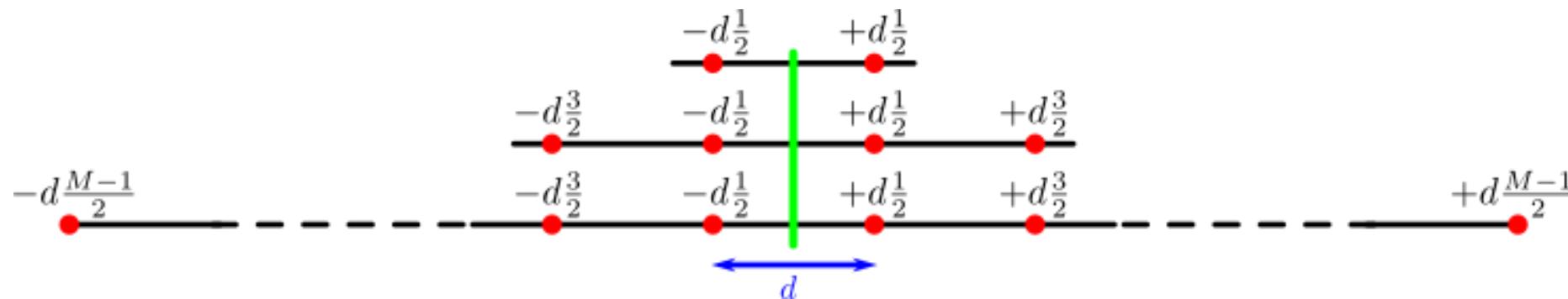
$$\bar{P}_{\mathcal{O}} = \frac{1}{M} \sum_{m=0}^{M-1} |x_m|^2$$

# M-PAM Constellation Construction

- **Constructing a constellation involves two steps:**
  - Defining the values of the constellation points  $\mathcal{O} = \{x_0, x_1, x_2, \dots, x_{M-1}\}$
  - Assigning a combination of bits to each constellation point
- **There are two strategies to define the values of the constellation points**
  - **Equal Distance Construction:** constellation points have same **distance  $d$**  from their neighbours

$$x_{n+1} = x_n + d, n = 0, \dots, M-1, \text{ given } x_0$$

$$\text{Example: } x_0 = -\frac{M-1}{2} \rightarrow \mathcal{O} = \left\{ \pm d \frac{1}{2}, \pm d \frac{3}{2}, \dots, \pm d \frac{M-1}{2} \right\}$$



# M-PAM Constellations Construction: Unit Power

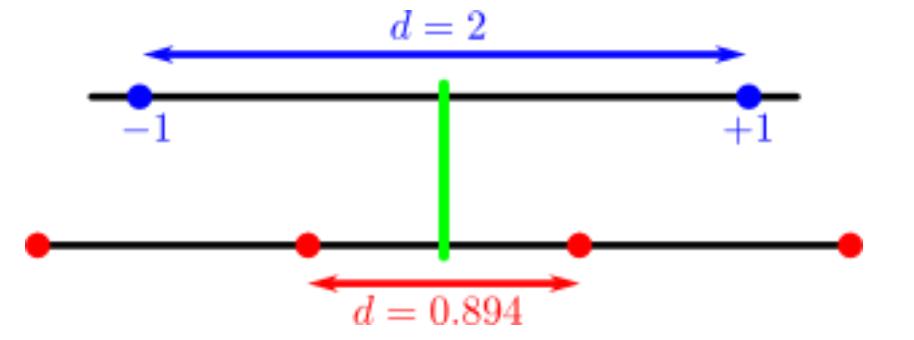
- **Wireless systems:** “average power” constrained by standards & regulations
- **Unit Power** Construction: constellation points yield signal power of one  $\bar{P}_s = 1$  while maintaining equal distance (defined by given power)
  1. Start from equal distance construction with arbitrary distance  $d$

$$x_{n+1} = x_n + d, n = 0, \dots, M - 1, \text{ given } x_0$$

$$\bar{P}_o = \frac{1}{M} \sum_{m=0}^{M-1} |x_m|^2$$

2. Scale constellation points to achieve the desired average power level

$$\bar{x}_k = \frac{x_k}{\sqrt{\bar{P}_o}} \quad ; \quad \bar{\mathcal{O}} = \{\bar{x}_0, \bar{x}_1, \bar{x}_2, \dots, \bar{x}_{M-1}\}$$



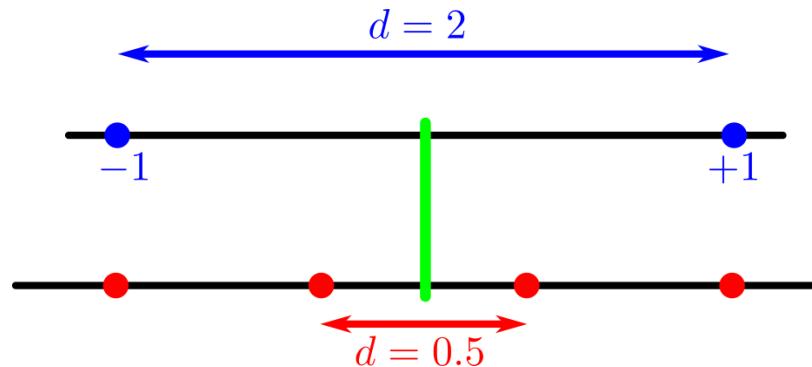
# M-PAM Constellations Construction: Max. Amplitude

- **Wireline systems: circuit supply voltages define maximum amplitude**
- **Maximum Amplitude** Construction: constellation points yield signal power of one  $\bar{P}_s = 1$  while maintaining equal distance (defined by given power)
  1. Start from equal distance construction with arbitrary distance  $d$

$$x_{n+1} = x_n + d, n = 0, \dots, M - 1, \text{ given } x_0$$

2. Scale constellation points to achieve the desired average power level

$$\bar{x}_k = \frac{A}{M - 1} x_k ; \quad \mathcal{O} = \{\bar{x}_0, \bar{x}_1, \bar{x}_2, \dots, \bar{x}_{M-1}\}$$



# **EE-432**

# **Systeme de**

# **Telecommunication**

**Prof. Andreas Burg**  
**Joachim Tapparel, Yuqing Ren, Jonathan Magnin**

**Applications**

# Applications of PCM Systems: Wireline



Telephone



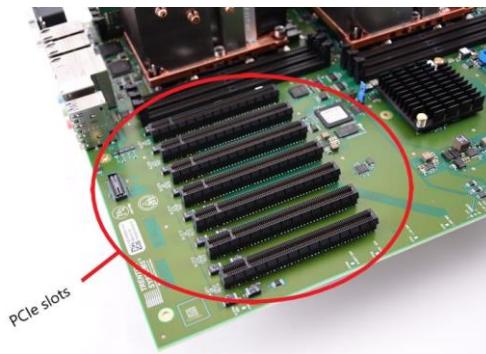
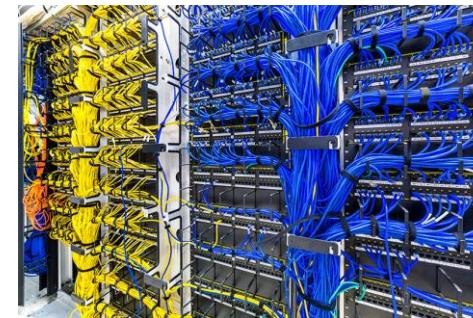
USB



HDMI, Display Port, ...



Memory Interfaces

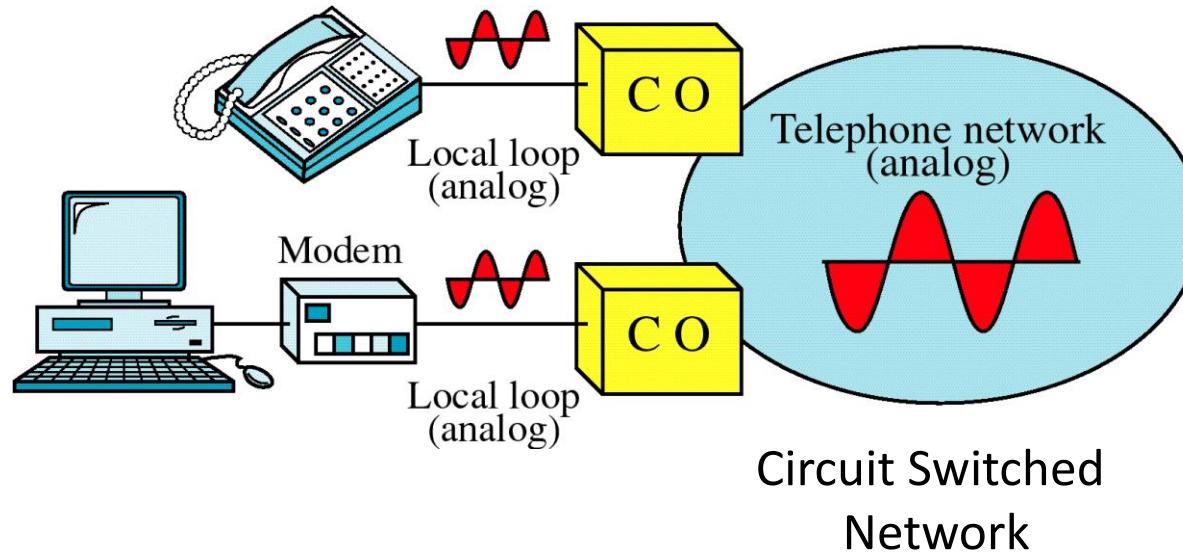
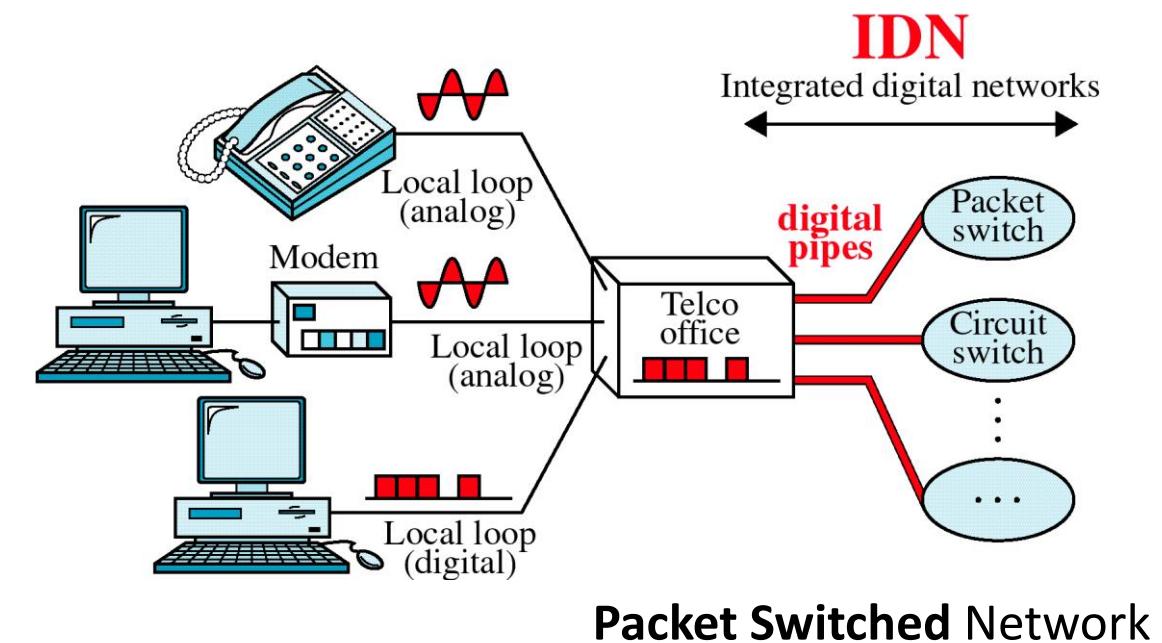


Computer Networks

# ISDN Digital Telephony Motivation

- **Motivation in the late 1980s**

- Increasing digitization of the global telephone network (with only local loop analog)
- Increasing need for digital data communication over analog telephone network

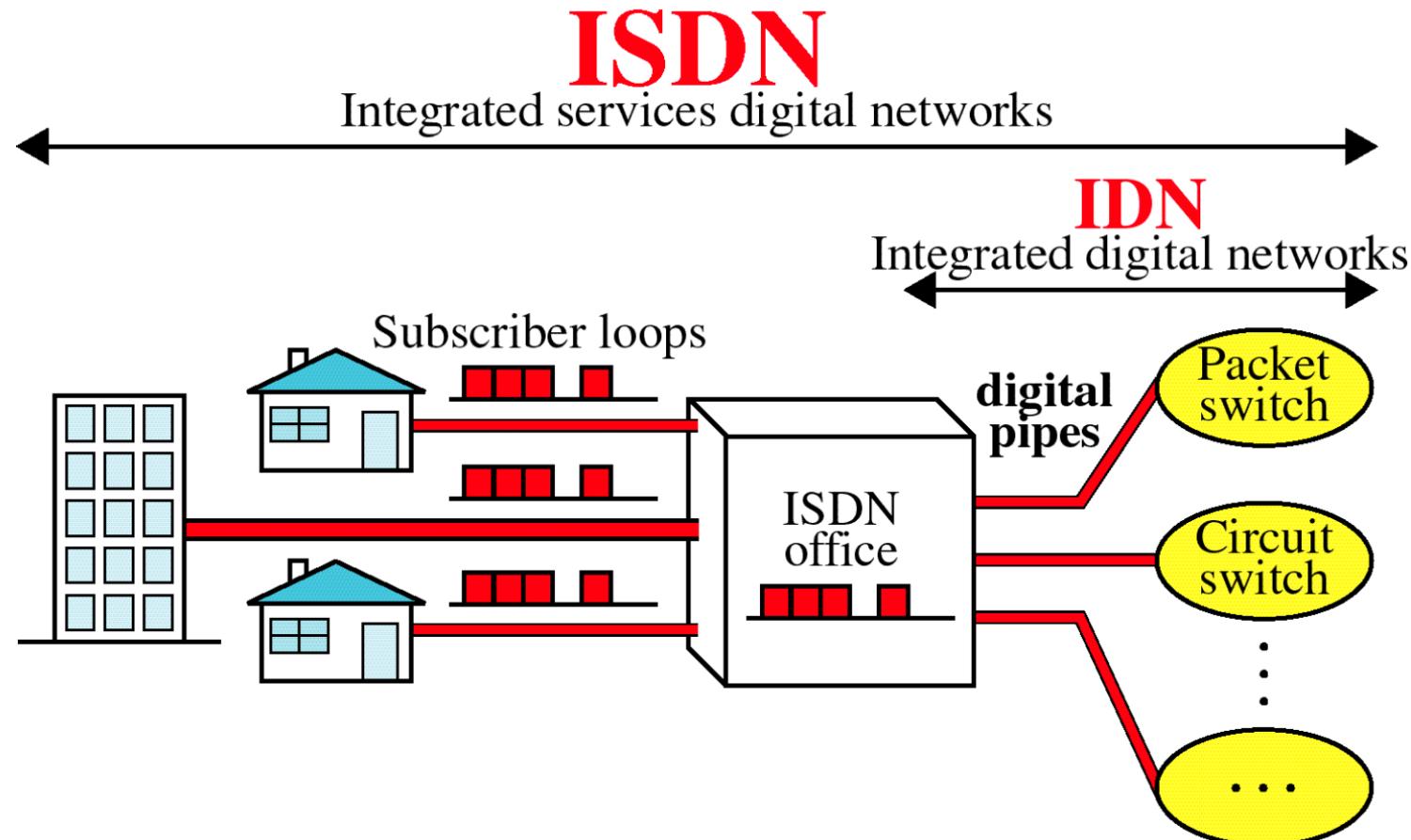


- **Transition from analog local loop (end-user connection) to telephone network was inefficient. Need for new fully digital system**

# ISDN Digital Telephony

- **ISDN: Integrated Services Digital Network**

- Proposed in 1984, standardization completed in 1988, commercially available since 1992

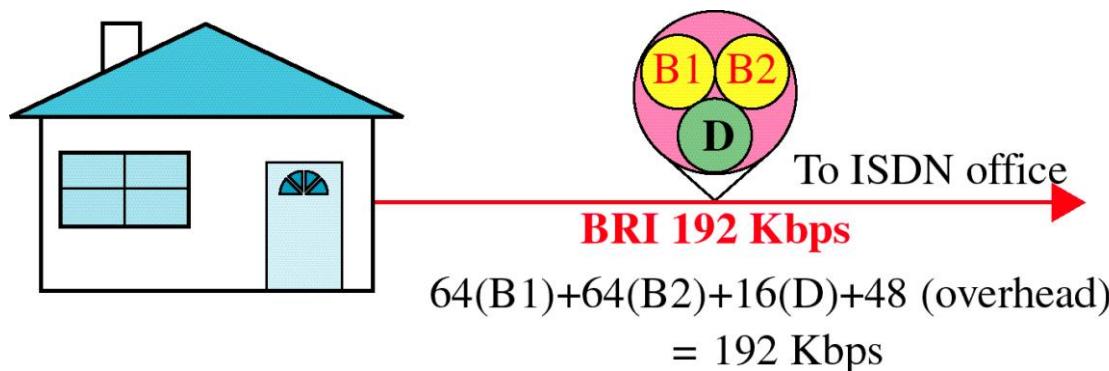
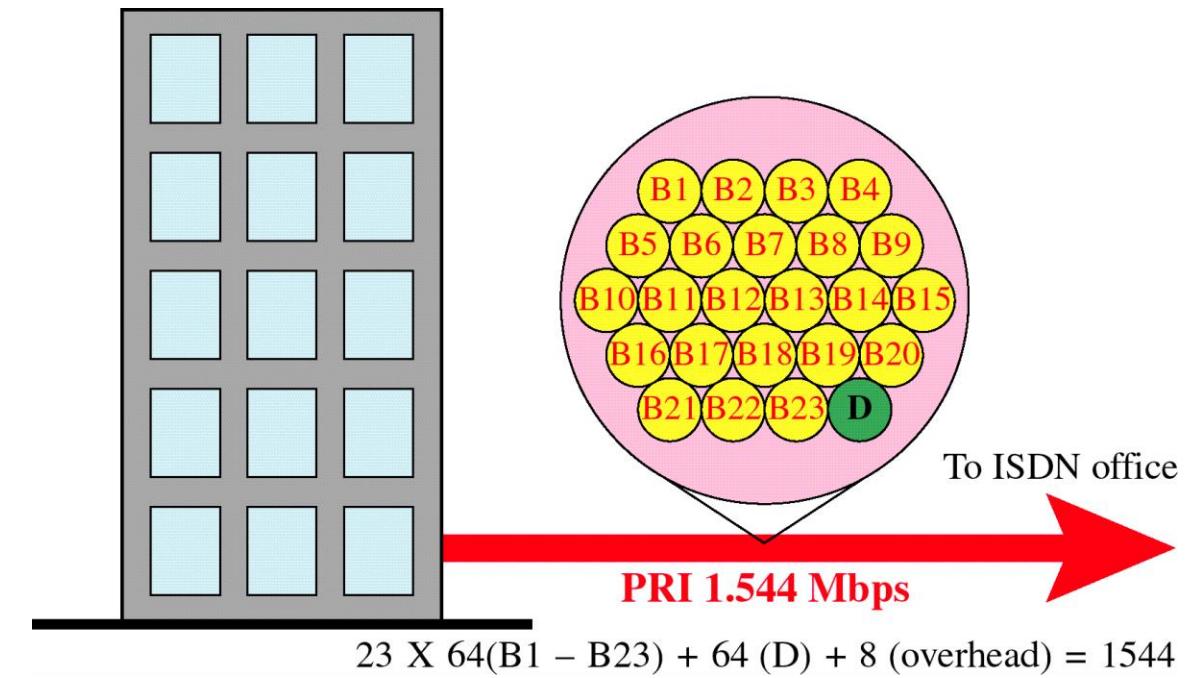


# Digital Telephone System: ISDN

- **ISDN:** Carry digitized voice using standard telephony bandwidth
- **ISDN Voice Channels Bandwidth / Quantization:**
  - **Audio bandwidth:** ~300 Hz to 3400 Hz (speech-optimized passband)
  - **Nyquist rate:** To capture this bandwidth, the minimum sampling rate is  $2 \times 3400 = 6800$  Hz
  - **Standard choice:** 8000 samples/second (8 kHz) is used in practice — the same rate as traditional PSTN systems.
  - **Voice quantization with 8 bits/sample**
    - **Non-linear analog signal compression** based on A-law in Europe,  $\mu$ -law in North America/Japan
    - No digital data compression
  - **64 kbps per voice channel** is referred to as a B-channel (Bearer channel) in ISDN
  - **Modulated using “2B1Q” (2 Binary 1 Quaternary) modulation (=4-PAM -3V,-1V,+1V,+3V)**

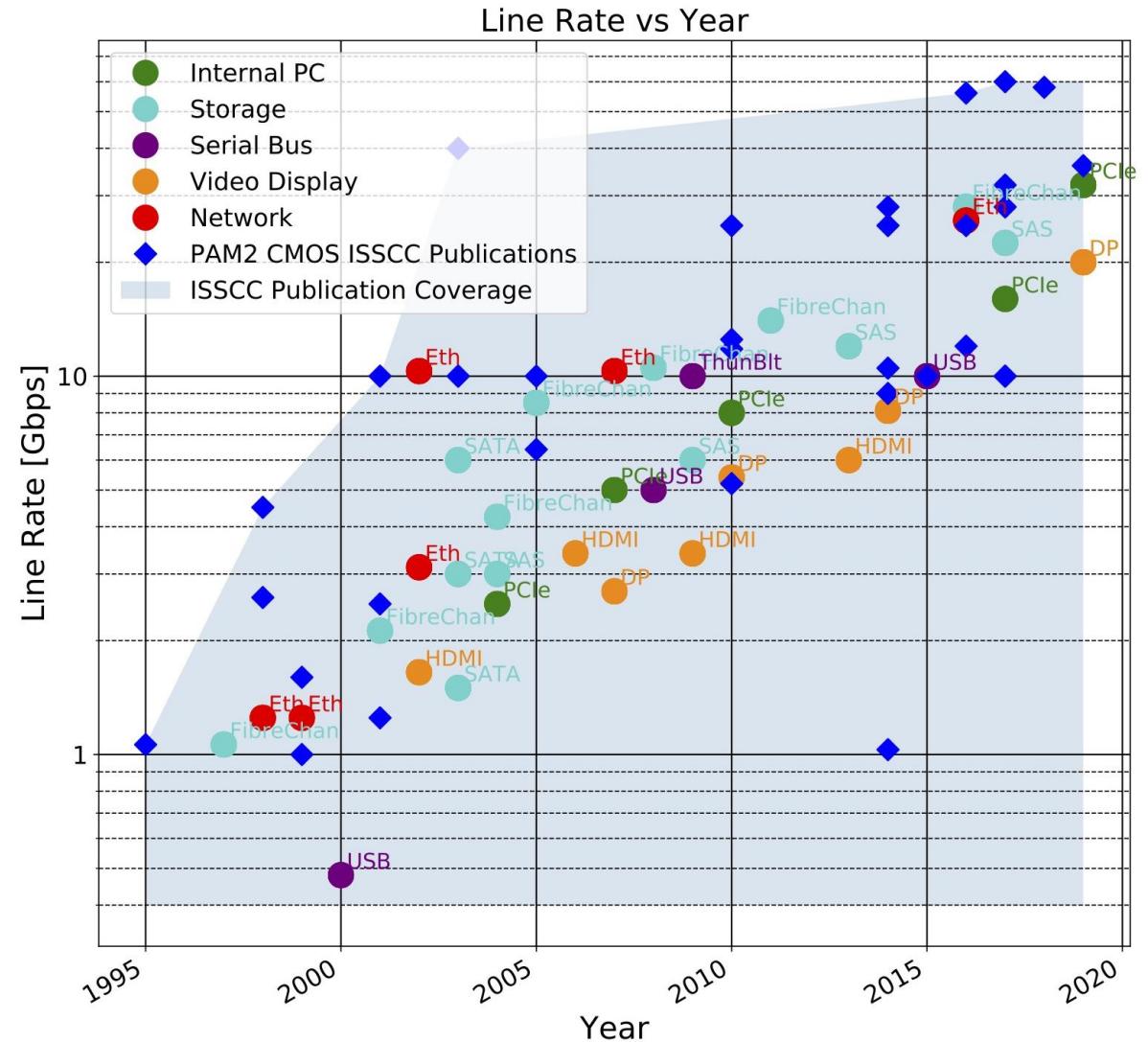
# Digital Telephone System: ISDN

- **Basic Rate Interface (BRI):** residential and small-office customers
  - Two B-channels + one 16 Kbps D-channel (2B+D) and 48 Kbps of operating overhead
  - Can use the same **twisted-pair local loop** as analog network
- **Primary rate interface (PRI): business customers**
  - 23 B channels + one 64-kbps D channel and 8 kbps of overhead: 1.544 Mbps
  - **Require updated local wiring** to support the higher signalling bandwidth



# SerDes High Speed Chip-to-Chip Links

- High speed serial links are essential for many applications
  - Optical Transmission: OC-192, OC-768, SONET
  - Internal PC: PCIe 1-5
  - Storage: Fibre Channel, SATA, SAS
  - Serial Bus: USB, Thunderbolt
  - Video Display: DisplayPort, HDMI



# Ethernet

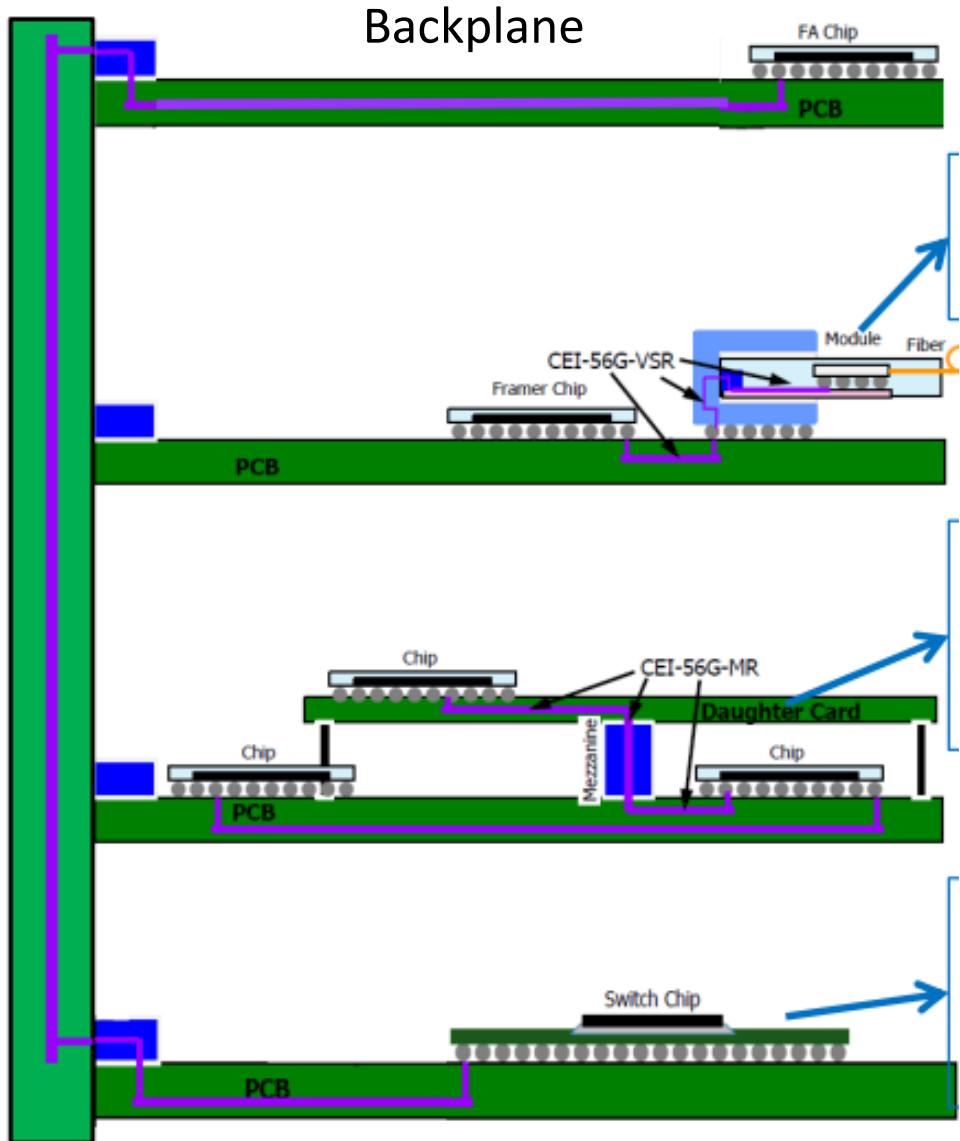
- **Purpose:** robust, and scalable method for local area communication (LAN)
  - Foundations developed in 1973
  - IEEE 802.3 standard since 1983 (10BASE5)



- **Evolution toward higher speed with more parallel lanes, higher bandwidth, and higher order modulation**

| Standard   | Data Rate | Modulation    | Lanes | Baud rate | BW        | Medium       |
|------------|-----------|---------------|-------|-----------|-----------|--------------|
| 10Base-T   | 10 Mbps   | Machester     | 1     | 10        | 10 MHz    | Twisted pair |
| 100Base-T  | 100 Gbps  | MLT-3 (PAM-3) | 1     | 125       | 31.25 MHz | Cat 5        |
| 1000Base-T | 1 Gbps    | PAM-5         | 4     | 125       | 62.5 MHz  | Cat 6        |
| 10GBase-T  | 10 Gbps   | PAM-16        | 4     | 800       | 500 MHz   | Cat 6A       |
| 25GBase-T  | 25 Gbps   | PAM-16        | 4     | 2500      | 1250 MHz  | Cat 8        |

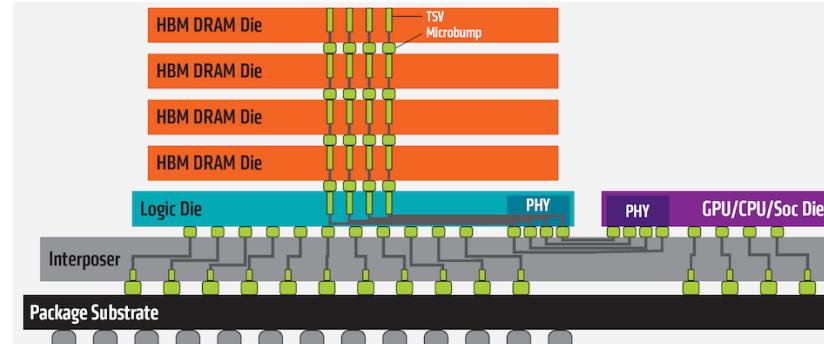
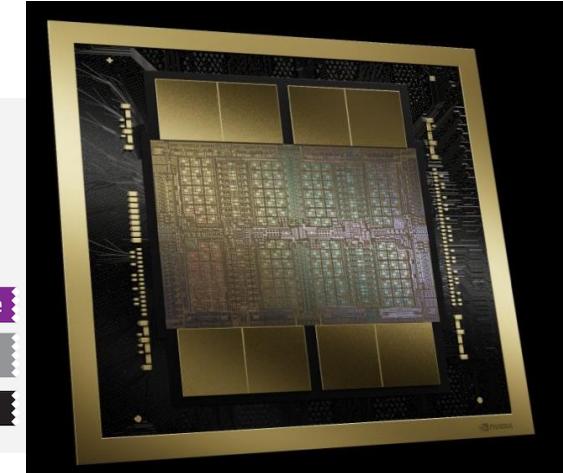
# Chip-to-Chip Links in the Gbps Regime



Memory Interfaces: moderate rate due to many parallel pins

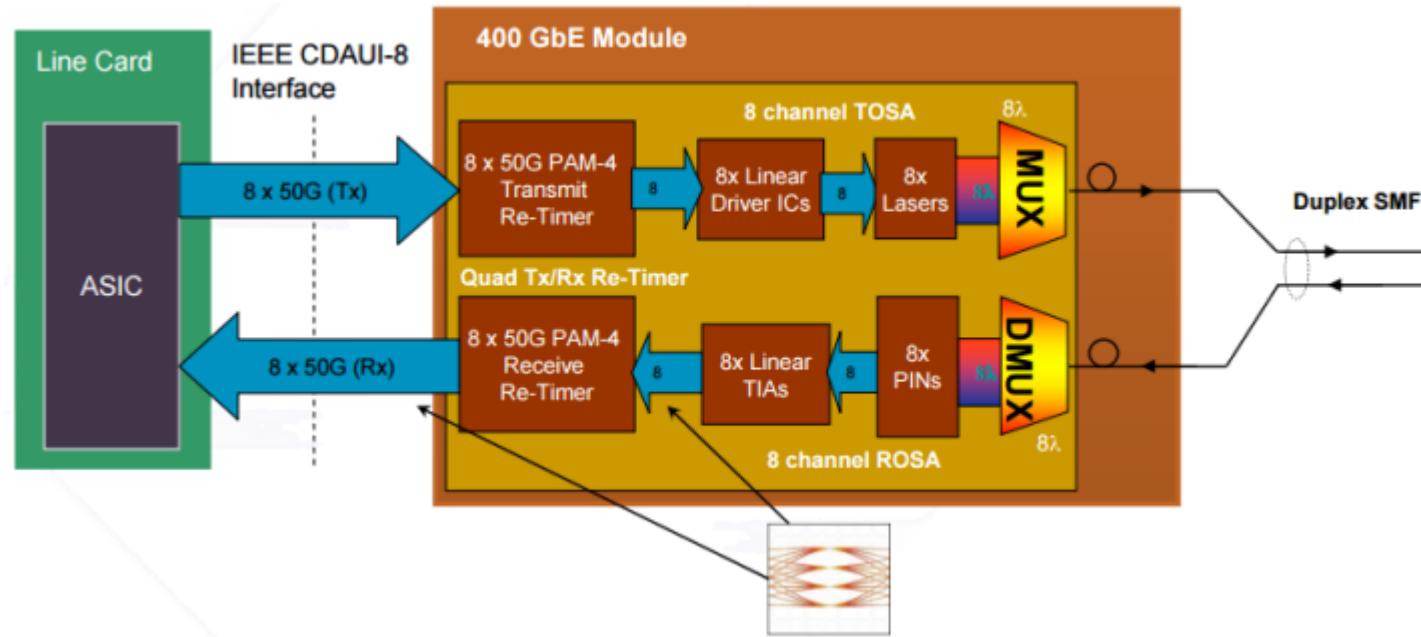
| Standard | Year | Baud Rate         |
|----------|------|-------------------|
| DDR      | 1998 | 400 Mbaud         |
| DDR 2    | 2003 | 400 – 1066 Mbaud  |
| DDR 3    | 2007 | 800 – 2133 Mbaud  |
| DDR 4    | 2014 | 1600 – 3200 Mbaud |
| DDR 5    | 2020 | 3200 – 6400 Mbaud |

## Memory Interfaces



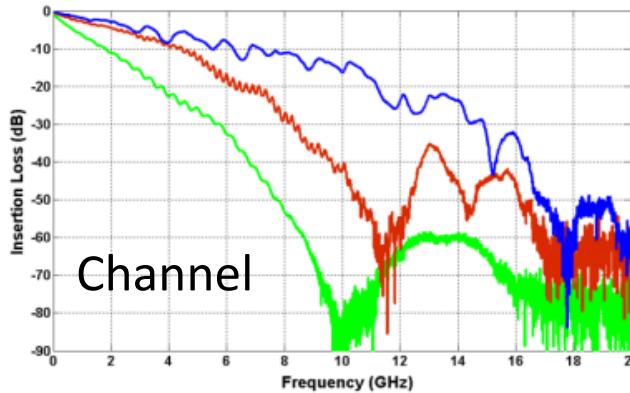
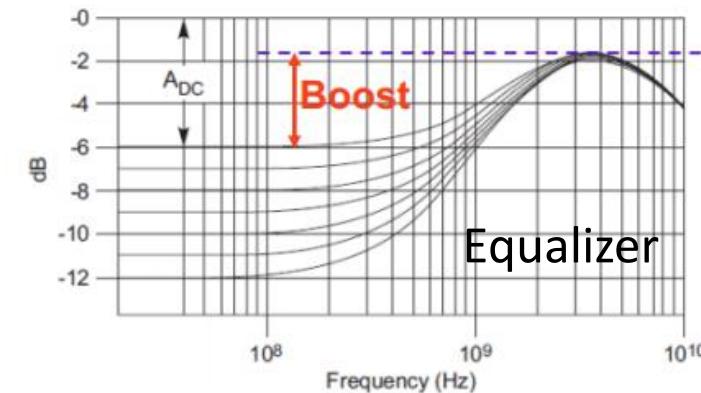
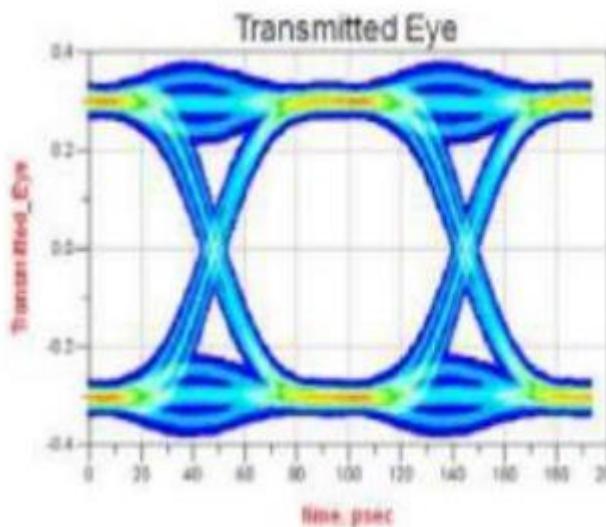
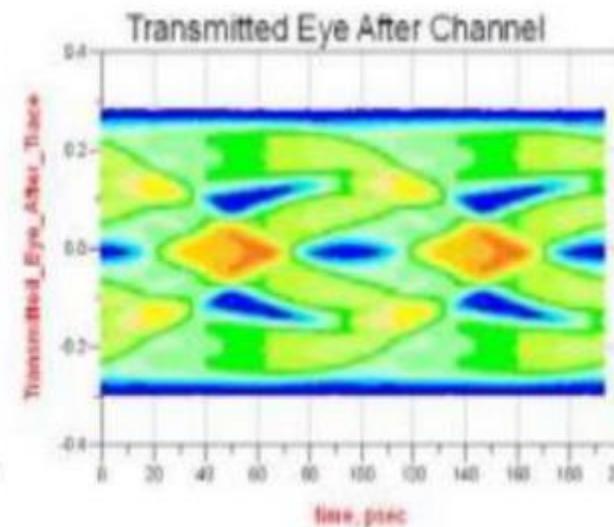
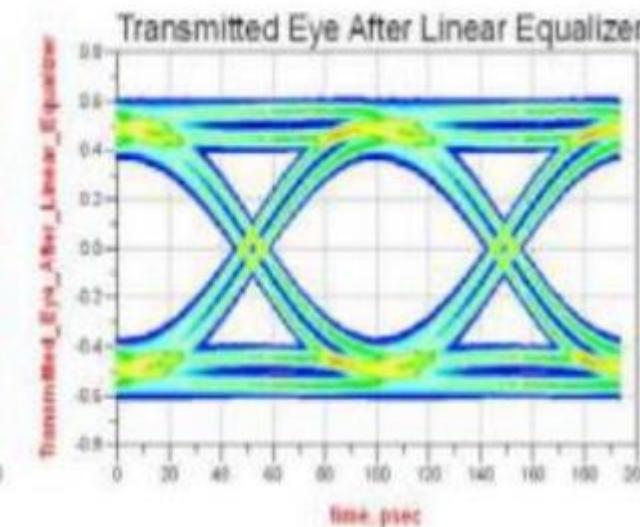
# Line Card Interfaces

- Interfaces to optical links are even more challenging
  - Throughput in the 10s of Gbps per single pin



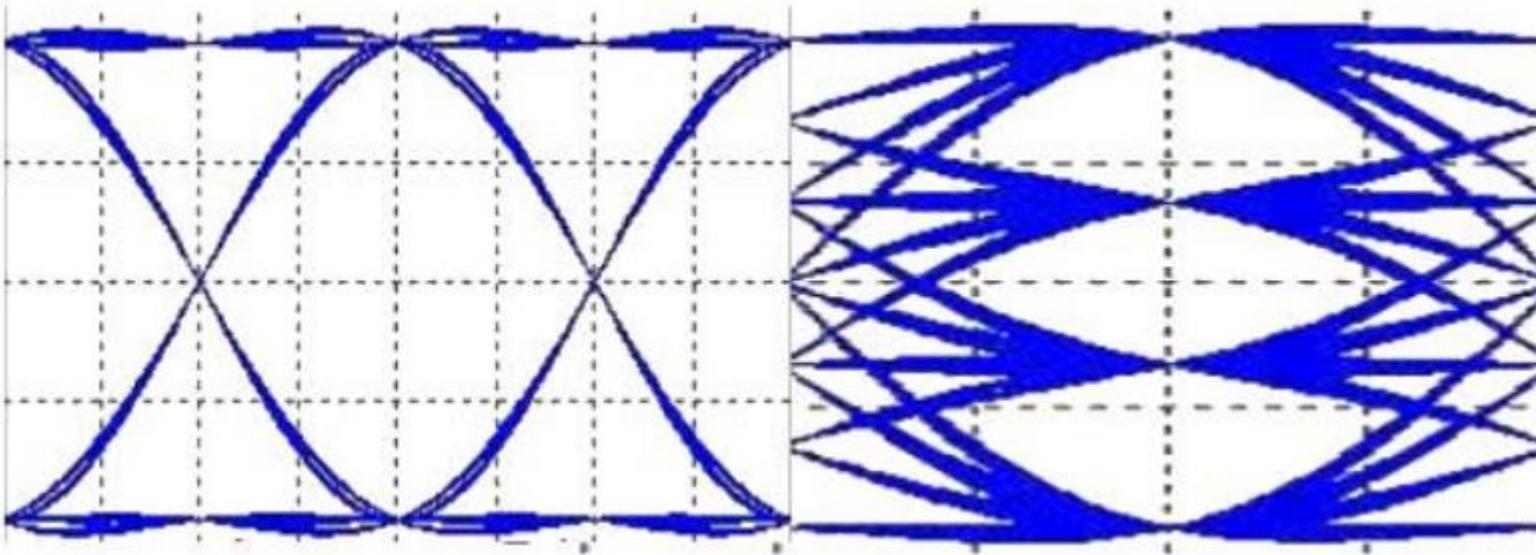
# Serial Links Equalization

- Chip-to-chip physical link has limited bandwidth: correction with equalization



# Serial Links with Higher PAM Order

- Higher order PAM requires less bandwidth, but eye opening also reduces

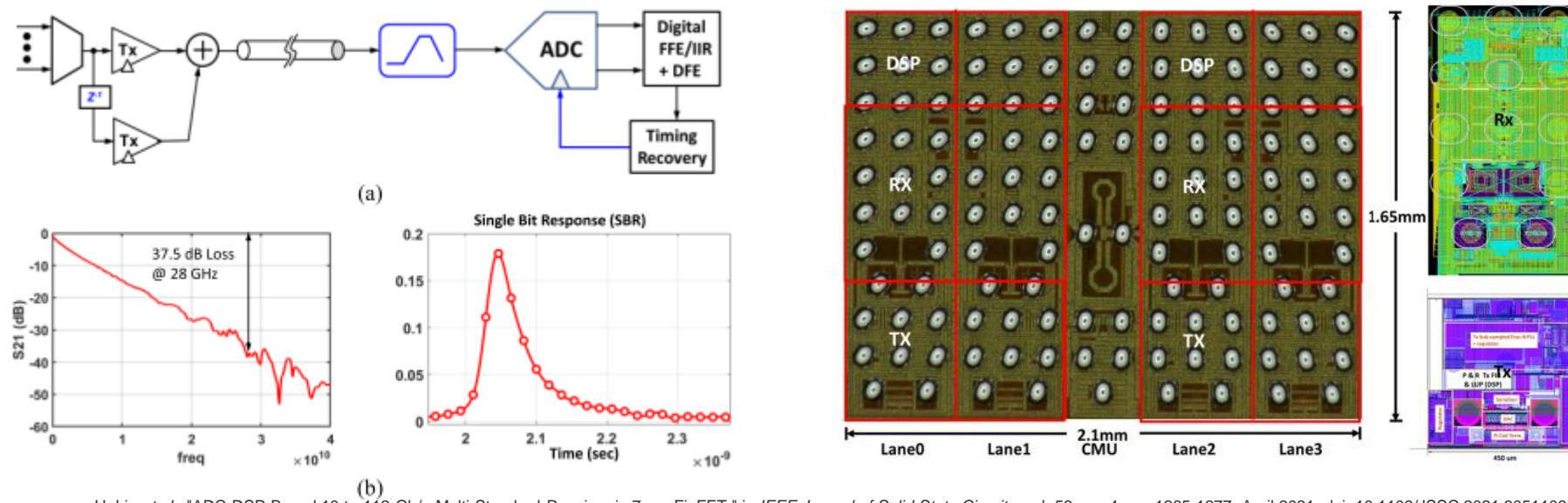


- Eye height for PAM4 is 1/3 of that of PAM2, thus

$$\text{SNR loss} = 20 \cdot \log_{10} \left( \frac{1}{3} \right) \approx 9.5 \text{ dB}$$

# Difficulty to Implement Advanced Receivers

- **Serial Links today can operate with Baud Rates in the 10s Gbps regime**
  - Signal processing mostly done in the analog domain
  - Digital signal processing only recently possible with very high-speed data converters



H. Lin et al., "ADC-DSP-Based 10-to-112-Gb/s Multi-Standard Receiver in 7-nm FinFET," in *IEEE Journal of Solid-State Circuits*, vol. 56, no. 4, pp. 1265-1277, April 2021, doi: 10.1109/JSSC.2021.3051109.