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Fundamental Definitions

In digital communications we deal with two main concepts that a physical
Interpretation, but also translate well into precise mathematical counterparts

« Signals: a sequence of values that evolves as a function of one or
Independent parameters (often time)
» 1-dimensional (1D) signals are a function of one variable (often, but not always) time
= Signals can also be n-dimensional (e.g., images)

= We represent physical quantities with signals, BUT many signals have no physical counter part
= Different ways to represent a signal:

Time | Analog Signal Value (V)
0 4.7
1 12.3
sin2xmTxt 2 -6.8
y(t) = 3 [283
mT*t 4 20.3
. List of numerical values
Equation Graph

(sampled signals)
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Fundamental Definitions

In digital communications we deal with two main concepts that a physical
Interpretation, but also translate well into precise mathematical counterparts

« Systems: receive and operate on one or multiple input signals to generate

one (or multiple) new signals according to well-defined rules p
f&)=--9®
t)—
- System — f(t) f(@) = g:1(t) X g,(t)
gn(t)—

» Realized either from physical components (carefully constructed (e.g., RF circuit) or naturally
given (e.g., the wireless channel)) or as abstract calculations (math)

= Challenges:
» For physical systems: find a proper mathematical description to include it in an abstract model

» For systems to be constructed: given a set of input signals, engineer the “system” to achieve an output
with desired properties
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Signal Classification

* Representation

=P

= Continuous
= Sampled

Behaviour over time

= Non-periodic
= Periodic

= Random (stochastic)

Non-Periodic

Periodic

Stochastic

Continuous

Sampled
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Useful Basic Operations on Signals: Shifting

« Consider asignal g(t) and atime (frequency) offset/shift AT > 0

» Delaying the signal: to shift the signal to the “right” replace t « t — AT

= Advancing the signal: to shift the signal to the “left”, replace t < t + AT
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Useful Basic Operations on Signals: Stretching

« Consider a signal g(t) and a time/frequency stretching factor «a

= Stretching the signal: to stretch the signal replace t < at witha < 1

= Compress the signal: to compress a signal, replace t « at witha > 1

r
4
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Instantaneous Signal Power

 We define the instantaneous “power” of a signal as

P,(t) = 1g(®)|?

= As signals often represent levels of physical quantities such as “voltages”, “currents”, “field
strengths”, ..., P,(t) is indicative for “physical” instantaneous power

= CAVEAT: as constants are often omitted, for simplicity and generality, when defining signals,
actual “physical” power in Sl units requires careful consideration of appropriate constants

* Instantaneous signal power varies over time

=PrL




Signal Energy

 We define the “energy” of a signal as

+00
E, = f (D12 dt

— 00

» As signals often represent levels of physical quantities such as “voltages”, “currents”, “field
strengths”, ..., E; is indicative for “physical” energy

= CAVEAT: as constants are often omitted, for simplicity and generality, when defining signals,
actual “physical” energy in Sl units requires careful consideration of appropriate constants

* Signal energy is only meaningful if E;, < o. This Is the case for

= Signals with finite duration: lg®)]? =0fort <T_and |g(t)|? =0fort > T,
= Signals with rapidly decaying tails: Tlim [f__:|g(t)|2 dt + fTJroolg(t)I2 dt] =0
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Average Signal Power

* For signals with “infinite” energy, considering “power” (mean square value)
makes more sense

= Normalizing by signal duration, while still considering the entire (potentially infinitely long) signal

T T
i - "2 2 v — Tim & 2 p
B = Jim 7 [ lg@P de = Jim = [ *p, (0 de
2 2

= Sometimes the “root mean square” (RMS) value is also considered as grys = /P,

.

« Periodic signals g’ (inf. Energy) with period T
= |ntegration over any full period with arbitrary offset A

1 +T+A
p=z| lg@Pa
0+A
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Power/Energy Units in Communications

Specific properties when analysing communication signals/systems
= Communication signal power varies over an extremely wide range
= Amplification and attenuation are multiplicative effects

= Many metrics of interest (e.g., error rates) are exponential functions of the signal power and vary
also over a wide range

« Example
____________________________________________________________________________ 0000001 ———— x08 x08
: E ; : = 104k XO. 64 \\:‘:’g’\ £
10 m 12-5 m 10°F —=8-= Golomb Ruler (N=500) (8] \\\‘ i
~=@-=5G NR LDPC (N=500) [18]
Received Signal Strength vs Distance ol [ Nodied Tamer (N-500) prooses) %‘%\
[
% 1 > 3 p 5

Eb/N0(dB)

Error Rate vs
received Signal Strength

(&)
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Power/Energy Units in Communications

 Expressing power on a linear scale is inconvenient and leads to highly
compressed, unreadable graphs

D) — fola-x) = f1(x)
fola-x) = f1(x) £.00)

Ldg scale

f1(x)

Linear scale

LOG([W])
>

> (W]

! !
10w 1w

! !
10w 1w

Curve shapes that are invariant to
multiplications (scaling) of their
input power appear stretched

Log-scale: stretching
preserves curve shape
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Power/Energy Units in Communications

« We measure power always in decibels [dB]
P|dB] = 10 - log,, P[lin]

* dB is a relative metric and when signals are often unit-free, we follow the above expression

* If we are interested in the actual “physical” power in Watts we relate the

power in dB to a known reference  P[dBm] | P[dBW] | P[mwW]

-20dBm  -50dBW  0.01 mW
= Powerin dBW is 10 - log,, P[W] (less commonly used) -10dBm  -40dBW 0.1 mW
0 dBm -30 dBW 1 mW
10dBm  -20dBW 10 mW
20dBm  -10dBW 100 mW
30 dBm 0 dBW 1W

= Power in dBm is 10 - log;o P[mW] =30+ 10 - log,o P[W]
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Orthogonal Signals

 When considering two signals, it is interesting to see if these can be
“separated” perfectly even when they are superimposed (e.g., in time)

 DEFINITION: two signals g(t) and x(t) are “orthogonal” if

(g(0), x(t)) = f 9(t) - x" () dt = 0

Why is this useful?
« Consider y(t) = ag(t) + Bx(t) with {(g(t), x(t)) = 0, then

f (ag(t) + ,Bx(t)) cx*(t) dt = aj

+ 00

GO () dt + f (D)2 de~p

0
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(Complex) Sinusoids as Orthogonal Signals

 Real and complex sinusoids are a particularly useful class of signals as they
= Are pure oscillations that each contain only a single frequency

» Relate directly to specific frequencies and to the behaviour of a system or
channel at specific frequencies:

0

-10 ¢ 9" FR4

=20 |

Attenuation [dB]

=30 ¢

- 26" FR4
-40 ¢
9" FR4,
50 | via stub
60 | 26" FR4,
via stub
0 2 4 6 8 10
frequency [GHz]
Computer Backplane with Attenuation of different frequencies
connections to multiple PCl cards on the connection from the CPU to the

different PCI card connectors
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(Complex) Sinusoids as Orthogonal Function Basis

* For real-valued signals, we can consider sin 2rt and cos 2mt
* The functions sin 2rft and cos 2nft themselves are orthogonal to each other

« We use “complex sinusoids” to express deal with both complex-valued and
real-valued signals

pp(t) = e 2T

* Each pair of complex sinusoids with f; # f, is orthogonal: (¢, (), ¢y, (£)) = 0
= The set of all complex sinusoids forms an orthogonal function basis

« Any complex finite-energy function can be decomposed into a sum of
complex sinusoids
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Recap from Week-1

Continuous Sampled

* Important signal classes and representations 2 d
né 3 - 1\11{)\‘\/4’ ] 3 4
 We measure signal power always in dB A ETAS
ERRVAIVA S

« Orthogonality of signals: two signals g(t) and x(t) are “orthogonal” if

+ oo

(g (), x(£)) = f 9(t) - x*(0) dt = 0

— 00
= Orthogonality helps us to separate out signal components from a sum of signals
» Famous orthogonal signals sin() and cos() -> orthogonal components of complex numbers

» Real/complex sinusoids with different frequrncies
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Fourier Transformation

 The Fourier Transform (FT) extracts a continuous frequency spectrum from
a finite energy (therefore also non-periodic) signal:

+ 00
6= | g@eT=mrdr
= |G(f)| and ]ilog G(f) = arg G(f) are magnitude and phase of frequency component f in g(t)

 The Inverse Fourier Transform (IFT) reconstructs the time domain function
from the frequency spectrum:

g0 = [ G(er>mras

Negative frequencies: required to form real-valued signals (see later)
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FT and IFT Duality

« FT and IFT are almost completely symmetric (only difference in the sign of the
exponent of the complex sinusoid in the integral)

 This |leads to a beautiful duality:
Flg)} = 6(f) = FIG@)} = g9(—f)
FHG(H}=g) = F Hg(H}=G(-1)

* The FT/IFT of one function also reveals easily the FT/IFT of another function

= Time domain (TD) and frequency domain (FD) are fundamentally related

« Alllinear operations on a signal can be carried out in TD and FD
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Convolution/Mixing in TD and FD (FT/IFT Property)

« Two TD operations on signals that are frequently used:
Filtering Mixing/Modulation

o) —  wpy — o(t) ®

f(t)
« Convolution in time domain: g1(t) X g,(t) = fjozogl(u) X g,(t —u)dt
Flg:(t) X g2(0)} = G, (¢) - G(¢t)
g1(t) X g2 (t) = F7H{G (1) - G(t)}
« Multiplication in time domain: g1(t) - g, (t)
Flg,1(8) - g.(t)} = G1(t) X G(¢t)
91(t) - g.(t) = FHG1(t) x G()}
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FT/IFT of Time/Frequency Shifted Signals

 We often encounter signals that are either delayed or shifted in frequency

 Example from digital communications:
construction of a pulse-train (sending multiple Salt — 2T)
symbols) from a single (prototype) pulse

n=+oo
y(t) = z spng(t—n-T) sog(t —0)

y(t) = sog(t — 0) + s1g(t = T)+

i 2
Given G(F), how can we compute Y(f)" t+52g(t — 2T) + ssg(t — 3)
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FT/IFT of Time/Frequency Shifted Signals

 Considerthe FT of g(t—T)

+ 00

+00
Flg(t - T)} = j g(t — T)e—i2mft gp = j Gu)e—I 2T @) gy

+00 %
B .f g(U)e—j.z.n.f.u . e_j.z.n-.f.T du = e_j.z.n.f.T . G(f)

» Delaying a signal leaves the magnitude of its FT unaltered

= The argument (phase) of its FT experiences a frequency dependent linear shift that becomes
steeper with increasing delay

3 3 T arg(Ga(t))
e —-:4\ ’Gn(t—TLT)‘ T arg(G(t))
/ . N
_ 7 a2 \ _ AR B AR N TR
...... N
R R TS
. 0.5 :
*We will see this again when we discuss a “frequency selective” channel and “time synchronization”
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FT/IFT of Time/Frequency Shifted Signals

 Consider the IFT of G(t — F)
+ 00 +0o0
F- UGt —-F)} = j G(t — F)el?m™ltqf = J G(w)el 2mtW+F) gy

-+ 00

= Moving a signal in frequency leaves the magnitude of its IFT unaltered

» The argument (phase) of its IFT experiences a frequency dependent linear shift that becomes
steeper with increasing frequency shift

e« Summary
FHG(t - F)} =™ g(1) Flel27tF . g()} = G(t — F)
Flgt —=T)} = e /2™ T . G(f) F-He 2™ T . G(f)} =gt —T)

*We will see this again when we discuss a “passband modulation” and “multi-carrier modulation”

=PrL
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Fourier Transformation Shlft/Duallty Example

Example-1la:

1 —025<t<0.75
9(®) = {O else

. _ ] 7'[f Sll’lTl'f
G(f) = /5™ . 2

Example-1Db:

] n't sinm-t

= g(t) =e’

-t

—0.75 < f <0.25
else

-GU>={3
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1 1 N
1
0.5 0.5 1
1
0 0 1
1
0.5 0.5 -
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15 Shifted Pulse (FD), Im Rectangular Pulse (FD), ARG
2
1
05 0
0
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-2 -1 0 1 2 -4 -2 0 2 4 -4 -2 0 2 4

Complex Sinc (TD), Re

Complex Sinc (TD), ABS

Shifted Pulse (FD)
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1
0.5
1
0
-0.5
4 2 0 2 4 -4 2 ] 2 4
05
Complex Sinc (TD), Im Complex Sinc (TD), ARG
2
0
0
/\/\/\/\/\’ 5
-0.5 L
-4 -2 0 2 4 4 2 0 2 4 -2 1 0 1 2




Computing and Plotting FT/IFT with MATLAB

 Manual computation of FT/IFT pairs through integrals is often tedious

« Two main approaches to simplify our life:
= Derivation by using known FT/IFT pairs and fundamental properties (see next slides)
= Symbolic math tools (e.g., MATLAB)

Using MATLAB symbolic math toolbox

Set up scaling parameters for FT/IFT (MATLAB defaults to a scaled version)
using sympref ('FourierParameters', [1,2*pi]) ;

=

2. Define symbols for time and frequency (e.g., t, and v) using syms

3. Define a function

4. Obtain FT/IFT with fourier () and ifourier ()

5. Simplify the resulting expression using simplify ()
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Computing and Plotting FT/IFT with MATLAB

Example

sympref ('FourierParameters', [1,2*%p1]) ;
syms t vy

f=rectangularPulse(-0.5,0.5,t);
F=simplify (fourier (£, t,v));
figure(l),; clf;

fplot (f, 'LineWidth', 2);
axis([-2,+2,-0.5,+1.5]); grid;
figure(2),; clf;

fplot (abs (F), 'LineWidth', 2) ;
axis([-4,+4,-0.5,+1.5]); grid;

=PrL
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o\©

o\©

o\©

o\©

o\©

Define the FT/IFT scaling
Declare symbols for time (t)
and frequency (v)

Define TD function f (t)

Compute FT and simplify
Plot preparation

plot f(t)

Plot preparation
% plot |F(t) |




Useful Functions and Their Fourier Transforms

 The brick-wall (unit rectangle) function
(

ne =41 1t<3
0 else
1

T{g(t)} _ j+oon(t)e_f'2'”'t°fdt _ Jlie_j.z.n-.t.fdt _ Slnn(-n-ff) _ Sil’lC(T[ . f)
— oo 2

4 4

+0.5

0.5+
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Energy In Time- and Frequency-Domain (Parseval)

 We are often interested in the total energy of a signal.
 Recap: in time domain we have

+00
E, = f (D12 dt

 Parseval’s theorem states that: / \
—< N _

= The fourier transform preserves the energy of the signal 3 AN A AN

= The Integral of the square of a function is equal to the integral
of the square of its transform

Eg = [C21G(H)I2 df
with |G (f)|?: Energy Spectrum
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Finite/Infinite Duration vs Infinite/Finite Spectrum

 From the FT of the Brick-Wall function, we observe that a time limited
function can occupy an infinitely wide spectrum

+0.5

pannfannnunnai fumnnunns} fmmnnpunns e S St
A 05 i 05 1
0.5+
o F{I()} . .
Time-limited pulse > Infinitely wide spectrum
FHIE) |

Infinitely wide pulse

Frequency limited spectrum
Even more general:

« Every finite width pulse has a spectrum with unbounded frequencies.

* Every finite spectrum results in an infinitely long pulse, BUT with (rapidly)
decaying tails (to preserve finite enery)
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Defining Signal Bandwidth/Duration

 Even for a signal with infinite width (TD or FD), we are interested in defining
a relevant bandwidth

« Many different ways to define bandwidth(FD) / duration (TD):

Positions of zeros 50% (3 dB) energy decay X% of total energy

» Depending on the application/situation/requirements, choose the best option
= For the general behaviour/trend (see later), most options behave similarly
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Example: Bandwidth of a Brick-Wall

e Consider the brick-wall in the time domain:

.

ne =41 1t<3
0 else

« with Fourier Energy Spectrum

[F{g(©)}? = Isinc(m - f)I*

« Zero-energy bandwidth:

=PrL

sin Tf Bw 2
TfBw

|sinc(m « fap)|* = ==0= Tfpw =T

=

fBW=1




Fourier Transform Time Scaling

« Often, we are interested of the FT of a time-scaled (frequency-scaled) signal

« Example: { Note: « > 1:Compress
a < 1: Expand

a=4

-0.5%

« Compute the FT/IFT of atime-scaled function with scaling factor a

T{g(at)} _ f-l_oog(at)e_j'z'n'f't It = f"’oog(u)e—j-z.n-%% = %G (f)

— 00

4 _ 1 [t
GBS} Iﬁl (ﬁ)
cPFL «




Time Scaling Example -> Dirac Delta

 Consider a brick-wall spectrum that expands, but preserves the area under
the spectrum and its FT:

. 1H A\l . Bt_sinnBt
B \B)f = " T TaBt

Time-domain of a widening spectrum converges to an infinitely short pulse
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Observation: Bandwidth & Time Duration

« Consider now the duration T of a sinc-pulse created by brick-wall spectrum

with increasing bandwidth
» Choose the zero-crossing bandwidth as easy reference

F {%H (g)} = sinctBt

sin n-B-T‘Z

i . RB. 2 —
|sinc(m- B T)] —

== —r T =

1
B

Signal Bandwidth and Pulse Duration are inversely proportional

T—C1
-~ B

(holds in general with different constants C)
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Triangle Function

* The “triangle function” is defined in the TD as

1-2|x| [|x| <1
A(t) =
(®) { 0 else

« To find the triangle FT, we observe that it can be written as the convolution
of two scaled Brick-Wall functions

A(t) =2 -TI(2t) x II(2t)
= Scaling to preserve the width with a boundary of ¥2 and to preserve the hight after scaling

FAD)} =2 - F{II(2t) x FII(21)}} =

2
1 T 1 T
T{H(Zt)}z =2 . <E Sinczf) — ESinCZ Ef

« Zero-Crossing Bandwidth: %fBW =7 > fay =2
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The Dirac Delta Function

 Consider a sinc-function (TD) with
Increasing bandwidth

= Converges to an infinitely short pulse with area
below the pulse remaining 1
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Dirac Delta Function Properties

* Unit area under the function, despite its infinitely short duration 5(1)

j_:oS(t) dt =1

||||||||||||

« Convolution x of a function f(t) with a shifted Dirac delta §(t), evaluated at t
extracts the function value at time t (as a constant)

(f(t) Xé'(t))(‘t) = f f)-6(t—17)dt = f _ f(t+1) -6(t)dt
- f f(@) - 8(8) dt = f(z) - f 5(8) dt = f(7)
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Dirac Delta Function Properties

« Multiplying a function/signal f(t) with a
shifted Dirac delta 6(t)

f@)-6(—=T) =f(T)-5(t~-T)

* Result depends only on f(T)
= removes any dependency from f(t) fort # T

Product of a Signal with a shifted Dirac Delta
corresponds to ideal Sampling
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FT/IFT of a Dirac Delta

e Consider the inverse Fourier Transform of a Dirac Delta in the FD

gt) =FHé(f)} = f+oo5(f)ej'2'”'f'tdt =1

= A Dirac delta (at DC) corresponds to a DC offset of the signal

ffit Spectrum in the Positpr@apd Negative Frequencies

1200

« NOTE: When looking at the Spectrum of a signal,
you often see a “spike” at zero frequency. This
means that your signal has a significant DC value

1000 -
800

3
= 600
E

400

-500 400 -300 -200 -100
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FT of (Complex and Real) Sinusoids

e Consider the inverse Fourier Transform of a shifted Dirac Delta in the FD
» Use shifted FT property

g(t) = FYS(f — F)} = FYS(f)} - e/ 2™ tF = gJ-2mtF

= Dirac in FD at frequency F corresponds to a complex sinusoid in TD at frequency F

g(t) =e/#mtr = G(f)=6(f-F)

* FT of real-valued sinusoids obtained by writing sin(2rntF) and cos(2ntF) as
sums of complex sinusoids

1 . .
~(,j2mtF —j-2-mt-F
F {2 (e + e )}

F (L (oramer _geramar)
2

1
> (6(f—F)+6(f+F))

(8¢ = F) = 8(f + F)
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Spectrum of Real-Valued Signals R{}

« Compare the spectra of complex and T t
real-valued sinusoids + =_E et
F{e2mFt)
« Two Interesting observations for Flsin(2nF't)}
real-valued signals
= Magnitudes are symmetric |G(f)| = |G(—f)] I{}

= |maginary part is inverse symmetric 1{G(f)} = —7{G(f)} }"{r-m{‘?"rff }}

G(f) =G(f) ‘l
G(f) and G(—f) are complex-conjugate pairs f a1 1 1 2 3

.3.‘.1 :

In general, if and only if G(f) = G(—f)*, I{g(t)} =0
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Removing Redundancy

« The complex two-sided spectrum of a strictly
real-valued signal is highly redundant

= Positive and negative parts of the spectrum have
identical real-part

= Positive and negative parts of the spectrum have
complex-conjugate imaginary part

50% of the spectrum are redundant

 To remove the “useless” part of the spectrum
we can compute:

F(f) = 2[G(F) + sgn(f) G(F)]
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Fourier Transform Cheat Sheet

=P

r

L

Property / Pair Signal FTin f FT in @
Lineanty axy(t) +bx, (t) | aX{f) +bX,(r) | aX,(®) +bX, (@)
Time delay (xt—1t;) (X)fe— /st (X) we—
Frequency xht = o
Translation x(tle XF -fo) Mo~
Convolution X (1) * x,(1) Xi(f) - X,(f) Xilo) - X, (o)
Multiplication x(t) - x; (1) X, () = X, (f) ZLX.(a)) + X, (o)
Parseval' s o 2 o - 1 [
£ [Cixnfae | ["|xie)fdr | L[ | Xle) [t
Rectangle H(:) 7 sinclfr) 7 sinc| ;’;)
sine( ) 2W sinc(2wt) | T1( 5, ) n(:5)
Triangle A(f) rsinc?(fr) rsinc’ (27)

: 1 1

-at

Exponential e *u)t a>0 o 2t e
Impulse Adlt) A A
Constant A Ad(r) 27Ad (@)
Complex jlxfit -
exponential g olf - f) 2o (@ — )

Assume that x,(t) and xg(t) have FTs X;(f) and X,(f)respectively.

https://www.dummies.com/article/business-careers-money/careers/trades-tech-engineering-careers/signals-and-systems-working-with-transform-theorems-and-pairs-166452/
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https://www.dummies.com/article/business-careers-money/careers/trades-tech-engineering-careers/signals-and-systems-working-with-transform-theorems-and-pairs-166452/

Periodic Signals

Periodic signals occur in various contexts, mainly as reference signals.

Examples:
* Clock signals in digital systems
« Carrier signals that define the frequency band of a wireless link

 Multi-tone test signals for system analysis

[}

L L 3
T 105 : 1
'/\ /-\ T | 7
R b e : S T
1 1\/2 a\_/; 1 3 : 3 { 2
-0.5 -05¢

0.54

Carrier Signal Clock Signal Two-Tone Signal
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Period Signals (more formally and properties)

We call a signal g(t) periodic with period T if for all integers n

git)=gt+n-T,)

Sometimes, signhals are combination of periodic signals, for example sums
or products of two (or more) periodic signals.

= Combining periodic signals with periods Ty and T, we obtain again another periodic signal
= Combined signal is only periodic if the ratio between the individual periods is a rational number
b
T, = T
GCD(a,b) * GCD(a,b) *
a, b: integer, GCD(a, b): Greatest Common Divider

= CAVE: For signals with very similar periods T, = T;, we have |a —b| < a and |a — b| K b.

Since |a— b| = 1 and integer, T, = T; also implies that a, b: very large, which implies very T; can
be very large even if T,, T; are small

a
Ty = 5T, = Combined period T =

=PrL
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Power Spectral Density for Periodic Signals

 Reminder: for non-periodic signals, we have derived the
= Signal energy: total energy in the signal
= Energy spectral density: energy per spectral component

 But, periodic signals have infinite energy: discussing “energy” makes no
sense. Consider instead for periodic signal:

= Signal power: average power over the infinite signal duration = energy in one period,

normalized with the duration of one period
1 A+To

Pg = — |g(t)|* dt
To Ja

= Power spectral density: power per spectral component = energy per spectral component in
one period, normalized with the duration of one period

P; = fjozo|G(f)|2 df requires normalization when computing G (f)
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Fourier Transform of Sinusoids

The FT of some special, useful periodic signals is straightforward

 Example-1: complex sinusoid

. 1
git)y =e?mht s G(f) =fo-6(f—fo) = T—05(f—fo)
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Fourier Transform of a Pulse (Dirac) Train

The FT of some special, useful periodic signals is straightforward

{S'T[J(‘E)
« Example-2: pulse train (“sampling function”) |
+ 00
0.2
5r ()= ) 8(t—nTo)
to | T 2T, 1T, 17, 2Tp
1 4+ oo . -0.5
Fi{br, ()} = Z T— J 8(t —nTy)e 2™l tdt =
m— 0J—o . -
. oo n= ; ; ﬁﬂ‘j_l_”(fj
= — eJzmnTof — — 5. (f),  with fo=—
=3 78101 fo=1 |
n=-—oo
ForallfiTﬁ0 = ~
i’ —— G URIF)
d =24 =34 —14 1;—:2.'.:3':4'

= Normalization with 1/T, maintains equal power in TD and FD i 2% 31 - T s P v
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Fourier Transform of Arbitrary Periodic Signals (1)

Infinite duration of periodic signals sometimes makes it hard to calculate the
Fourier Transform directly

- Can we understand the FT of a periodic signal AERERE AR s A8 MV RS
from the FT of a single period?

............

« Write periodic signal as a function of
the non-periodic signal

g®) = ) glt—nTy) = g(O) x 85, (®

n=-—oo
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Fourier Transform of Arbitrary Periodic Signals (1)

Infinite duration of periodic signals sometimes makes it hard to calculate the
Fourier Transform directly

G(f) = Flg(t) x 87,(O)} = F{g(©)} - F{87,(D)} = G(f) - —51(t)—

Ty 7,

I_Illul. l..l. ll. .=1..1
—4q 27 —#7 -l t 1% # 37 A4
_0_5..

Spectrum of a Periodic Signal is a Dirac (Sampled)

Spectrum of the Spectrum of one Period, with Samples spaced Ti
0
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The Fourier Series

« Since the spectrum of a periodic signal is a discrete spectrum, we can write
Inverse FT as a sum instead of an integral over Dirac pulses

* Fourier Series Representation:

g = z 6o ™S

n=-—oo

 The Fourier Coefficients G, are obtained from the normalized FT of a single
Period

1 (To

Gn:T_O . g(t)'e

—j2-Tnw—

To dt
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The Fourier Series (Remarks)

e Some remarks are in order:

» The continuous formulation / view as a set of pulses on the continuous frequency axis remains

useful to be able to plot the Fourier series coefficients as a function of f
= We often write the Fourier Series as a function of the fundamental frequency fo = Tl
0

() = - TAE o Gyel 2ot with — fo =

* Interpretation of the line spectrum of periodic function

= As g(t) is periodic (g(t) = g(t + k - Ty)), it must be composed
of basis functions which are also periodic with T,.

» This is the case for exactly all those sinusoids with

. 1
frequencies f =n - —=n: fnas
0
. (t+k°T0) . t . Ty

N —
g

1
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Power Spectral Density for Periodic Signals

 Reminder: for non-periodic signals, we have derived the
= Signal energy: total energy in the signal
= Energy spectral density: energy per spectral component

 But, periodic signals have infinite energy: discussing “energy” makes no
sense. Consider instead for periodic signal:

= Signal power: average power over the infinite signal duration = energy in one period,

normalized with the duration of one period
1 A+To

Pg = — |g(t)|* dt
To Ja

= Power spectral density: power per spectral component = energy per spectral component in

one period, normalized with the duration of one period
+ 00

1
PN = ) |Gn|26(f—n-T—O>

n=—oo
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Parseval Theorem with Fourier Series

* For periodic signals, Parseval’s theorem applies as well, but for power
Instead of energy

« The power of a periodic signal can be computed from
* The time domain (energy over one period, normalized by the period)

= The integral of the power spectral density (series of dirac pulses, sampling the FT of one period,
normalized by the period)

* The squared magnitude Fourier Series coefficients

o) lg@rae= [ pdr= Y 16

n=-—oo

With P;(f): Power Spectral Density
G.,. Fourier Series Coefficients
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Power Spectral Density on a Spectrum Analyzer (1)

* In practice, we analyze the PSD on a general-purpose
spectrum analyzer

» The spectrum analyzer does not “know” the period of the signal,
but it can also not analyze the spectrum of an infinitely long signal

consider the spectra of many long windows Ty, » T, and average

i 1\ 1
()= Y IG(f)I26<f—n-T—) NG

n=—oo n=1

1
G (f) = F{gi(0)} with g;,(t) = g(t) - Tl (T—t k- TW)
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Power Spectral Density on a Spectrum Analyzer (2)

* This practical implementation produces some unexpected artifacts

 Consider the example of a periodic sine wave: we expect a sharp peak in the
spectrum at the given frequency
* The expected peak (Dirac) shows as a wider peak

= Especially in a digital spectrum analyzer, the width of the peak
changes with the settings of the analyzer

= For some frequencies of the sine wave, we even
observe a perfect Dirac

» What happens here?? .. ! |

____________________________________________

______________________________________________________________________________________
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Recap from Week-2

 The Fourier Transform decomposes a signal into complex sinusoids
G(f) =2 ge I 2™ tdr and g(f) = [ G(t)el 2™ It dt

« Some important properties of the FT/IFT
» The FT of a signal and its inverse are closely related
Flg®)}=G(f) = Flc(6)} = g(=f)
FHG(N}=9g@®) = F Hg()} =G(-1)

= Convolving two signals in one domain corresponds to multiplying the signals in the
other domainand vice versa

F{g1(t) X g,(1)} = G1(t) - G(t)
FHG () x G()} = g:() - g2 (t)
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Recap from Week-2

« Some important signals are helpful to keep in mind together with their FT

» The Dirac delta pulse: an infinitely short, infinitely high pulse with unit-energy and a flat power
spectral density (PSD)

32 A 1 2 é'z"i']r"'é'é
: : . : : i sin nz
= The Brick-Wall and Sinc signals: a brick-wall signal of duration T has a FT/IFT of the form —
i
T
\
A
05 T F 05 T 2\/1 N2 3
05+ 05+
» |n general: duration of a signal T and its bandwidth B are inversely proportional: T oc%
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Recap from Week-2

* Periodic signals have infinite energy, but we can describe them by their
“power spectral density” (power at each frequency component)

« The spectrum of periodic signals is a sequence of
Dirac pulses that sample the spectrum of one period

 For asignal with period T, the space between the
Dirac pulses is f, = Tiﬂ

= We call f, the fundamental frequency

« Since the spectrum of a periodic signal is discrete (sampled in f), we can
express the signal as an infinite sum of Fourier Coefficeints

g(t) — ;I{io—oo G,e To with G, = — I g(t) e To dit
0

=PrL ()




Stochastic Signals

« Deterministic signals are important, but ultimately rare.

 Most signals are actually somewhat random. For example:
= Noise: random, but often limited in bandwidth or with a specific frequency characteristic
= Data to be transmitted: random sequence of pulses of similar nature/shape (see modulation)

Random Noise

NRZ Modulated Random Data

= Observation: even random signals are usually not completely random
(points that are close in time appear somehow related to each other)

How can we characterize these signals,
especially in terms of their spectral content?

=PrL




Stochastic Signals

« Stochastic signals are random processes that
generate a sequence of consecutive values x(t)

= Every observation {; of a stochastic signal x(t, {;)
between t, and t;: t, < t < t; IS a realization
(sample function) of the same stochastic process

= |nstead of considering only a single value x(t) we
consider always realizations of the process x(t, {})

= We refer to the stochastic process that generates
these samples as X

=PrL

x(t) = x X(ty) = x5

V'v/\’\

X(f_ gﬂ |A/\

\

X{: t_L/ : /\_/_\

x(t, g,)




Stochastic Signals (Probabilistic Characterization)

« A scalar random variable y is characterized by its PDF Py (y)

« Since X always generates (infinitely) many samples, we need a PDF for a
random process Py(x;t) that jointly characterizes x(t) at all times t
= x and t in Px(x; t) are intentionally BOLD since they represent many values jointly

 Now consider x(t) at two time instants ty and ¢t;. In 1) //\ /\ N
the same sample {;, x(t,), x(t,), x(t,) are not - \/ URY
necessarily independent (unrelated). For example, R /\\
= if t, and t; are close, x(t,) and x(t,) are often also close X’\f 7 7
= if t, and t, are far, x(t,) and x(t,) are often very different

or at least less likely to be close
. Re(lationshi y ) |OI ; ; /\f\v/\J\ L
p captured by the joint PDF: Pyx(xg, x4; to, t1) v
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Stochastic Signals (Probabilistic Characterization)

« To fully capture this relationship between signal values, we would need to
consider the joint PDF of all values in a sample

Px(xo, X1,X2,X3, v to, tl’ tz, t3, )
* |n practice this is too complex and not really necessary

« Three simplifications are common place and sufficient in communications

1. Assume that the 1st order statistics of a value is independent of its time in a sample
Px(x;t) = Px(x)
2. Consider only joint probability between two time instants (2nd order statistics):
Py (xy, x1; ty, t1) fOr any t,, t;

3. Assume that only the distance At between the two time instances matters
Px(xo, X1 to, tl) ~ Px(x; At)

Such as process is called Wide-Sense Stationary

=PrL




Stochastic Signals and Autocorrelation Fct. (ACF)

 With the 2nd order statistics, we can define the “autocorrelation function”
Rx(At) = Eq {x(t) - x*(t + At)}

= Note that the expectation E;, is over the “ensemble’, i.e., over many realizations of the process

* In practice (ergodic process), we can replace the ensemble expectation with
an expectation/average over time

T
1 (%2

Ry (At) = Tll_)rgloff . x(t) - x*(t + At) dt
2

= We can numerically calculate the ACF from a sample of a random signal
= With a high number of samples, this ACF characterizes the corresponding random process
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Properties of the Autocorrelation Fct. (ACF)

« The ACF has some very interesting and helpful properties
= Power of a Wide-Sense Stationary Stochastic Signals

T
1 (%2 .
P, = Th—g}ofj_z x(t) - x*(t + At) dt = Rx(0)
2

= The ACF has its maximum magnitude at Ry(0) > |Rx(7)]

= More handwaving observations: The ACF reflects how
“similar” two 7-spaced values of the signal are

» when Ry (7) decays rapidly with 7, the signal changes quickly
(“appears very much random over time”)

« when it remains high for larger t, the signal changes slowly
(“appears less random over time”)

{Ra(7)
Slowly
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Link between ACF and Power Spectral Density

« The PSD shows the power in each frequency component
= A slowly varying signal has much power in low frequencies and little power in high frequencies
= A fast varying signal has significant power in higher frequencies

The PSD of a Stochastic Signal is the Fourier Transform of its ACF
Pe(f) = F{Rx (1)}
Rx(t) = F~H{P()}

= We can obtain the power of a signal from the FT of its ACF: P, = ffozo P.(f)df

The ACF (as the PSD) are always positive: P.(f) = 0

When the signal is real-valued: P.(f) = P.(—f)
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Signal Generation with Filters (for the Lab)

* We often want to generate a signal with a specific shape or a specific
spectrum and a corresponding signal generator may not be available

« Trick: we know that a filter allows us to do two things
= Convolve a signal with the impulse response of the filter

i e Pr(f)

—_/R

-2
—g-l-‘-l-ll-l-'-l-'-l-‘-l-rhl
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