

EE-432

Systeme de

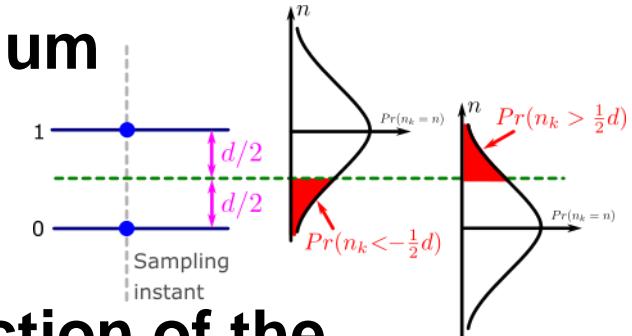
Telecommunication

Prof. Andreas Burg
Joachim Tapparel, Yuqing Ren, Jonathan Magnin

Digital RF (Carrier) Communication
Linear Modulation: From PAM to QAM

Recap from Week-8

- Transmitted signals are distorted by additive white Gaussian noise
- Errors are caused by noise that is larger than $\frac{1}{2}$ the minimum distance between constellation points (symbol levels)
- The error rate has the form $\varepsilon = \alpha \cdot Q\left(\frac{1}{2} \frac{d}{\sigma}\right)$, where α is a function of the employed modulation
- We are generally interested in the error rate as a function of the signal power and the noise (or the noise PSD)
 - Express the minimum distance d as a function of the power P (and the noise as a function of N_0 and the bandwidth)
 - For example for M-PAM we obtain $\varepsilon_M = 2 \cdot \frac{M-1}{M} \cdot Q\left(\sqrt{\frac{3}{M^2-1} SNR_M}\right) = 2 \cdot \frac{M-1}{M} \cdot Q\left(\sqrt{\frac{3}{M^2-1} \frac{P}{B \cdot N_0}}\right)$



Error Rate from an Energy Perspective (Binary PCM)

- Longer symbols correspond to expending more power for each symbol
 - Is there a “fair” way to account for the increase of power when extending symbol duration?
- Idea: start from an energy-perspective
 - Using the “energy per symbol” $E_s = P_s \cdot T_s$ allows to express error rate performance independently from the symbol rate, but still relating to the thermal noise constant PSD
 - Assume minimum bandwidth as $B_s = \frac{1}{2 \cdot T_s}$

$$SNR = \frac{P_s \cdot T_s}{T_s \cdot B_s \cdot N_0} = 2 \cdot \frac{E_s}{N_0}$$
$$\varepsilon_2 = Q \left(\sqrt{2 \frac{E_s}{N_0}} \right)$$

Error Rate from an Energy Perspective (M-PAM)

- Increasing constellation order M allows to reduce the bandwidth (impact on noise as $\sigma^2 = N_0 \cdot B$)
- Consider a M-PAM signal with a given bit rate f_{bit} , a pulse shaping filter with **minimum spectrum occupation**, and power \bar{P}_s
- Calculate the error rate ε_M as a function of the one-sided noise PSD N_0 and the bit rate f_{bit}
 - Some useful expressions/hints

$$\varepsilon_M = 2 \cdot \frac{M-1}{M} \cdot Q \left(\sqrt{\frac{3}{M^2-1} SNR_M} \right)$$

$$\text{Bandwidth: } \frac{f_{bit}}{2 \log_2 M}$$

$$\text{Symbol-duration: } T_s = \frac{\log_2 M}{f_{bit}} \quad \text{Bit-duration: } T_{bit} = \frac{1}{f_{bit}}$$

Bipolar M-PAM Error Probability with Fixed Throughput

- First we obtain the Error Probability as a function of the symbol energy for the minimum required bandwidth

$$\varepsilon_M = 2 \cdot \frac{M-1}{M} \cdot Q \left(\sqrt{\frac{3 \cdot 2}{M^2 - 1} \frac{E_s}{N_0}} \right)$$

- Fixing the throughput f_{bit} implies that $T_s = \frac{\log_2 M}{f_{bit}}$ and with $E_s = \bar{P}_s \cdot \frac{\log_2 M}{f_{bit}}$

$$\varepsilon_M = 2 \cdot \frac{M-1}{M} \cdot Q \left(\sqrt{\frac{3 \cdot 2}{M^2 - 1} \frac{\bar{P}_s}{N_0} \frac{\log_2 M}{f_{bit}}} \right)$$

- Increasing the constellation implies a significant penalty in error rate performance
- the increase in symbol energy when packing more bits with a fixed E_b provides only a slight compensation for the penalty

Energy per Bit

- Similar to the “energy per symbol, we can define the “energy per bit”

$$E_b = \frac{\bar{P}_s \cdot \log_2 M}{f_{bit}} = E_s / \log_2 M$$

- E_b provides another level of normalization that simplifies the comparison as it removes the dependency on the number of bits per symbol

$$\varepsilon_M = 2 \cdot \frac{M-1}{M} \cdot Q \left(\sqrt{\frac{3 \cdot 2}{M^2 - 1} \frac{E_b}{N_0} \cdot \log_2 M} \right)$$

- Constant “energy per bit” is equivalent to saying we pack more bits into a symbol and extend the symbol duration accordingly.

Week 8: Table of Contents

- **Digital RF (Carrier) Communication**

Linear Modulation: From PAM to QAM

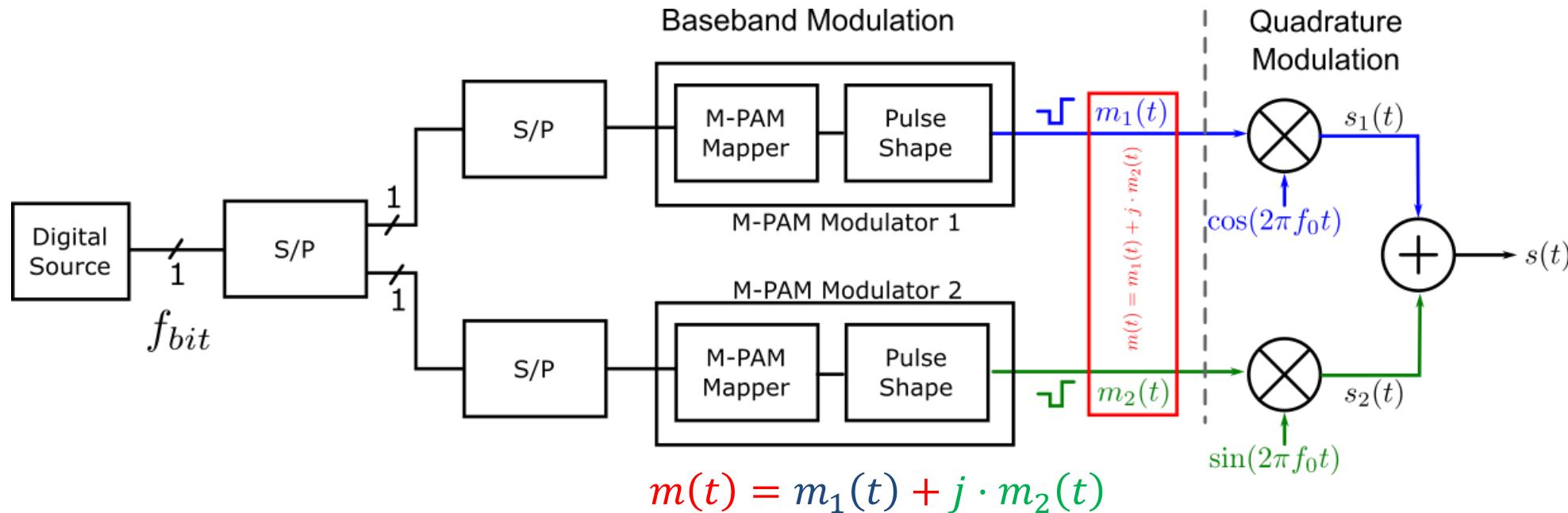
- **Channel Capacity**

From RF to Baseband (Carrier Modulation)

- Can we use the same linear modulation concept to generate modulated Radio-Frequency (RF) signals?

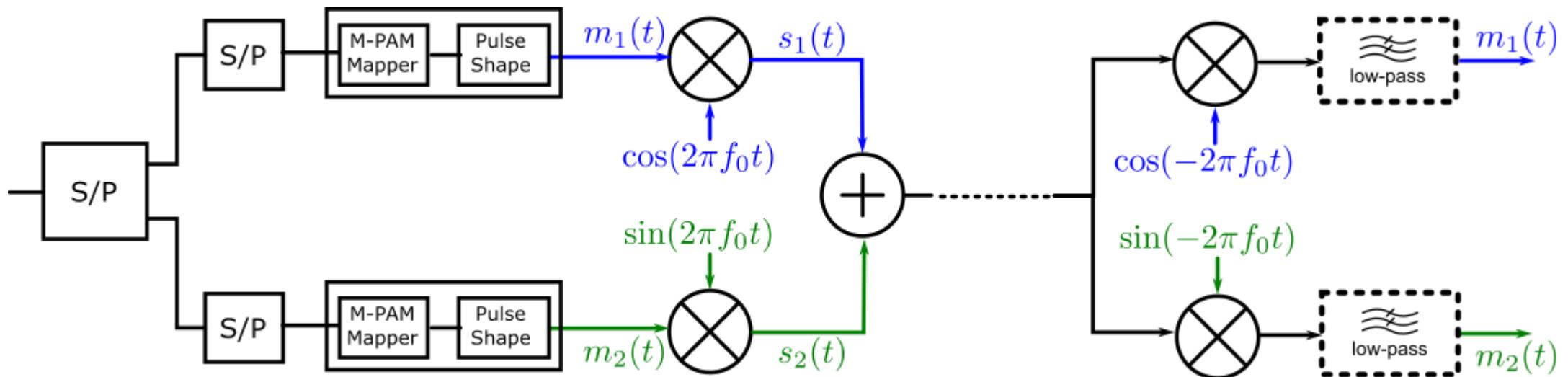
Converting two modulated baseband signals to RF

- “Carrier Modulation”: conversion to RF based on Quadrature Modulator (see AM)
- The RF signal can accommodate two real-valued baseband signals in two orthogonal carriers



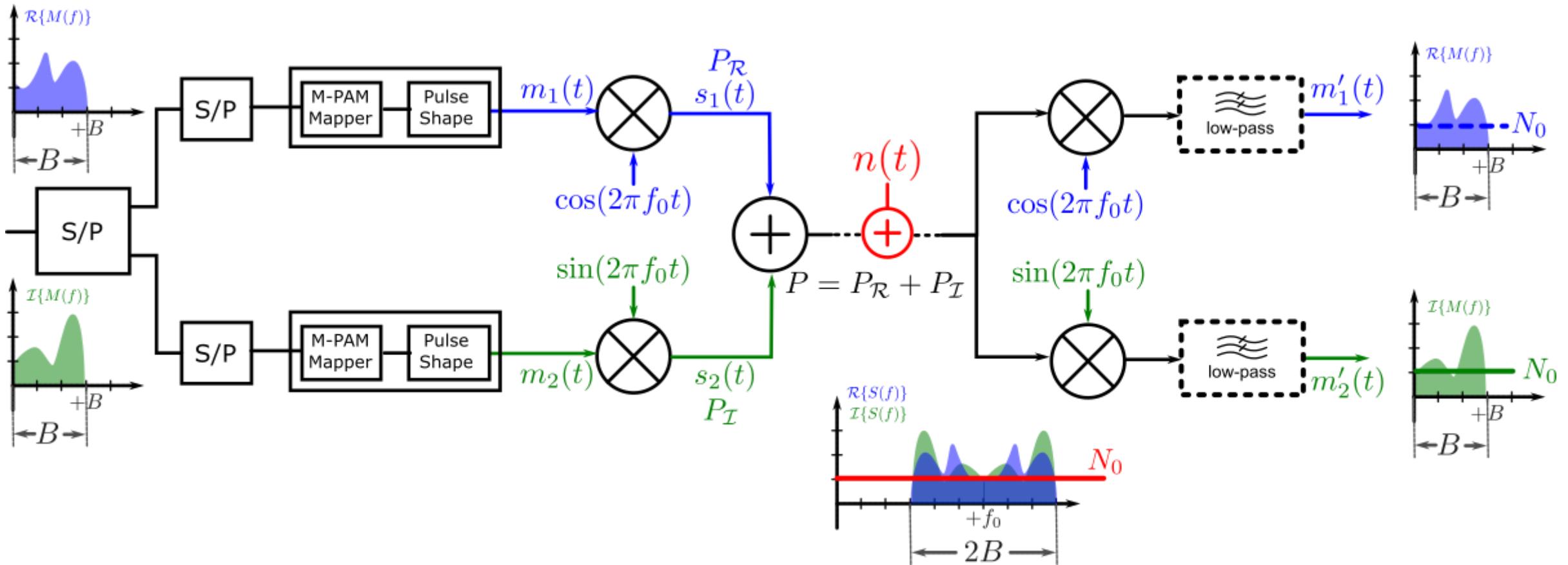
RF to Baseband (Carrier Demodulation)

- The two orthogonal carriers can be demodulated separately and can be separated perfectly when the receiver is coherent (phase and frequency aligned) with the transmitter



Noise and Signal Power in Carrier Modulation

- **To calculate error rates, we need**
 - the signal power (to calculate the distance between symbols)
 - the noise power (variance) in the direction of the neighbouring symbol



Noise and Signal Power in Carrier Modulation

- **Signal power**

- The power of the RF signal is the sum of the powers of the two baseband signals

$$P = P_{\mathcal{R}} + P_J$$

- **Noise power (variance of the noise)**

- Noise is added in the RF signal with bandwidth $B_{RF} = 2 \cdot B$

- Noise of the RF signal has power $\sigma_{RF}^2 = 2 \cdot B \cdot N_0$

- At the receiver, the noise is split equally between the two branches

- Each branch obtains 50% of the noise on the RF signal

$$\sigma_{\mathcal{R}}^2 = \sigma_J^2 = \frac{\sigma_{RF}^2}{2} = B \cdot N_0$$

- This is consistent with adding noise in the baseband with PSD N_0 and a bandwidth B

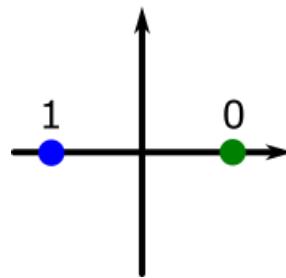
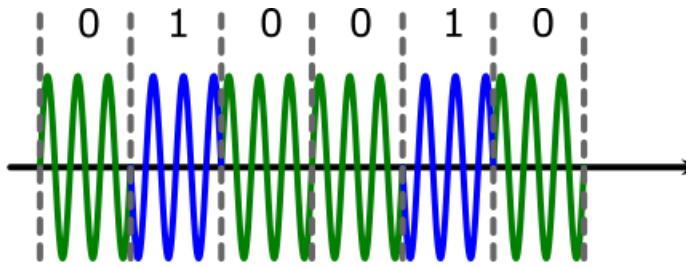
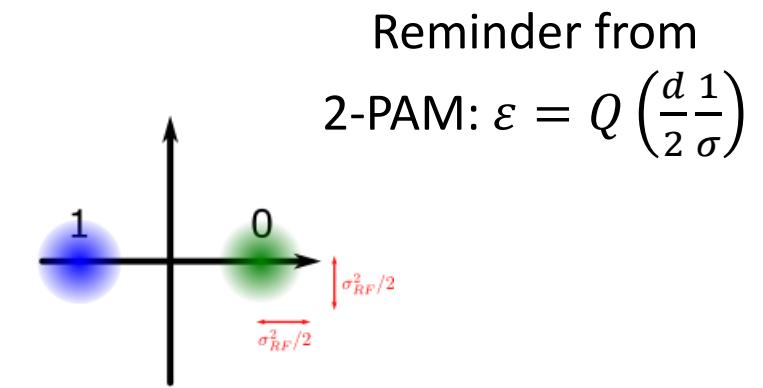
- If we consider the demodulated noise as a complex-valued signal, the variance would be

$$\sigma^2 = \sigma_{\mathcal{R}}^2 + \sigma_J^2 = 2 \cdot B \cdot N_0$$

BPSK Modulation Error Rate

- **Binary modulation (Bi-polar 2-PAM) with $M = 2$ (1 bit per symbol)**
 - Uses only one “carrier” of the complex-valued signal (spectrally inefficient)

$$m_1[k] \in \{-\sqrt{P}, +\sqrt{P}\} \text{ and } m_2[k] = 0$$



$$\text{Noise in RF: } \sigma_{RF}^2 = 2 \cdot \frac{f_s}{2} \cdot N_0$$

$$\text{Noise on real part } (m'_1): \sigma_{\mathcal{R}}^2 = \frac{f_s}{2} \cdot N_0$$

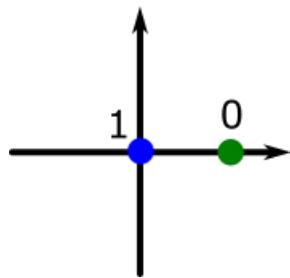
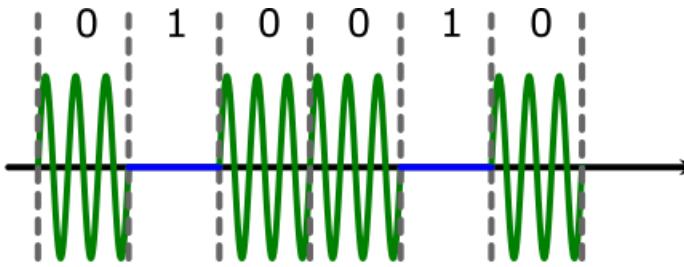
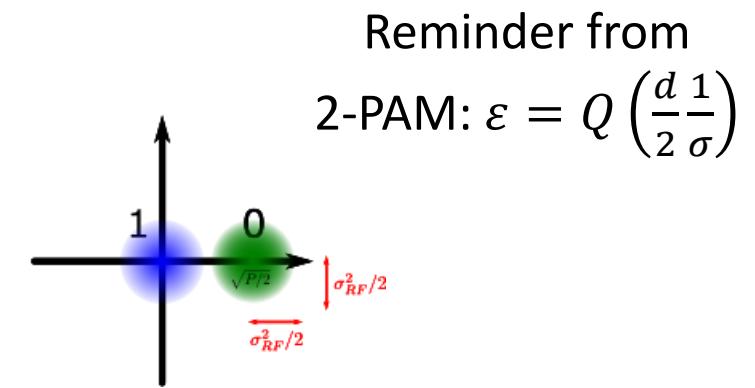
$$\text{Half-distance: } \frac{d}{2} = \sqrt{P}$$

$$\epsilon_{BPSK} = Q\left(\frac{d}{2} \frac{1}{\sqrt{\sigma^2}}\right) = Q\left(\sqrt{\frac{P}{\sigma_{\mathcal{R}}^2}}\right) = Q\left(\sqrt{\frac{P}{\frac{f_s}{2} \cdot N_0}}\right) = Q\left(\sqrt{2 \frac{P/f_s}{N_0}}\right) = Q\left(\sqrt{2 \frac{E_s}{N_0}}\right) = Q\left(\sqrt{2 \frac{E_b}{N_0}}\right)$$

OOK Modulation and Error Rate

- **On-Off Keying (OOK) is the uni-polar version of BPSK**
 - Uses only one “carrier” of the complex-valued signal (spectrally inefficient)

$$m_1[k] \in \{0, +\sqrt{2P}\} \text{ and } m_2[k] = 0$$



$$\text{Noise in RF: } \sigma_{RF}^2 = 2 \cdot \frac{f_s}{2} \cdot N_0$$

$$\text{Noise on real part } (m'_1): \sigma_{\mathcal{R}}^2 = \frac{f_s}{2} \cdot N_0$$

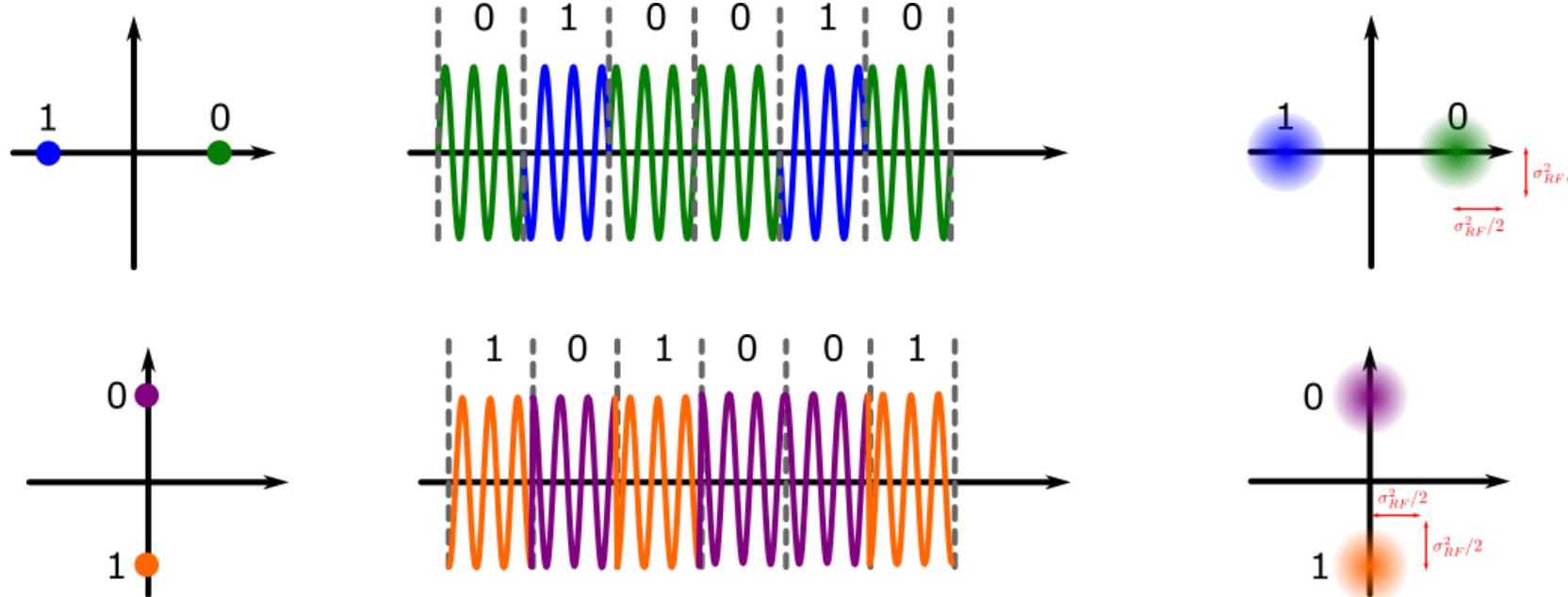
$$\text{Half-distance: } \frac{d}{2} = \sqrt{P/2}$$

$$\begin{aligned} \epsilon_{BPSK} &= Q\left(\frac{d}{2} \frac{1}{\sqrt{\sigma^2}}\right) = Q\left(\sqrt{\frac{P/2}{\sigma_{\mathcal{R}}^2}}\right) = Q\left(\sqrt{\frac{P/2}{\frac{f_s}{2} \cdot N_0}}\right) = Q\left(\sqrt{\frac{P/f_s}{N_0}}\right) = Q\left(\sqrt{\frac{E_s}{N_0}}\right) = Q\left(\sqrt{\frac{E_b}{N_0}}\right) \end{aligned}$$

QPSK Modulation

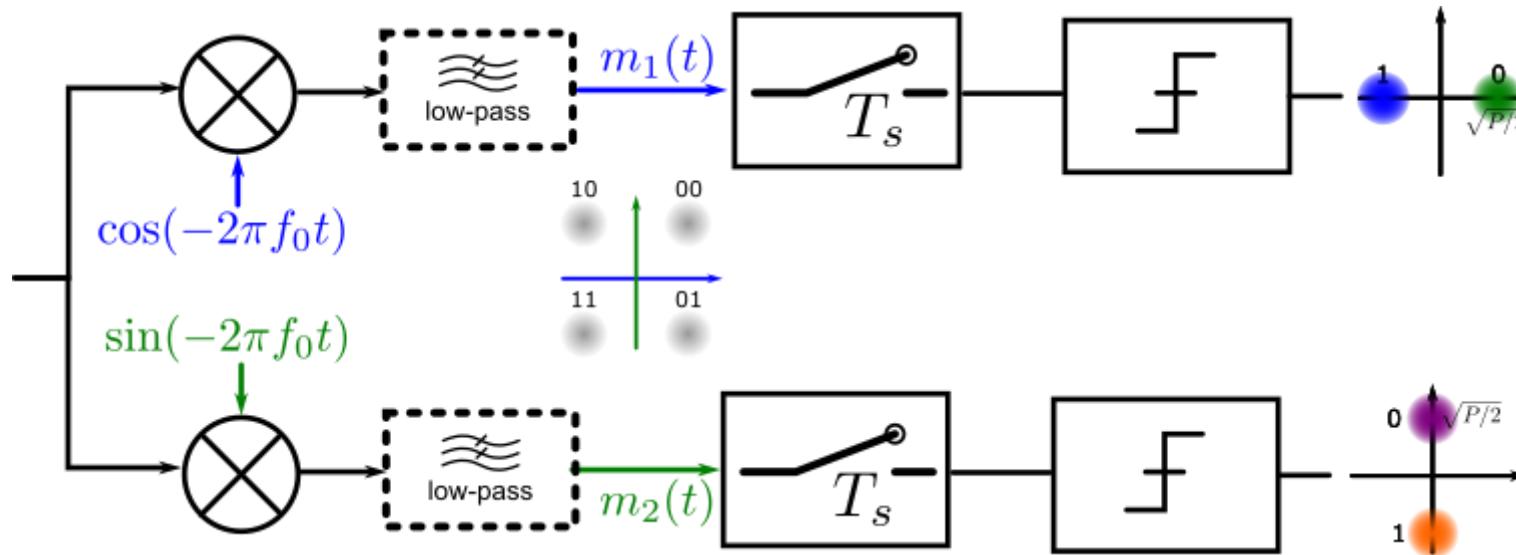
- QPSK uses both “carriers” (sin/cos) in parallel, each with Bi-polar 2-PAM to send 2 bits in parallel in the same bandwidth (more BW efficient)
 - To maintain total power P after summing both carriers, the amplitude of each carrier is reduced

$$m_1[k] \in \{-\sqrt{P/2}, +\sqrt{P/2}\} \text{ and } m_2[k] \in \{-\sqrt{P/2}, +\sqrt{P/2}\}$$



QPSK De-Modulation

- QPSK can be de-modulated by considering the two branches (real- and imaginary parts) separately.



QPSK Error Rate

- Bit-Error rates can be computed separately on the two branches, similar to BPSK, but considering the scaled constellation (to maintain the power):

$$m_{1,2}[k] \in \{-\sqrt{P/2}, +\sqrt{P/2}\}$$

$$\text{Noise in RF: } \sigma_{RF}^2 = 2 \cdot \frac{f_s}{2} \cdot N_0$$

$$\text{Noise on real part } (m'_1): \sigma_{\mathcal{R}}^2 = \frac{f_s}{2} \cdot N_0$$

$$\text{Half-distance: } \frac{d}{2} = \sqrt{P/2}$$

$$\varepsilon_{QPSK} = Q\left(\frac{d}{2} \frac{1}{\sqrt{\sigma^2}}\right) = Q\left(\sqrt{\frac{P/2}{\sigma_{\mathcal{R}}^2}}\right) = Q\left(\sqrt{\frac{P/2}{\frac{f_s}{2} \cdot N_0}}\right) = Q\left(\sqrt{\frac{P/f_s}{N_0}}\right) = Q\left(\sqrt{\frac{E_s}{N_0}}\right)$$

- Due to the reduced distance, the error rate in terms of E_s/N_0 is 3dB worse than BPSK
- HOWEVER, when considering E_b/N_0 with $E_s = 2 \cdot E_b$ we find

$$\varepsilon_{QPSK} = Q\left(\sqrt{2 \cdot \frac{E_b}{N_0}}\right) = \varepsilon_{BPSK}$$

For same E_b/N_0 , the bit error rate of QPSK and BPSK are the same

N-QAM Modulation

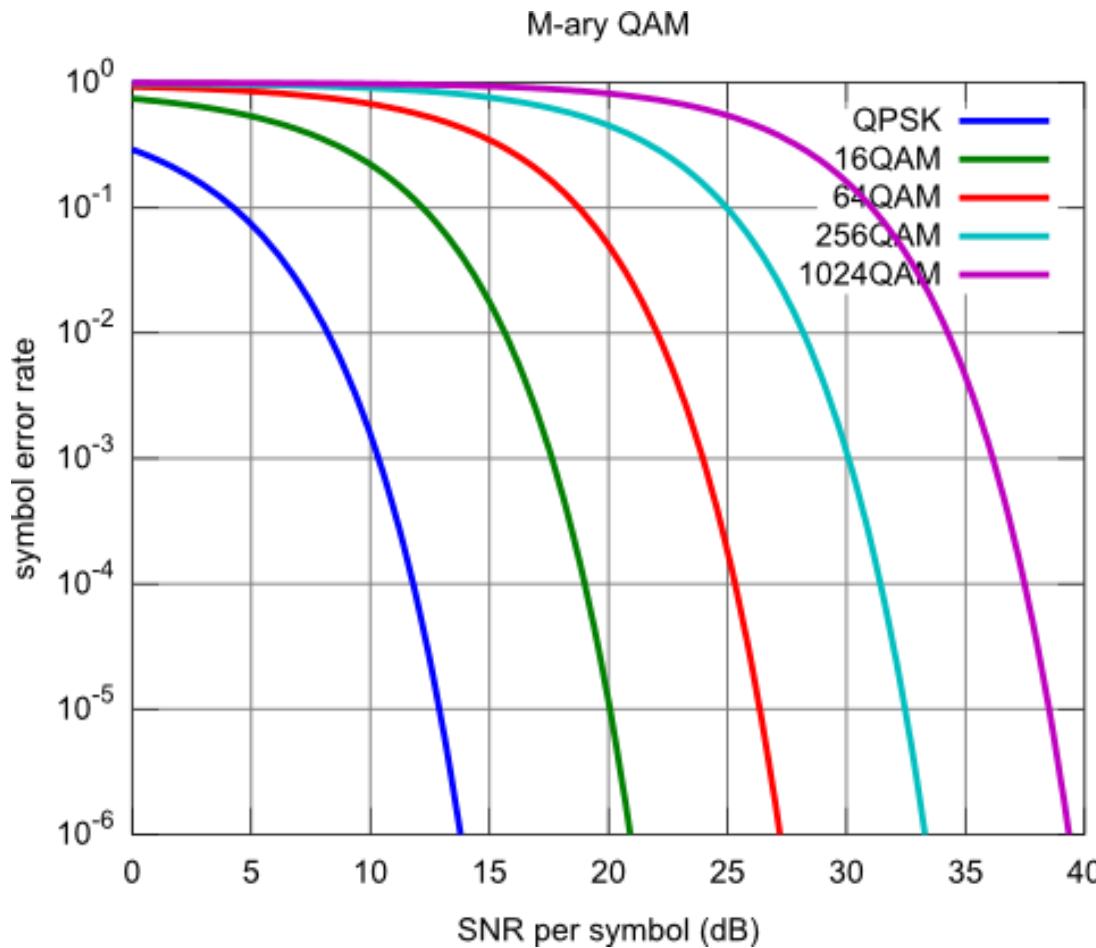
- **Similar to QPSK, N-QAM combines two orthogonal M-PAM modulations**
 - To maintain total power P after summing both carriers, the amplitude of each carrier is reduced
 - The number of M-PAM constellation points is $M = \sqrt{N}$

- **Start from the error rate of M-PAM:** $\varepsilon_{M-PAM} = \frac{2(M-1)}{M} Q\left(\sqrt{\frac{2 \cdot 3}{M^2-1} \frac{E_s}{N_0}}\right)$

- Substitute $E_s \rightarrow E_s/2$
- Substitute $M = \sqrt{N}$

$$\varepsilon_{N-QAM} = \frac{2(\sqrt{N} - 1)}{\sqrt{N}} Q\left(\sqrt{\frac{2 \cdot 3}{N-1} \frac{E_s/2}{N_0}}\right) = \frac{2(\sqrt{N} - 1)}{\sqrt{N}} Q\left(\sqrt{\frac{3}{N-1} \frac{E_s}{N_0}}\right)$$

N-QAM Modulation Error Rate

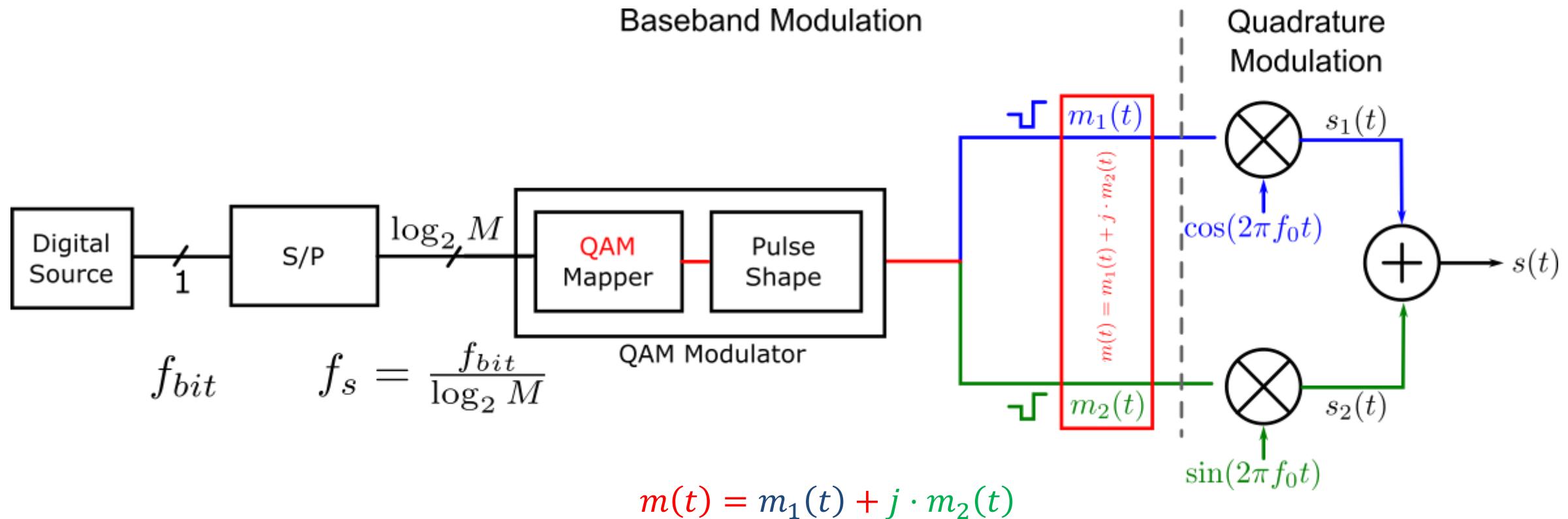


$$\varepsilon_{N-QAM} = \frac{2(\sqrt{N} - 1)}{\sqrt{N}} Q\left(\sqrt{\frac{3}{N-1}} \frac{E_s}{N_0}\right)$$

- **Observation: For $N \rightarrow 4N$ we require approximately $\frac{E_s}{N_0} \rightarrow 4 \cdot \frac{E_s}{N_0}$**
 - Every 2 additional bits require +6dB SNR

General Complex-Valued Carrier Modulation

- With the notion of **complex-valued constellations**, we can describe a **complex-valued modulation**, where only the choice of the **constellation points** allows for many degrees of freedom



Complex-Valued QAM Constellations

- We can interpret the two real-valued inputs of the “Carrier Modulation” as a complex valued baseband signal

$$m(t) = m_1(t) + j \cdot m_2(t)$$

$$m_1(t) = \sum_{k=-\infty}^{+\infty} m_1[k] \cdot p(t - k \cdot T_s) \quad m_2(t) = \sum_{k=-\infty}^{+\infty} m_2[k] \cdot p(t - k \cdot T_s)$$

- Interpret the two M-PAM constellation points $m_1[k]$ and $m_2[k]$ as a single complex-valued constellation point $m[k] = m_1[k] + j \cdot m_2[k]$

$$m_1[k] \in \left[-d \frac{3}{2}, -d \frac{1}{2}, +d \frac{1}{2}, +d \frac{3}{2} \right]$$

$$m_2[k] \in \left[-d \frac{3}{2}, -d \frac{1}{2}, +d \frac{1}{2}, +d \frac{3}{2} \right]$$

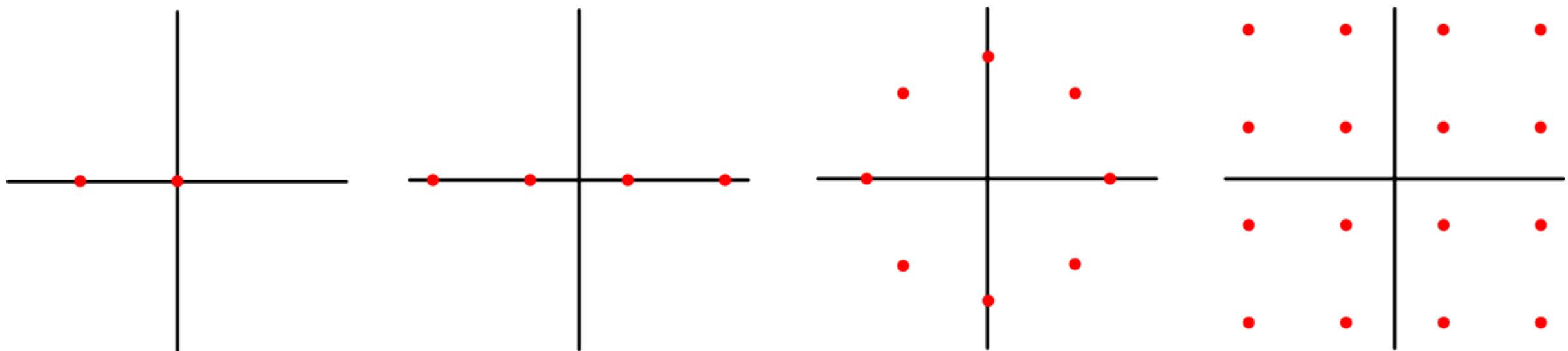


General Complex-Valued Constellations

- Instead of constructing complex constellation alphabets from two identical real-valued alphabets **we can define directly a single complex-valued alphabet**

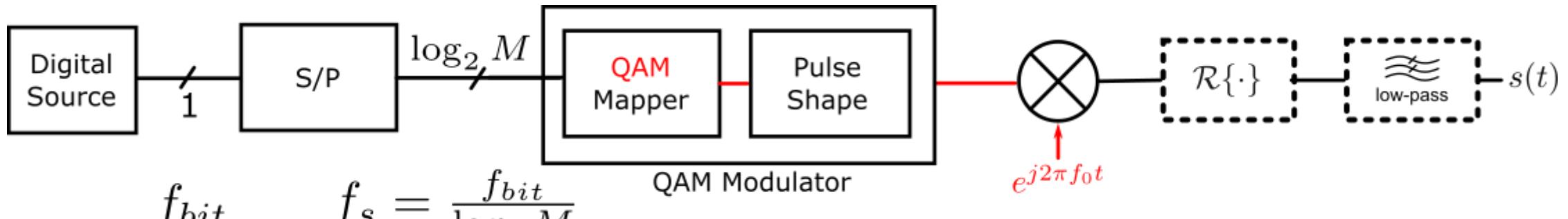
$$m(t) \in \mathcal{O}_M = \{x_1, x_2, \dots, x_M\} \text{ with } x_l \in \mathbb{C}$$

$$\bar{P}_{\mathcal{O}} = \frac{1}{M} \sum_{m=0}^{M-1} |x_m|^2$$



General Complex-Valued Carrier Modulation

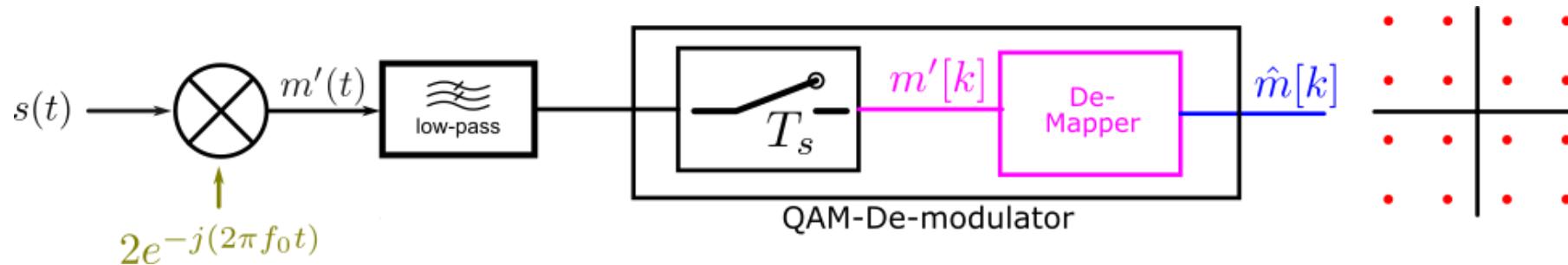
- With the notion of **complex-valued constellations**, we can describe a **complex-valued modulation**, where only the choice of the **constellation points** allows for many degrees of freedom



$$\begin{aligned}s(t) &= \mathcal{R}\{m(t) \cdot e^{j(2\pi f_0 t)}\} = \\ &[\mathcal{R}\{m(t)\} \cdot \cos(2\pi f_0 t) + \mathcal{I}\{m(t)\} \cdot \sin(2\pi f_0 t)]\end{aligned}$$

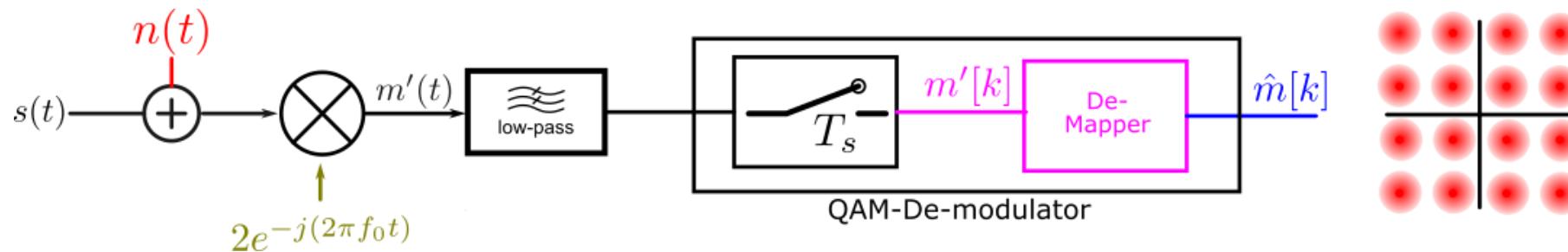
Coherent Receiver

- Demodulation works with a Quadrature Demodulator (see WK4): no noise



$$m'[k] = m[k] \cdot e^{j(2\pi f_0 k T_s)} \cdot e^{-j(2\pi f_0 k T_s)} = m[k]$$

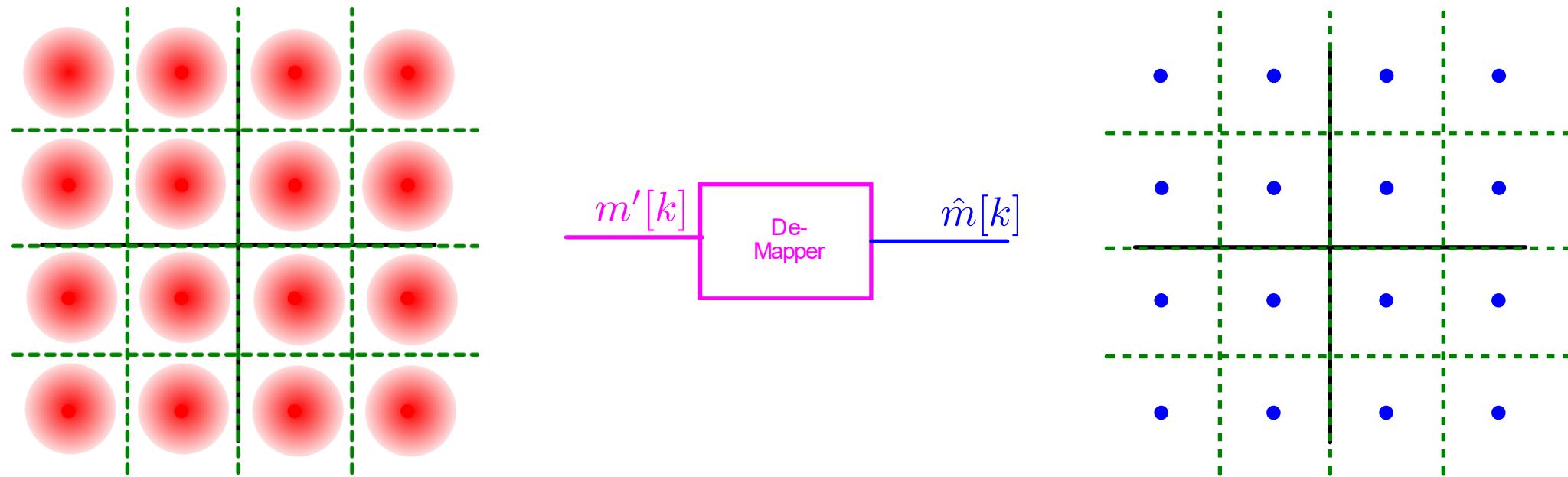
- Demodulation with noise: signal displaced from ideal const. points by noise



$$m'[k] = (m[k] + n[t]) \cdot e^{j(2\pi f_0 k T_s)} \cdot e^{-j(2\pi f_0 k T_s)} = m[k] + n[t]$$

Coherent Receiver: Complex QAM Demapper

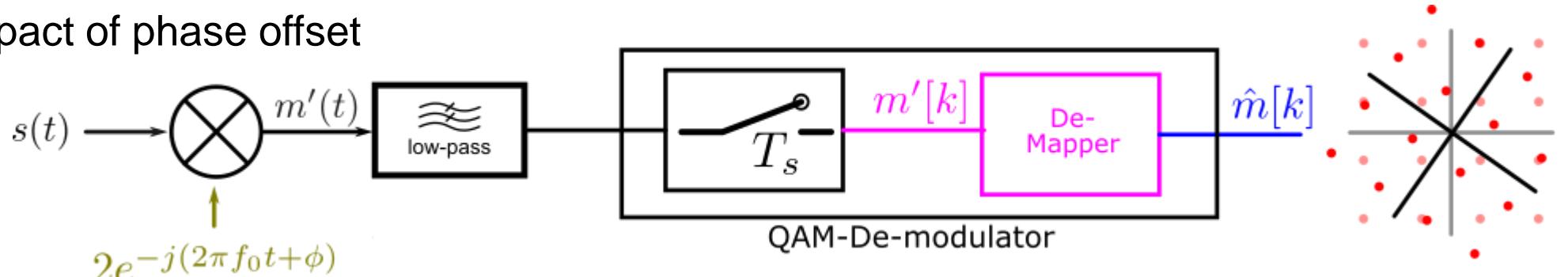
- Demapping a (noisy) complex-valued symbol works in the same way as the slicer for real valued constellations
 - We look for the closes constellation point from \mathcal{O}_M to the received point $m'[k] = m[k] + n[t]$



Impact of Non-Coherent QAM Receiver

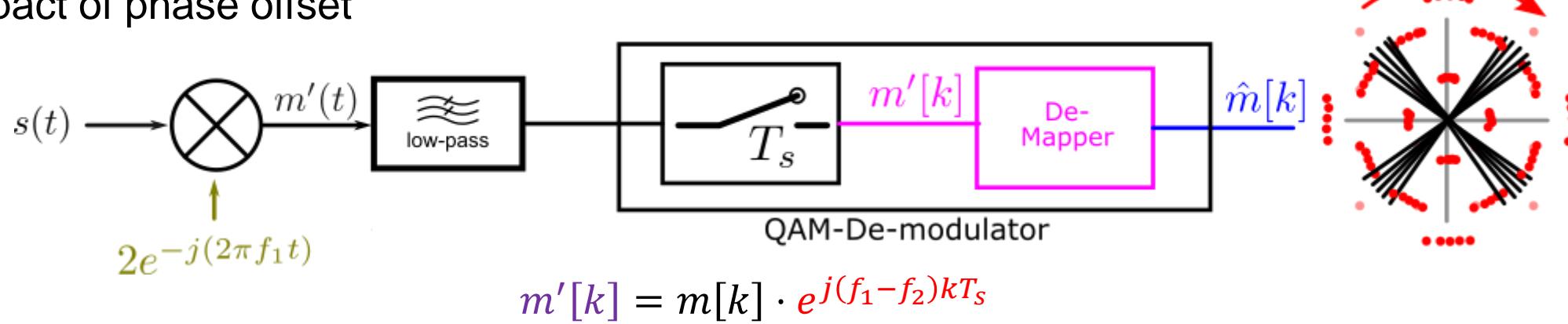
- A non-coherent receiver is not phase aligned with the transmitter or has even an offset in the frequency $f_1 \neq f_0$

- Impact of phase offset



$$m'[k] = m[k] \cdot e^{j\phi}$$

- Impact of phase offset



$$m'[k] = m[k] \cdot e^{j(f_1 - f_0)kT_s}$$

EE-432

Systeme de

Telecommunication

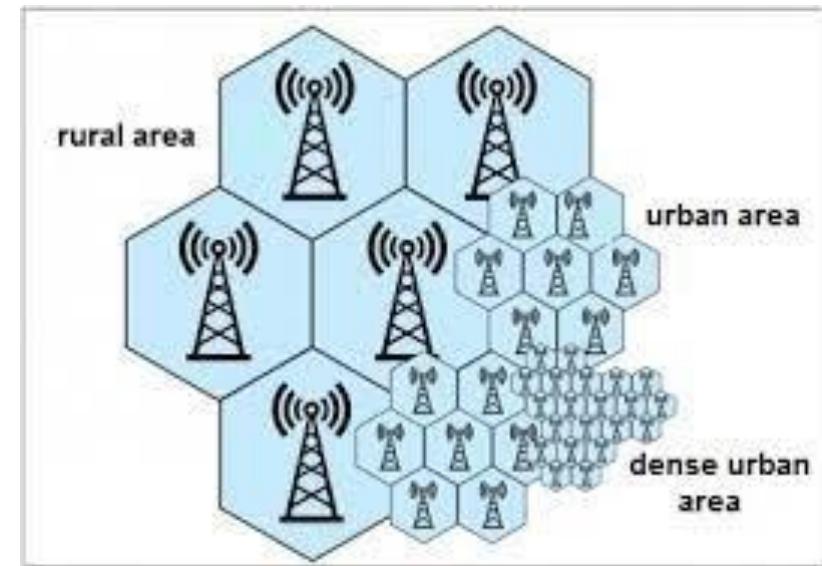
Prof. Andreas Burg
Joachim Tapparel, Yuqing Ren, Jonathan Magnin

GSM

Cellular Networks

- **Cellular networks are the basis for all mobile communication standards**
 - Long range due to local connections on a global network (no point-to-point links)
 - Scalable capacity due to **frequency re-use** (densification)
 - Enable mobility over a large coverage area
 - Relatively simple manner to enable “**distributed radio access**” with manageable interference

Point-to-point links
(limited range, high interference,
difficult to manage)



Cellular networks

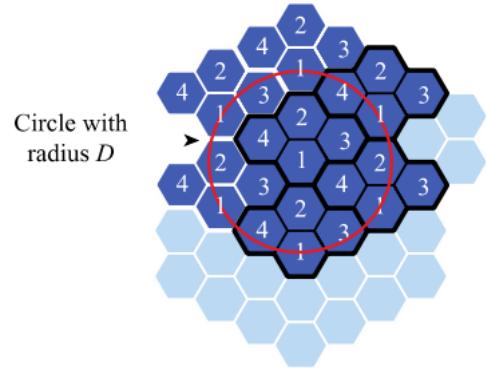
Cellular Network Organization

- **Objective:** high system capacity by re-using frequencies spatially
- **Cellular system:**
 - **World is partitioned into hexagonal cells** (approximately round)
 - Users in same area are assigned to a small set of frequencies and time slots (TDMA&FDMA)
 - Frequencies re-used in different cells, but adjacent cells must use different frequencies (interference)
 - **Cells are organized into clusters** to assign frequency resources
 - All cells in a cluster use different frequencies (numbers)
 - Different clusters re-use the same set of frequencies (frequency re-use)

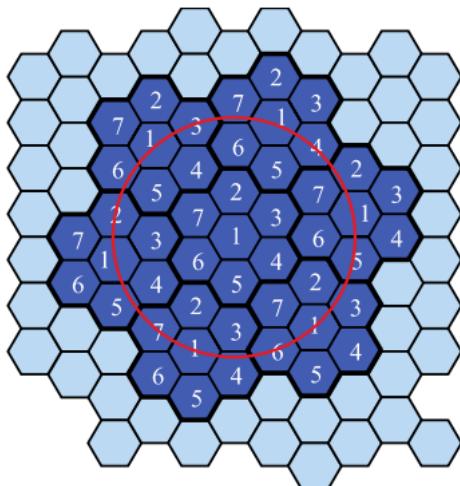
Cellular Network Frequency Re-Use Patterns

- Geometrical considerations limit size of regular clusters to N cells where $N = i^2 + i \cdot j + j^2$ with $i, j = \mathbb{N}^+$

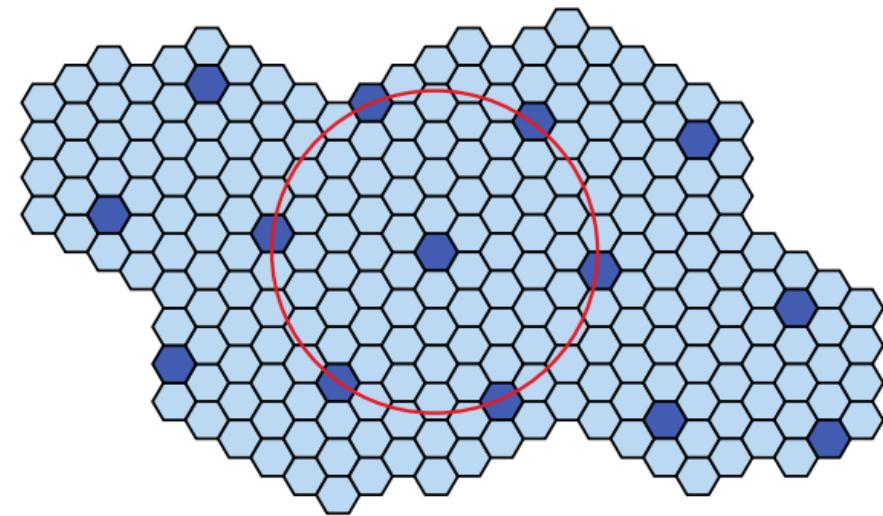
Cluster sizes : $N = 1, 3, 4, 7, 9, 12, \dots$



(a) Frequency reuse pattern for $N=4$



(b) Frequency reuse pattern for $N=7$



(c) Black cells indicate a frequency reuse for $N=19$

Frequency Re-Use and Interference (1)

- Organization into clusters is a trade-off between**

- Re-use factor: how often frequencies can be re-used (less means lower capacity)
- Interference: how much cells with the same frequency interfere with each other

- Frequency re-use factor:

$$\frac{1}{N}$$

Worse with N increasing

$$\frac{BW}{N}$$

- #Channels (Bandwidth) per cell:

$$D = R \cdot \sqrt{3 \cdot N}$$

- Frequency re-use distance:

$$\sim D^{-\beta} = (R \cdot \sqrt{3 \cdot N})^{-\beta}$$

- Interference:
 - β is the pathloss exponent (2: free space, 3: more typical empirical urban)
 - Account only for the 1st tier of interferers (always 6)

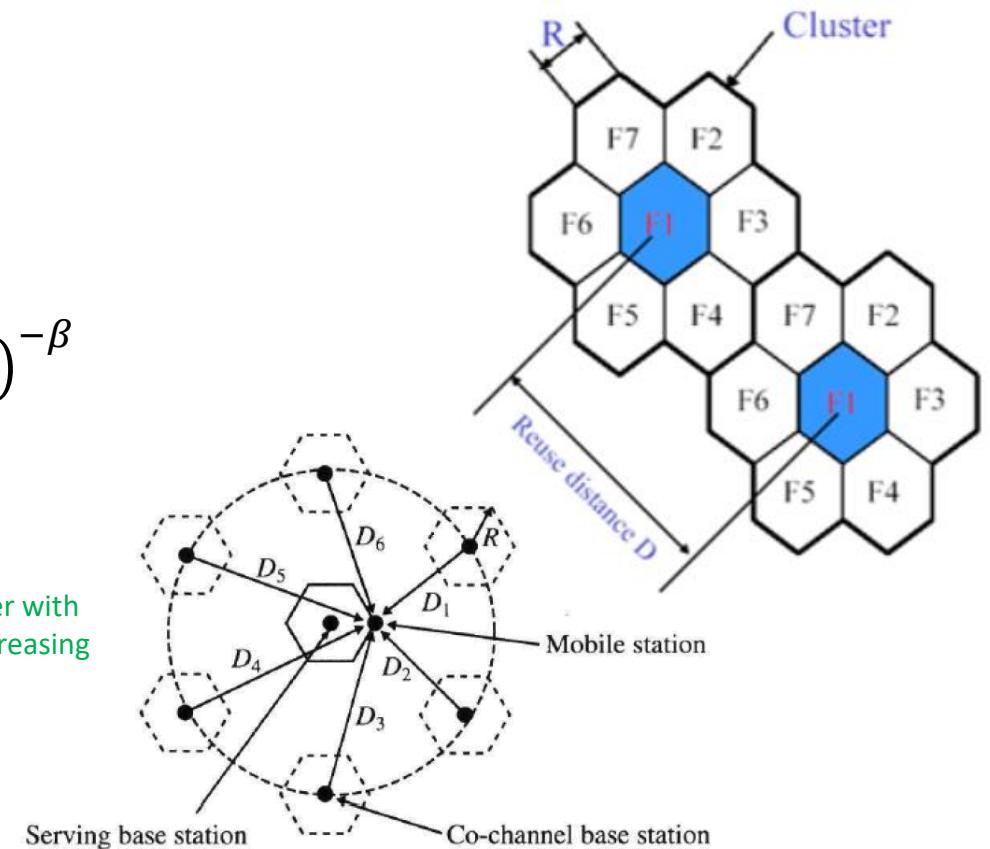
- Signal at cell edge:

$$\sim R^{-\beta}$$

- Signal-to-interference ratio:

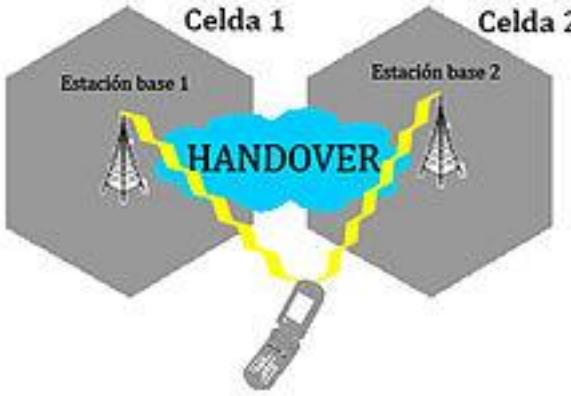
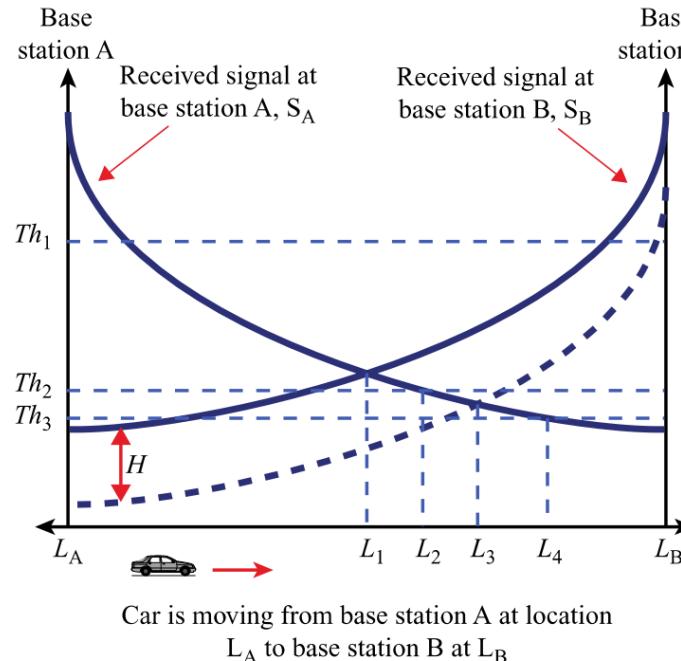
$$\sim \frac{R^{-\beta}}{D^{-\beta}} = (\sqrt{3 \cdot N})^{\beta}$$

Better with N increasing

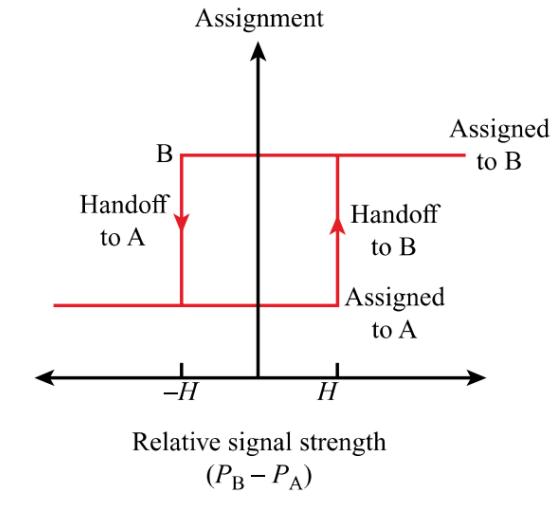


Hand-Over in Cellular GSM

- **Mobile users move across cell boundaries.**
 - When the signal gets weak, users need to be handed over to the next cell



(a) Handoff decision as a function of handoff scheme

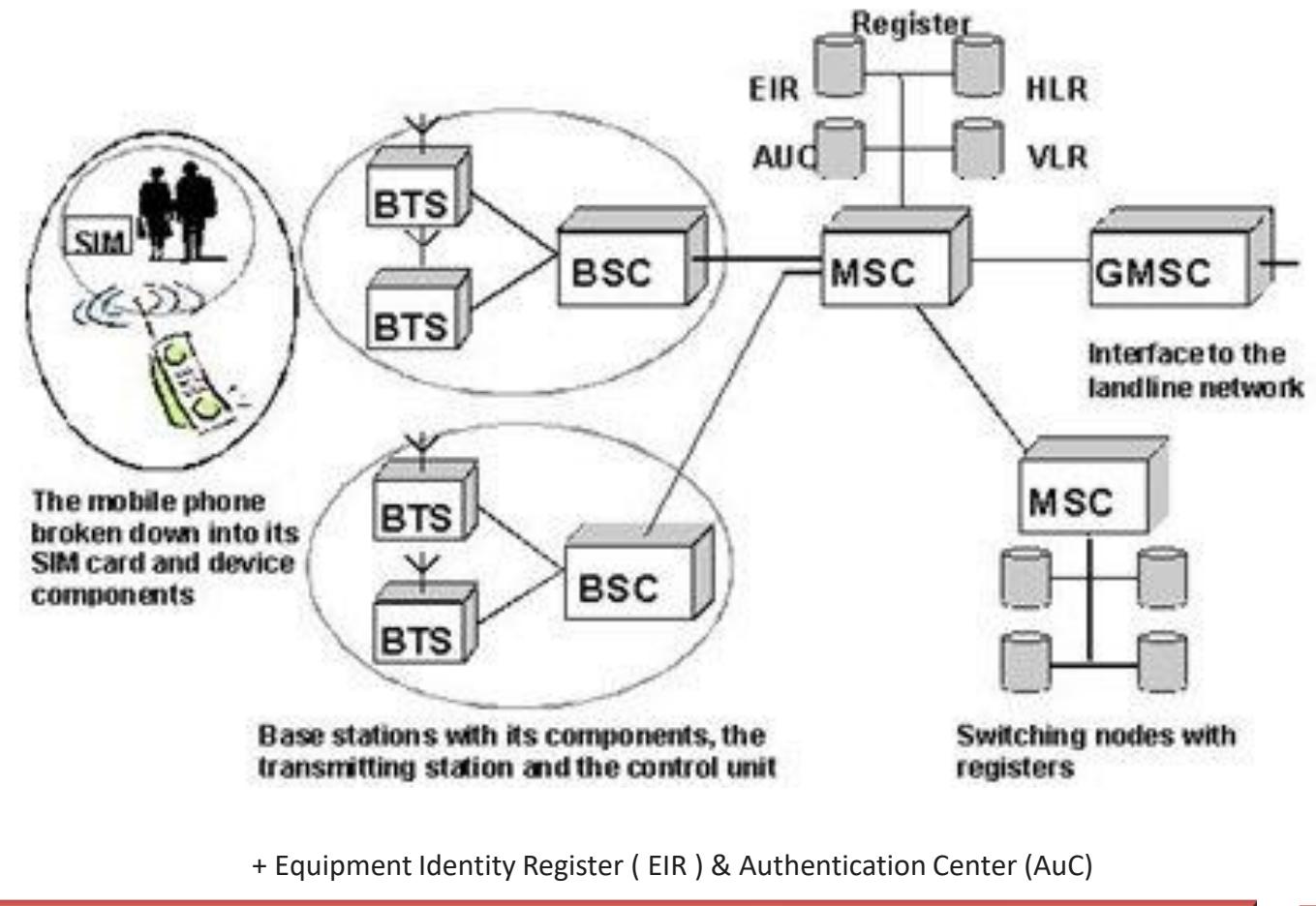


(b) Hysteresis mechanism

- GSM: Mobile assisted hand-over
 - Mobile measures channel strength
 - Mobile scans for better channels and sends measurements to Base Station
 - Base-station controller makes hand-over decisions

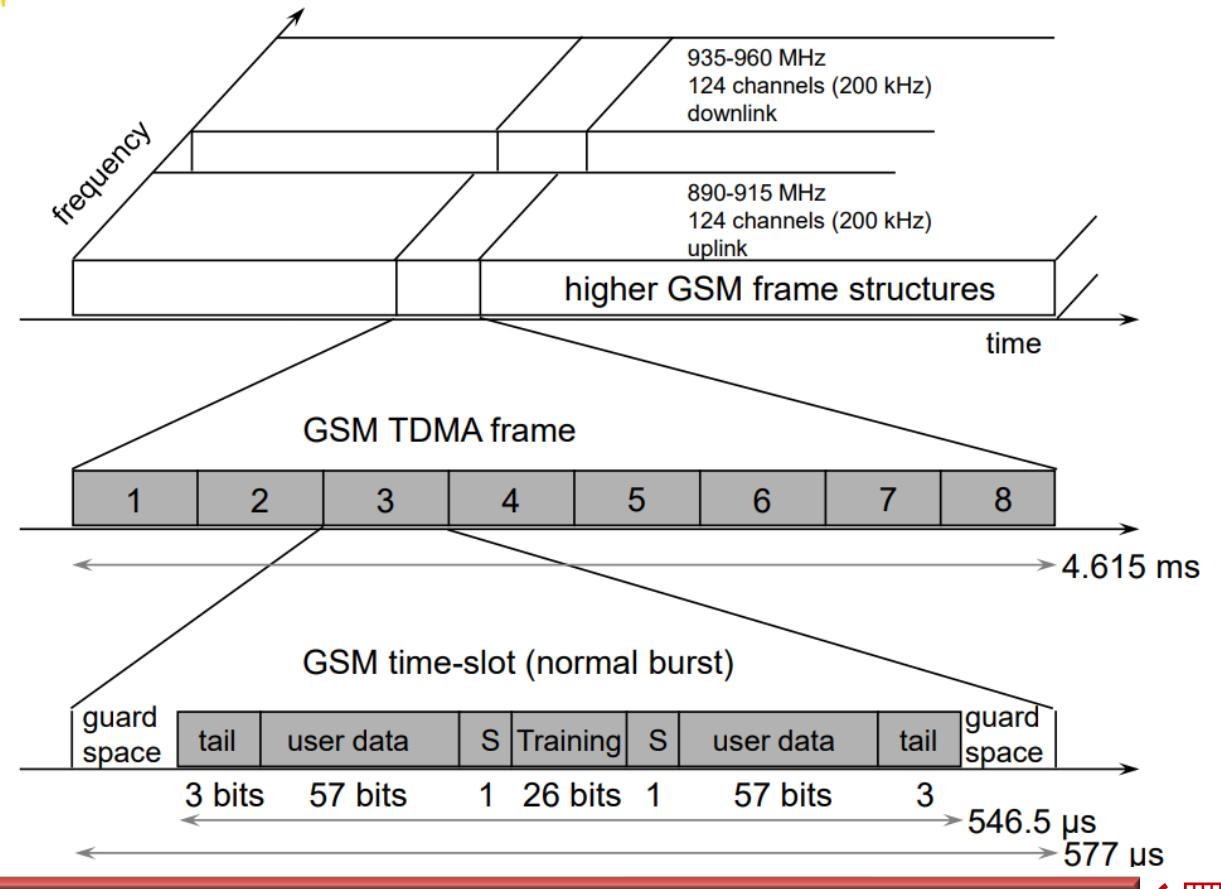
GSM Network Architecture

- The **GSM network is based on a number of components that manage calls**
 - GSM is a circuit-switched network: based on “connections” that are setup and maintained
 - Key network components:
 - **Mobile Station (MS):**
Handset and SIM
 - **Base Transceiver Station (BTS):**
Handles radio communication
 - **Base Station Controller (BSC):**
Manages multiple BTSs
 - **Mobile Switching Center (MSC):**
Switches calls, handles mobility
 - **Home Location Register (HLR):**
Permanent subscriber data
 - **Visitor Location Register (VLR):**
Temporary data for roaming users



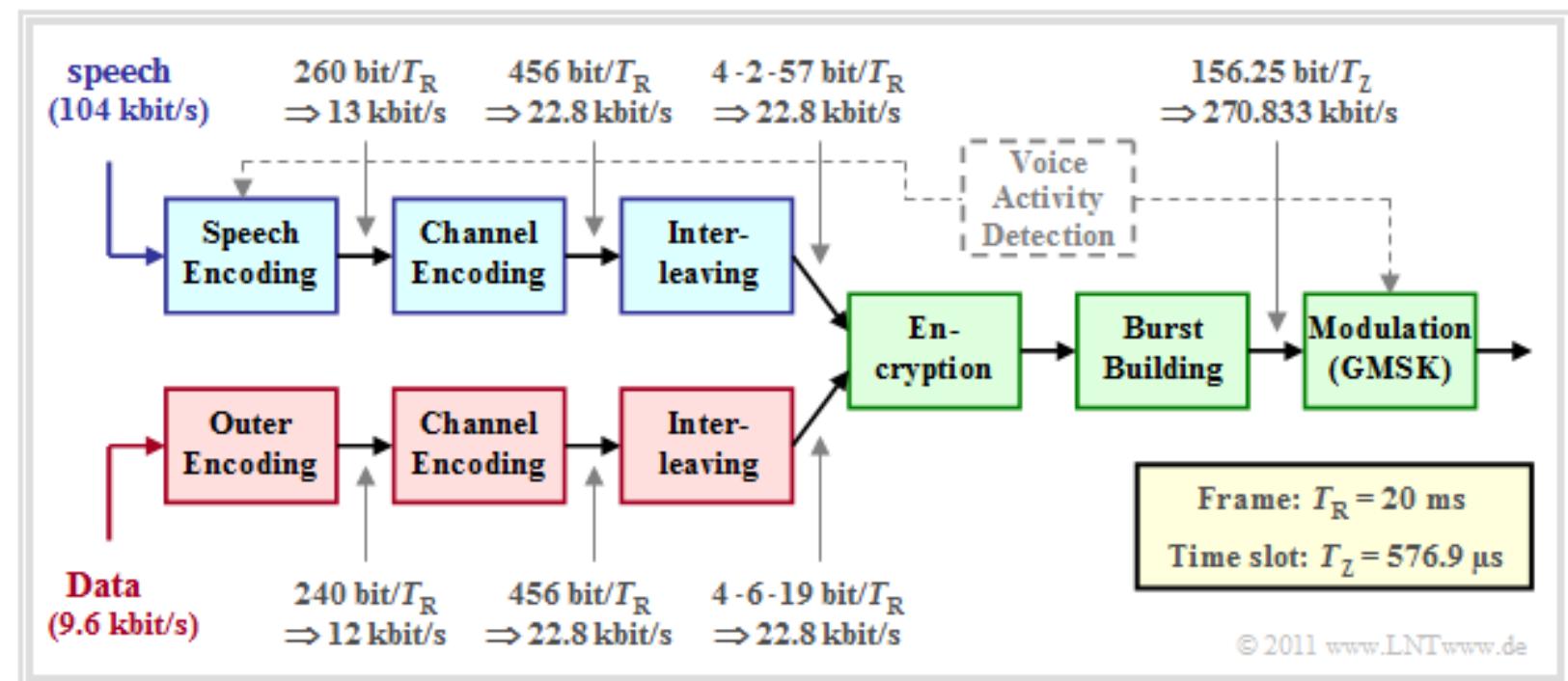
The GSM Radio Interface and Multiple Access

- **GSM user multiplexing is based on a combination of FDMA and TDMA**
 - Multiple carriers with bandwidth of 200 kHz (FDMA)
 - Each carrier supports 8 time-division multiplexed users (TDMA)
 - **Transmission organized in bursts:**
Normal burst, frequency correction, synchronization, ...
 - Logical channels:
 - **Traffic Channels (TCH):**
Carry voice/data
 - **Control Channels:**
SCH (sync), BCCH (broadcast), RACH (random access)
- **Up-link and down-link are based on frequency-division-duplex (FDD)**



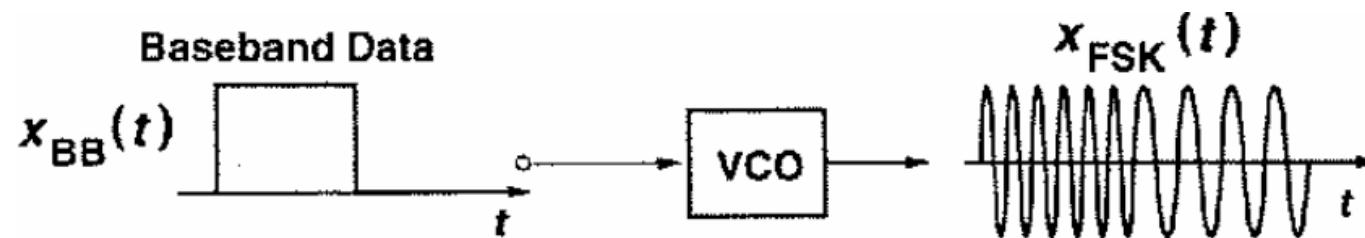
GSM Physical Layer: Overview

- GSM was designed specifically for voice communication**
 - Frame structure and encoding organized specifically for compressed voice
 - Transmission is organized in **frames of 20ms (suitable quantity for voice compression)**
- Key components:**
 - Speech encoding: compression
 - Channel encoding: error correction coding
 - Interleaving: shuffle bits for robustness
 - Burst-building: map to physical channels/slots
 - Modulation

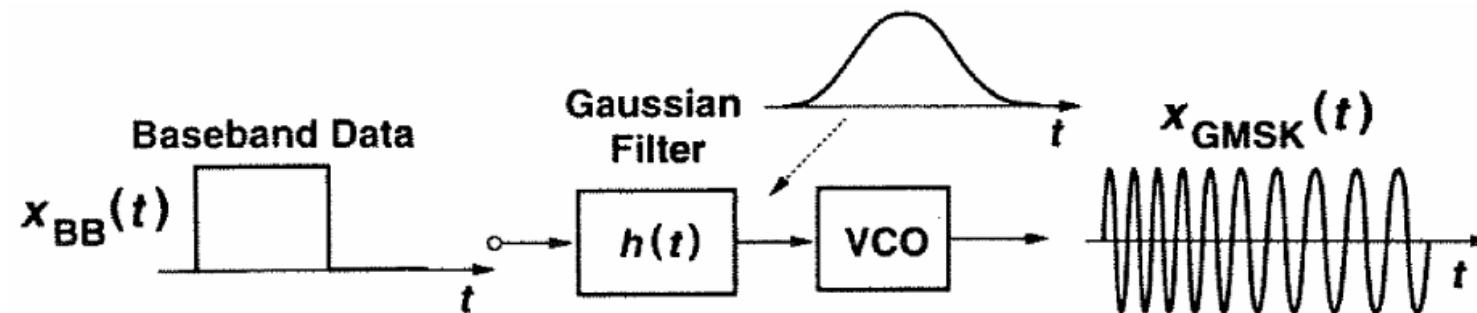


GSM Physical Layer: Modulation

- GSM is based on **Gaussian Minimum Shift Keying (GMSK)**, an improved (more narrow bandwidth) version of **Minimum Shift Keying (MSK)**
 - MSK encodes data as two frequencies with **minimum** spacing to still be orthogonal (FSK: general version of MSK without enforcing minimum spacing between frequencies)



- GMSK applies a filter to provide a smooth transition between frequencies:



Why GMSK Modulation

- **GMSK and QPSK are very comparable in terms of their BER with the same number of bits per symbol:**
 - Both have the same error probability: $P_{GMSK} = P_{QPSK} = Q\left(\sqrt{2 \cdot \frac{E_b}{N_0}}\right)$
- **Main difference lies in their overall spectrum and the overall bandwidth:**
 - Zero-crossing BW of MSK is wider than QPSK (with rectangular pulse-shape), but QPSK bandwidth decays slower (without suitable high-quality pulse shape)
 - MSK is often used in low-cost devices with very narrow BW requirement
 - GMSK has even lower BW than MSK
 - Further advantage: **(G)MSK has constant envelope**

