
EE-432

Systeme de 

Telecommunication
Prof. Andreas Burg

Joachim Tapparel, Yuqing Ren, Jonathan Magnin

Fundamental Signals

and Signal Representations



Table of Contents

• Definition of Signals and Systems

• Signal Classification and Basic Transformations

• Power and Energy

• Non-Periodic Signals

▪ Frequency Domain and Fourier Transform (Non-Periodic Signals)

▪ Fourier Transformation and Properties

▪ Sinc/Brick-Wall and Dirac Delta Function



Table of Contents

• Periodic Signals

▪ Power spectral density for infinite-energy Signals

▪ Fourier Series

▪ Parseval Theorem for periodic Signals

• Stochastic Signals

▪ Nature of stochastic signals

▪ TD Characterization with Autocorrelation Function 

▪ Power Spectral Density of Stochastic Signals



Fundamental Definitions

In digital communications we deal with two main concepts that a physical 

interpretation, but also translate well into precise mathematical counterparts

• Signals: a sequence of values that evolves as a function of one or 

independent parameters (often time)

▪ 1-dimensional (1D) signals are a function of one variable (often, but not always) time

▪ Signals can also be n-dimensional (e.g., images)

▪ We represent physical quantities with signals, BUT many signals have no physical counter part

▪ Different ways to represent a signal:

𝑦 𝑡 =
sin 2 ∗ 𝜋 ∗ 𝑡

𝜋 ∗ 𝑡

Equation Graph
List of numerical values

(sampled signals)



Fundamental Definitions

In digital communications we deal with two main concepts that a physical 

interpretation, but also translate well into precise mathematical counterparts

• Systems: receive and operate on one or multiple input signals to generate 

one (or multiple) new signals according to well-defined rules

▪ Realized either from physical components (carefully constructed (e.g., RF circuit) or naturally 

given (e.g., the wireless channel)) or as abstract calculations (math)

▪ Challenges:

• For physical systems: find a proper mathematical description to include it in an abstract model

• For systems to be constructed: given a set of input signals, engineer the “system” to achieve an output 

with desired properties

System 𝑓(𝑡)
𝑔𝑛(𝑡)

𝑔1(𝑡)

𝑓 𝑡 =
𝑑

𝑑𝑡
𝑔 𝑡

𝑓 𝑡 = 𝑔1 𝑡 × 𝑔2 𝑡

...



Signal Classification

• Representation

▪ Continuous

▪ Sampled

• Behaviour over time

▪ Non-periodic

▪ Periodic

▪ Random (stochastic)
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Useful Basic Operations on Signals: Shifting

• Consider a signal 𝑔 𝑡  and a time (frequency) offset/shift Δ𝑇 > 0

▪ Delaying the signal: to shift the signal to the “right” replace 𝑡 ← 𝑡 − Δ𝑇

▪ Advancing the signal: to shift the signal to the “left”, replace 𝑡 ← 𝑡 + Δ𝑇



Useful Basic Operations on Signals: Stretching

• Consider a signal 𝑔 𝑡  and a time/frequency stretching factor 𝛼

▪ Stretching the signal: to stretch the signal replace  𝑡 ← 𝛼𝑡 𝑤𝑖𝑡ℎ 𝜶 < 𝟏

▪ Compress the signal: to compress a signal, replace 𝑡 ← 𝛼𝑡 𝑤𝑖𝑡ℎ 𝜶 > 𝟏

 

 

 

        

 

 

 

         

 

 

        



Instantaneous Signal Power

• We define the instantaneous “power” of a signal as 

𝑃𝑔 𝑡 = 𝑔 𝑡 2

▪ As signals often represent levels of physical quantities such as “voltages”, “currents”, “field 

strengths”, ... , 𝑃𝑔 𝑡  is indicative for “physical” instantaneous power

▪ CAVEAT: as constants are often omitted, for simplicity and generality, when defining signals, 

actual “physical” power in SI units requires careful consideration of appropriate constants

• Instantaneous signal power varies over time



Signal Energy

• We define the “energy” of a signal as 

𝐸𝑔 = න
−∞

+∞

𝑔 𝑡 2 𝑑𝑡

▪ As signals often represent levels of physical quantities such as “voltages”, “currents”, “field 

strengths”, ... , 𝐸𝑔 is indicative for “physical” energy

▪ CAVEAT: as constants are often omitted, for simplicity and generality, when defining signals, 

actual “physical” energy in SI units requires careful consideration of appropriate constants

• Signal energy is only meaningful if 𝐸𝑔 < ∞. This is the case for

▪ Signals with finite duration:  𝑔 𝑡 2 = 0 for 𝑡 < 𝑇− and 𝑔 𝑡 2 = 0 for 𝑡 > 𝑇+

▪ Signals with rapidly decaying tails: lim
𝑇→∞

∞−׬

−𝑇
𝑔 𝑡 2 𝑑𝑡 + 𝑇׬

+∞
𝑔 𝑡 2 𝑑𝑡 = 0



Average Signal Power

• For signals with “infinite” energy, considering “power” (mean square value) 

makes more sense

▪ Normalizing by signal duration, while still considering the entire (potentially infinitely long) signal

𝑃𝑔 = lim
𝑇→∞

1

𝑇
න

−
𝑇
2

+
𝑇
2

𝑔 𝑡 2 𝑑𝑡 = lim
𝑇→∞

1

𝑇
න

−
𝑇
2

+
𝑇
2

𝑃𝑔 𝑡 𝑑𝑡

▪ Sometimes the “root mean square” (RMS) value is also considered as ҧ𝑔𝑅𝑀𝑆 = 𝑃𝑔

• Periodic signals 𝑔′ (inf. Energy) with period 𝑻
▪ Integration over any full period with arbitrary offset Δ

𝑃𝑔 =
1

𝑇
න

0+Δ

+𝑇+Δ

𝑔′ 𝑡 2 𝑑𝑡



Power/Energy Units in Communications

• Specific properties when analysing communication signals/systems

▪ Communication signal power varies over an extremely wide range

▪ Amplification and attenuation are multiplicative effects

▪ Many metrics of interest (e.g., error rates) are exponential functions of the signal power and vary 

also over a wide range

• Example

Received Signal Strength vs Distance

Error Rate vs 
received Signal Strength

   m   .  m

  .   .        . 
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Power/Energy Units in Communications

• Expressing power on a linear scale is inconvenient and leads to highly 

compressed, unreadable graphs

10-6 W 1 W
[W]

Linear scale

10-6 W

LOG([W])

Log scale

1 W

𝑓1 𝑥
𝑓2 𝛼 ∙ 𝑥 = 𝑓1 𝑥

𝑓1 𝑥

𝑓2 𝛼 ∙ 𝑥 = 𝑓1 𝑥

Curve shapes that are invariant to 
multiplications (scaling) of their 
input power appear stretched

Log-scale: stretching
preserves curve shape



Power/Energy Units in Communications

• We measure power always in decibels [dB]

𝑃 𝑑𝐵 = 10 ∙ log10 𝑃[𝑙𝑖𝑛]

▪ dB is a relative metric and when signals are often unit-free, we follow the above expression

• If we are interested in the actual “physical” power in Watts we relate the 

power in dB to a known reference

▪ Power in dBW is 10 ∙  log10 𝑃 𝑊  (less commonly used)

▪ Power in dBm is 10 ∙ log10 𝑃 𝑚𝑊 = 30 + 10 ∙ log10 𝑃 𝑊

P[dBm] P[dBW] P[mW]

-20 dBm -50 dBW 0.01 mW

-10 dBm -40 dBW 0.1 mW

0 dBm -30 dBW 1 mW

10 dBm -20 dBW 10 mW

20 dBm -10 dBW 100 mW

30 dBm 0 dBW 1 W



Orthogonal Signals

• When considering two signals, it is interesting to see if these can be 

“separated” perfectly even when they are superimposed (e.g., in time)

• DEFINITION: two signals 𝑔 𝑡  and 𝑥 𝑡  are “orthogonal” if 

𝑔 𝑡 , 𝑥 𝑡 = න
−∞

+∞

𝑔 𝑡 ∙ 𝑥∗ 𝑡 𝑑𝑡 = 0

Why is this useful?

• Consider 𝑦 𝑡 = 𝛼𝑔 𝑡 + 𝛽𝑥 𝑡  with 𝑔 𝑡 , 𝑥 𝑡 = 0, then 

න
−∞

+∞

𝛼𝑔 𝑡 + 𝛽𝑥 𝑡 ∙ 𝑥∗ 𝑡 𝑑𝑡 = 𝛼 න
−∞

+∞

𝑔 𝑡 𝑥∗ 𝑡 𝑑𝑡

0

+ 𝛽 න
−∞

+∞

𝑥 𝑡 2 𝑑𝑡~𝛽



(Complex) Sinusoids as Orthogonal Signals

• Real and complex sinusoids are a particularly useful class of signals as they 

▪ Are pure oscillations that each contain only a single frequency

▪ Relate directly to specific frequencies and to the behaviour of a system or 

channel at specific frequencies:

Computer Backplane with 
connections to multiple PCI cards

Attenuation of different frequencies
on the connection from the CPU to the

different PCI card connectors



(Complex) Sinusoids as Orthogonal Function Basis

• For real-valued signals, we can consider sin 2𝜋𝑡 and cos 2𝜋𝑡
▪ The functions sin 2𝜋𝑓𝑡 and cos 2𝜋𝑓𝑡 themselves are orthogonal to each other

• We use “complex sinusoids” to express deal with both complex-valued and 

real-valued signals

𝜑𝑓 𝑡 = 𝑒𝑗∙2∙𝜋∙𝑓∙𝑡

▪ Each pair of complex sinusoids with 𝑓1 ≠ 𝑓2 is orthogonal: 𝜑𝑓1
𝑡 , 𝜑𝑓2

𝑡 = 0

▪ The set of all complex sinusoids forms an orthogonal function basis

• Any complex finite-energy function can be decomposed into a sum of 

complex sinusoids



Recap from Week-1

• Important signal classes and representations

• We measure signal power always in dB

• Orthogonality of signals: two signals 𝑔 𝑡  and 𝑥 𝑡  are “orthogonal” if 

𝑔 𝑡 , 𝑥 𝑡 = න
−∞

+∞

𝑔 𝑡 ∙ 𝑥∗ 𝑡 𝑑𝑡 = 0

▪ Orthogonality helps us to separate out signal components from a sum of signals

▪ Famous orthogonal signals sin() and cos() -> orthogonal components of complex numbers

▪ Real/complex sinusoids with different frequrncies



Fourier Transformation

• The Fourier Transform (FT) extracts a continuous frequency spectrum from 

a finite energy (therefore also non-periodic) signal: 

𝐺 𝑓 = න
−∞

+∞

𝑔 𝑡 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑡 𝑑𝑡

▪ 𝐺 𝑓  and 
1

j
log 𝐺 𝑓 = arg 𝐺 𝑓  are magnitude and phase of frequency component 𝑓 in 𝑔 𝑡

• The Inverse Fourier Transform (IFT) reconstructs the time domain function 

from the frequency spectrum: 

𝑔 𝑡 = න
−∞

+∞

𝐺 𝑓 𝑒𝑗∙2∙𝜋∙𝑓∙𝑡 𝑑𝑓

• Negative frequencies: required to form real-valued signals (see later)



FT and IFT Duality

• FT and IFT are almost completely symmetric (only difference in the sign of the 

exponent of the complex sinusoid in the integral)

• This leads to a beautiful duality:

ℱ 𝑔 𝑡 = 𝐺 𝑓 ⟹ ℱ 𝐺 𝑡 = 𝑔 −𝑓

ℱ−1 𝐺 𝑓 = 𝑔 𝑡 ⟹ ℱ−1 𝑔 𝑓 = 𝐺 −𝑡

▪ The FT/IFT of one function also reveals easily the FT/IFT of another function 

▪ Time domain (TD) and frequency domain (FD) are fundamentally related

• All linear operations on a signal can be carried out in TD and FD



Convolution/Mixing in TD and FD (FT/IFT Property)

• Two TD operations on signals that are frequently used:

• Convolution in time domain:  𝑔1 𝑡 × 𝑔2 𝑡 = ∞−׬

+∞
𝑔1 𝑢 × 𝑔2 𝑡 − 𝑢 𝑑𝑡

      ℱ 𝑔1 𝑡 × 𝑔2 𝑡 = 𝐺1 𝑡 ⋅ 𝐺 𝑡

      𝑔1 𝑡 × 𝑔2 𝑡 = ℱ−1 𝐺1 𝑡 ⋅ 𝐺 𝑡

• Multiplication in time domain: 𝑔1 𝑡 ⋅ 𝑔2 𝑡

      ℱ 𝑔1 𝑡 ⋅ 𝑔2 𝑡 = 𝐺1 𝑡 × 𝐺 𝑡

      𝑔1 𝑡 ⋅ 𝑔2 𝑡 = ℱ−1 𝐺1 𝑡 × 𝐺 𝑡

Filtering Mi ing Modulation



FT/IFT of Time/Frequency Shifted Signals

• We often encounter signals that are either delayed or shifted in frequency

• Example from digital communications: 

construction of a pulse-train (sending multiple 

symbols) from a single (prototype) pulse

 

 Given 𝑮 𝑭 , how can we compute 𝒀 𝒇 ?

𝒚 𝒕 = ෍

𝒏=−∞

𝒏=+∞

𝒔𝒏𝒈 𝒕 − 𝒏 ∙ 𝑻



FT/IFT of Time/Frequency Shifted Signals

• Consider the FT of 𝒈 𝒕 − 𝑻

ℱ 𝑔 𝑡 − 𝑇 = න
−∞

+∞

𝑔 𝑡 − 𝑇 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑡 𝑑𝑡 = න
−∞

+∞

𝑔 𝑢 𝑒−𝑗∙2∙𝜋∙𝑓∙ 𝑢+𝑇 𝑑𝑢

= න
−∞

+∞

𝑔 𝑢 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑢 ⋅ 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑇 𝑑𝑢 = 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑇 ⋅ 𝐺 𝑓

▪ Delaying a signal leaves the magnitude of its FT unaltered

▪ The argument (phase) of its FT experiences a frequency dependent linear shift that becomes 

steeper with increasing delay
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*We will see this again when we discuss a “frequency selective” channel and “time synchronization”



FT/IFT of Time/Frequency Shifted Signals

• Consider the IFT of G 𝒕 − 𝑭

ℱ−1 𝐺 𝑡 − 𝐹 = න
−∞

+∞

𝐺 𝑡 − 𝐹 𝑒𝑗∙2∙𝜋∙𝑓∙𝑡 𝑑𝑓 = න
−∞

+∞

𝐺 𝑢 𝑒𝑗∙2∙𝜋∙𝑡∙ 𝑢+𝐹 𝑑𝑢

= න
−∞

+∞

𝐺 𝑢 𝑒𝑗∙2∙𝜋∙𝒕∙𝑢 ⋅ 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑭 𝑑𝑢 = 𝑒𝑗∙2∙𝜋∙𝒕∙𝑭 ⋅ 𝑔 𝑡

▪ Moving a signal in frequency leaves the magnitude of its IFT unaltered

▪ The argument (phase) of its IFT experiences a frequency dependent linear shift that becomes 

steeper with increasing frequency shift

• Summary

ℱ−1 𝐺 𝑡 − 𝐹 = 𝑒𝑗∙2∙𝜋∙𝒕∙𝑭 ⋅ 𝑔 𝑡    ℱ 𝑒𝑗∙2∙𝜋∙𝒕∙𝑭 ⋅ 𝑔 𝑡 = 𝐺 𝑡 − 𝐹

ℱ 𝑔 𝑡 − 𝑇 = 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑇 ⋅ 𝐺 𝑓   ℱ−1 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑇 ⋅ 𝐺 𝑓 = 𝑔 𝑡 − 𝑇

*We will see this again when we discuss a “passband modulation” and “multi-carrier modulation”



Fourier Transformation Shift/Duality Example

Example-1a:

▪ 𝑔 𝑡 = ቊ
1 −0.25 < 𝑡 < 0.75
0 𝑒𝑙𝑠𝑒

▪ 𝐺 𝑓 = 𝑒𝑗∙
1

4
∙𝜋∙𝑓 ∙

sin 𝜋∙𝑓

𝜋∙𝑓

Example-1b:

▪ g 𝑡 = 𝑒𝑗∙
1

4
∙𝜋∙𝑡 ∙

sin 𝜋∙𝑡

𝜋∙𝑡

▪ G 𝑓 = ቊ
1 −0.75 < 𝑓 < 0.25
0 𝑒𝑙𝑠𝑒



Computing and Plotting FT/IFT with MATLAB

• Manual computation of FT/IFT pairs through integrals is often tedious 

• Two main approaches to simplify our life:

▪ Derivation by using known FT/IFT pairs and fundamental properties (see next slides)

▪ Symbolic math tools (e.g., MATLAB)

Using MATLAB symbolic math toolbox

1. Set up scaling parameters for FT/IFT (MATLAB defaults to a scaled version) 
using sympref('FourierParameters',[1,2*pi]);

2. Define symbols for time and frequency (e.g., t, and v) using syms

3. Define a function

4. Obtain FT/IFT with fourier() and ifourier()

5. Simplify the resulting expression using simplify()



Computing and Plotting FT/IFT with MATLAB

Example

sympref('FourierParameters',[1,2*pi]); % Define the FT/IFT scaling

syms t v;      % Declare symbols for time (t) 

         and frequency (v)

f=rectangularPulse(-0.5,0.5,t);  % Define TD function f(t)

F=simplify(fourier(f,t,v));   % Compute FT and simplify

figure(1); clf;     % Plot preparation

fplot(f,'LineWidth',2);    % plot f(t)

axis([-2,+2,-0.5,+1.5]); grid;

figure(2); clf;     % Plot preparation

fplot(abs(F),'LineWidth',2);    % plot |F(t)|

axis([-4,+4,-0.5,+1.5]); grid;



Useful Functions and Their Fourier Transforms

• The brick-wall (unit rectangle) function

Π 𝑡 = ቐ1 𝑡 <
1

2
0 𝑒𝑙𝑠𝑒

ℱ 𝑔 𝑡 = න
−∞

+∞

Π 𝑡 𝑒−𝑗∙2∙𝜋∙𝑡∙𝑓𝑑𝑡 = න
1
2

1
2

𝑒−𝑗∙2∙𝜋∙𝑡∙𝑓𝑑𝑡 =
sin 𝜋 ∙ 𝑓

𝜋 ∙ 𝑓
= sinc 𝜋 ∙ 𝑓



Energy in Time- and Frequency-Domain (Parseval)

• We are often interested in the total energy of a signal.

• Recap: in time domain we have

𝐸𝑔 = න
−∞

+∞

𝑔 𝑡 2 𝑑𝑡

• Parseval’s theorem states that:

▪ The fourier transform preserves the energy of the signal

▪ The Integral of the square of a function is equal to the integral 

of the square of its transform

𝐸𝑔 = ∞−׬

+∞
𝐺 𝑓 2 𝑑𝑓 

with 𝐺 𝑓 2: Energy Spectrum

  .     .  .   . 
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Finite/Infinite Duration vs Infinite/Finite Spectrum

• From the FT of the Brick-Wall function, we observe that a time limited 

function can occupy an infinitely wide spectrum

Even more general:

• Every finite width pulse has a spectrum with unbounded frequencies.

• Every finite spectrum results in an infinitely long pulse, BUT with (rapidly) 

decaying tails (to preserve finite enery)

 

 . 

  . 

 

        

 . 

  . 

 

 .      . 

Time-limited pulse Infinitely wide spectrum

Frequency limited spectrum Infinitely wide pulse

ℱ Π 𝑡

ℱ−1 Π 𝑓



Defining Signal Bandwidth/Duration

• Even for a signal with infinite width (TD or FD), we are interested in defining 

a relevant bandwidth

• Many different ways to define bandwidth(FD) / duration (TD):

▪ Depending on the application/situation/requirements, choose the best option

▪ For the general behaviour/trend (see later), most options behave similarly

       

 . 

 . 
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Positions of zeros 50% (3 dB) energy decay X% of total energy



Example: Bandwidth of a Brick-Wall

• Consider the brick-wall in the time domain:

Π 𝑡 = ቐ1 𝑡 <
1

2
0 𝑒𝑙𝑠𝑒

• with Fourier Energy Spectrum

ℱ 𝑔 𝑡 2 = sinc 𝜋 ∙ 𝑓 2

• Zero-energy bandwidth: 

sinc 𝜋 ∙ 𝑓𝐵𝑊
2 =

sin 𝜋𝑓𝐵𝑊

𝜋𝑓𝐵𝑊

2
== 0 ⇒ 𝜋𝑓𝐵𝑊 = 𝜋 ⇒ 𝑓𝐵𝑊 = 1



Fourier Transform Time Scaling

• Often, we are interested of the FT of a time-scaled (frequency-scaled) signal

• Example: 

• Compute the FT/IFT of a time-scaled function with scaling factor 𝜶

ℱ 𝑔 𝛼𝑡  = න
−∞

+∞

𝑔 𝛼𝑡 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑡 𝑑𝑡 = න
−∞

+∞

𝑔 𝑢 𝑒−𝑗∙2∙𝜋∙
𝑓∙𝒖
𝜶

𝑑𝑢

𝛼
=

1

𝛼
𝐺

𝑓

𝛼

ℱ−𝟏 𝐺 𝛽𝑓 =
1

𝛽
𝑔

𝑡

𝛽

𝛼 = 4

Note: 𝛼 > 1: Compress
  𝛼 < 1: Expand



Time Scaling Example -> Dirac Delta

• Consider a brick-wall spectrum that expands, but preserves the area under 

the spectrum and its FT:

ℱ
1

𝐵
Π

𝑓

𝐵
= sinc 𝜋𝐵𝑡 =

sin 𝜋𝐵𝑡

𝜋𝐵𝑡

Time-domain of a widening spectrum converges to an infinitely short pulse



Observation: Bandwidth & Time Duration

• Consider now the duration 𝑻 of a sinc-pulse created by brick-wall spectrum 

with increasing bandwidth 

▪ Choose the zero-crossing bandwidth as easy reference

ℱ
1

𝐵
Π

𝑓

𝐵
= sinc 𝜋𝐵𝑡

sinc 𝜋 ∙ 𝐵 ∙ 𝑇 2 =
sin 𝜋∙𝐵∙𝑇

𝜋∙𝐵∙𝑇

2
== 0  ⇒ 𝑇 =

1

𝐵

Signal Bandwidth and Pulse Duration are inversely proportional

𝑇 = 𝐶 ∙
1

𝐵

(holds in general with different constants 𝐶)



Triangle Function

• The “triangle function” is defined in the TD as

𝚫 𝒕 = ቊ
𝟏 − 𝟐 𝒙 𝒙 < 𝟏

𝟎 𝒆𝒍𝒔𝒆

• To find the triangle FT, we observe that it can be written as the convolution 

of two scaled Brick-Wall functions

𝚫 𝒕 = 𝟐 ⋅ 𝚷 𝟐𝒕 × 𝚷 𝟐𝒕

▪ Scaling to preserve the width with a boundary of ½ and to preserve the hight after scaling

𝓕 𝚫 𝒕 = 𝟐 ⋅ 𝓕 𝚷 𝟐𝒕 × 𝓕 𝚷 𝟐𝒕 =

𝓕 𝚷 𝟐𝒕 𝟐 = 𝟐 ⋅
𝟏

𝟐
sinc

𝜋

2
𝑓

𝟐

=
𝟏

𝟐
sinc𝟐

𝜋

2
𝑓

• Zero-Crossing Bandwidth: 
𝜋

2
𝑓𝐵𝑊 = 𝜋 → 𝑓𝐵𝑊 = 2



The Dirac Delta Function

• Consider a sinc-function (TD) with 

increasing bandwidth

▪ Converges to an infinitely short pulse with area 

below the pulse remaining 1

Define the Dirac delta function as

𝜹 𝒕 = lim
𝑩→∞

ℱ
1

𝐵
Π

𝑓

𝐵
= lim

𝑩→∞
sinc 𝜋𝐵𝑡



Dirac Delta Function Properties

• Unit area under the function, despite its infinitely short duration

න
−∞

−∞

𝛿 𝑡 𝑑𝑡 = 1

• Convolution × of a function 𝒇 𝒕  with a shifted Dirac delta 𝛿 𝑡 , evaluated at 𝝉 

extracts the function value at time 𝝉 (as a constant)

𝒇 𝒕 × 𝜹 𝒕 𝝉 = න
−∞

+∞

𝒇 𝒕 ∙ 𝜹 𝒕 − 𝝉 𝒅𝒕 = න
−∞−𝜏

+∞−𝜏

𝒇 𝒕 + 𝝉 ∙ 𝜹 𝒕 𝒅𝒕

= න
−∞

+∞

𝒇 𝝉 ∙ 𝜹 𝒕 𝒅𝒕 = 𝒇 𝝉 ∙ න
−∞

+∞

𝜹 𝒕 𝒅𝒕 = 𝒇 𝝉



Dirac Delta Function Properties

• Multiplying a function/signal 𝒇 𝒕  with a 

shifted Dirac delta 𝛿 𝑡

 𝑓 𝑡 ∙ 𝛿 𝑡 − 𝑇  = 𝑓 𝑇 ∙ 𝛿 𝑡 − 𝑇

• Result depends only on 𝑓 𝑇
▪ removes any dependency from 𝑓 𝜏  for 𝜏 ≠ 𝑇

Product of a Signal with a shifted Dirac Delta 

corresponds to ideal Sampling



FT/IFT of a Dirac Delta

• Consider the inverse Fourier Transform of a Dirac Delta in the FD

𝒈 𝒕 = 𝓕−𝟏 𝜹 𝒇 = න
−∞

+∞

𝜹 𝒇 𝒆𝒋⋅𝟐⋅𝝅⋅𝒇⋅𝒕𝒅𝒕 = 𝟏

▪ A Dirac delta (at DC) corresponds to a DC offset of the signal

• NOTE: When looking at the Spectrum of a signal, 

you often see a “spike” at zero frequency. This 

means that your signal has a significant DC value



FT of (Complex and Real) Sinusoids

• Consider the inverse Fourier Transform of a shifted Dirac Delta in the FD

▪ Use shifted FT property

𝒈 𝒕 = 𝓕−𝟏 𝜹 𝒇 − 𝑭 = 𝓕−𝟏 𝜹 𝒇 ⋅ 𝑒𝑗∙2∙𝜋∙𝒕∙𝑭 = 𝑒𝑗∙2∙𝜋∙𝒕∙𝑭

▪ Dirac in FD at frequency 𝐹 corresponds to a complex sinusoid in TD at frequency 𝐹

𝒈 𝒕 = 𝑒𝑗∙2∙𝜋∙𝒕∙𝑭  ⟺  𝑮 𝒇 = 𝜹 𝒇 − 𝑭

• FT of real-valued sinusoids obtained by writing sin 2𝜋𝑡𝐹  and cos 2𝜋𝑡𝐹  as 

sums of complex sinusoids

𝓕
𝟏

𝟐
𝑒𝑗∙2∙𝜋∙𝒕∙𝑭 + 𝑒−𝑗∙2∙𝜋∙𝒕∙𝑭 =

𝟏

𝟐
𝜹 𝒇 − 𝑭 + 𝜹 𝒇 + 𝑭

𝓕 −
𝒊

𝟐
𝑒𝑗∙2∙𝜋∙𝒕∙𝑭 − 𝑒−𝑗∙2∙𝜋∙𝒕∙𝑭 = −

𝒊

𝟐
𝜹 𝒇 − 𝑭 − 𝜹 𝒇 + 𝑭



Spectrum of Real-Valued Signals

• Compare the spectra of complex and 

real-valued sinusoids

• Two interesting observations for 

real-valued signals

▪ Magnitudes are symmetric 𝐺 𝑓 = 𝐺 −𝑓

▪ Imaginary part is inverse symmetric ℐ 𝐺 𝑓 = −ℐ 𝐺 𝑓

        𝑮 𝒇 = 𝑮 𝒇 ∗

 𝑮 𝒇  and 𝑮 −𝒇  are complex-conjugate pairs

In general, if and only if 𝑮 𝒇 = 𝑮 −𝒇 ∗, ℐ 𝒈 𝒕 = 𝟎



Removing Redundancy

• The complex two-sided spectrum of a strictly 

real-valued signal is highly redundant

▪ Positive and negative parts of the spectrum have 

identical real-part

▪ Positive and negative parts of the spectrum have 

complex-conjugate imaginary part

  50% of the spectrum are redundant

• To remove the “useless” part of the spectrum 

we can compute:

 F 𝑓 =
1

2
𝐺 𝑓 + sgn 𝑓 𝐺 𝑓



Fourier Transform Cheat Sheet

https://www.dummies.com/article/business-careers-money/careers/trades-tech-engineering-careers/signals-and-systems-working-with-transform-theorems-and-pairs-166452/ 

https://www.dummies.com/article/business-careers-money/careers/trades-tech-engineering-careers/signals-and-systems-working-with-transform-theorems-and-pairs-166452/


Periodic Signals

Periodic signals occur in various contexts, mainly as reference signals.

Examples: 

• Clock signals in digital systems

• Carrier signals that define the frequency band of a wireless link

• Multi-tone test signals for system analysis

Carrier Signal Clock Signal Two-Tone Signal



Period Signals (more formally and properties)

• We call a signal ഥ𝒈 𝒕  periodic with period 𝑻𝟎 if for all integers 𝒏 

ഥ𝒈 𝒕 = ഥ𝒈 𝒕 + 𝒏 ⋅ 𝑻𝟎

• Sometimes, signals are combination of periodic signals, for example sums 

or products of two (or more) periodic signals. 

▪ Combining periodic signals with periods 𝑻𝟎 and 𝑻𝟏, we obtain again another periodic signal

▪ Combined signal is only periodic if the ratio between the individual periods is a rational number

𝑇1 =
𝑎

𝑏
𝑇2 → 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑 𝑇3 =

𝑎

𝐺𝐶𝐷 𝑎, 𝑏
𝑇2 =

𝑏

𝐺𝐶𝐷 𝑎, 𝑏
𝑇1

𝑎, 𝑏: integer, GCD 𝑎, 𝑏 : Greatest Common Divider

▪ CAVE: For signals with very similar periods 𝑇0 ≈ 𝑇1, we have a − b ≪ 𝑎 and a − b ≪ 𝑏. 

Since a − b ≥ 1 and integer, 𝑇0 ≈ 𝑇1 also implies that 𝑎, 𝑏: 𝑣𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒, which implies very 𝑇3 can 

be very large even if 𝑇0, 𝑇1 are small



Power Spectral Density for Periodic Signals

• Reminder: for non-periodic signals, we have derived the 

▪ Signal energy: total energy in the signal

▪ Energy spectral density: energy per spectral component

• But, periodic signals have infinite energy: discussing “energy” makes no 

sense. Consider instead for periodic signal:

▪ Signal power: average power over the infinite signal duration = energy in one period, 

normalized with the duration of one period

𝑃ത𝑔 =
1

𝑇0
න

Δ

Δ+𝑇0

ҧ𝑔 𝑡 2 𝑑𝑡

▪ Power spectral density: power per spectral component = energy per spectral component in 

one period, normalized with the duration of one period

𝑃ത𝑔 = ∞−׬

+∞
𝐺 𝑓 2 𝑑𝑓 requires normalization when computing 𝐺 𝑓



Fourier Transform of Sinusoids

The FT of some special, useful periodic signals is straightforward

• Example-1: complex sinusoid 

ഥ𝒈 𝒕 = 𝒆𝒋⋅𝟐⋅𝝅⋅𝒇𝟎⋅𝒕 ⇋ 𝑮 𝒇 = 𝒇𝟎 ⋅ 𝜹 𝒇 − 𝒇𝟎 =
𝟏

𝑻𝟎
𝜹 𝒇 − 𝒇𝟎

𝑻𝟎 =
𝟏

𝒇𝟎



Fourier Transform of a Pulse (Dirac) Train 

The FT of some special, useful periodic signals is straightforward

• Example-2: pulse train (“sampling function”) 

𝜹𝑻𝟎
𝒕 = ෍

𝒏=−∞

+∞

𝜹 𝒕 − 𝒏𝑻𝟎

𝓕 𝜹𝑻𝟎
𝒕 = ෍

𝒏=−∞

+∞
𝟏

𝑻𝟎
න

−∞

+∞

𝜹 𝒕 − 𝒏𝑻𝟎 𝒆−𝒋⋅𝟐⋅𝝅⋅𝒇⋅𝒕𝒅𝒕 =

=
𝟏

𝑻𝟎
෍

𝒏=−∞

+∞

𝒆−𝒋⋅𝟐⋅𝝅⋅𝒏⋅𝑻𝟎⋅𝒇

𝟏
𝑻𝟎

σ−∞
+∞ 𝜹 𝒇−

𝒎
𝑻𝟎

=
𝟏

𝑻𝟎
𝜹𝒇𝟎

𝒇 ,  𝐰𝐢𝐭𝐡 𝒇𝟎 =
𝟏

𝑻𝟎

▪ Normalization with 1/𝑻𝟎 maintains equal power in TD and FD

For all 𝒇 ≠
𝑚

𝑇0
 

the infinite 
sum is zero



Fourier Transform of Arbitrary Periodic Signals (1)

Infinite duration of periodic signals sometimes makes it hard to calculate the 

Fourier Transform directly

• Can we understand the FT of a periodic signal 

from the FT of a single period?

• Write periodic signal as a function of 

the non-periodic signal

ഥ𝒈 𝒕 = ෍

𝒏=−∞

+∞

𝒈 𝒕 − 𝒏𝑻𝟎 = 𝒈 𝒕 × 𝜹𝑻𝟎
𝒕



Fourier Transform of Arbitrary Periodic Signals (1)

Infinite duration of periodic signals sometimes makes it hard to calculate the 

Fourier Transform directly

ഥ𝑮 𝒇 = 𝓕 𝒈 𝒕 × 𝜹𝑻𝟎
𝒕 = 𝓕 𝒈 𝒕 ⋅ 𝓕 𝜹𝑻𝟎

𝒕 = 𝑮 𝒇 ⋅
𝟏

𝑻𝟎
𝜹 𝟏

𝑻𝟎

𝒕 =

=
𝟏

𝑻𝟎
෍

𝒏=−∞

+∞

𝑮 𝒏
𝟏

𝑻𝟎
𝜹 𝒇 − 𝒏

𝟏

𝑻𝟎

Spectrum of a Periodic Signal is a Dirac (Sampled) 

Spectrum of the Spectrum of one Period, with Samples spaced 
𝟏

𝑻𝟎



The Fourier Series

• Since the spectrum of a periodic signal is a discrete spectrum, we can write 

inverse FT as a sum instead of an integral over Dirac pulses

• Fourier Series Representation:

ഥ𝒈 𝒕 = ෍

𝒏=−∞

+∞

𝑮𝒏𝒆
𝒋⋅𝟐⋅𝝅⋅𝒏⋅

𝟏
𝑻𝟎

⋅𝒕

• The Fourier Coefficients 𝑮𝒏 are obtained from the normalized FT of a single 

Period

𝑮𝒏 =
𝟏

𝑻𝟎
න

𝟎

𝑻𝟎

ഥ𝒈 𝒕 ⋅ 𝒆
−𝒋⋅𝟐⋅𝝅⋅𝒏⋅

𝟏
𝑻𝟎

⋅𝒕
𝒅𝒕



The Fourier Series (Remarks)

• Some remarks are in order:

▪ The continuous formulation / view as a set of pulses on the continuous frequency axis remains 

useful to be able to plot the Fourier series coefficients as a function of 𝑓

▪ We often write the Fourier Series as a function of the fundamental frequency 𝒇𝟎 =
𝟏

𝑻𝟎

ഥ𝒈 𝒕 =
𝟏

𝑻𝟎
σ𝒏=−∞

+∞ 𝑮𝒏𝒆𝒋⋅𝟐⋅𝝅⋅𝒏⋅𝒇𝟎⋅𝒕 with  𝒇𝟎 =
𝟏

𝑻𝟎

• Interpretation of the line spectrum of periodic function

▪ As ഥ𝒈 𝒕  is periodic (ഥ𝒈 𝒕 = ഥ𝒈 𝒕 + 𝒌 ⋅ 𝑻𝟎 ), it must be composed 

of basis functions which are also periodic with 𝑻𝟎. 

▪ This is the case for exactly all those sinusoids with 

frequencies 𝑓 = 𝒏 ⋅
𝟏

𝑻𝟎
= 𝒏 ⋅ 𝒇𝒏 as 

𝒆
𝒋⋅𝟐⋅𝝅⋅𝒏⋅

𝒕+𝒌⋅𝑻𝟎
𝑇0 = 𝒆

𝒋⋅𝟐⋅𝝅⋅𝒏⋅
𝒕

𝑇0 ⋅ 𝒆
𝒋⋅𝟐⋅𝝅⋅𝒏⋅𝒌⋅

𝑻𝟎
𝑇0

𝟏



Power Spectral Density for Periodic Signals

• Reminder: for non-periodic signals, we have derived the 

▪ Signal energy: total energy in the signal

▪ Energy spectral density: energy per spectral component

• But, periodic signals have infinite energy: discussing “energy” makes no 

sense. Consider instead for periodic signal:

▪ Signal power: average power over the infinite signal duration = energy in one period, 

normalized with the duration of one period

𝑃ത𝑔 =
1

𝑇0
න

Δ

Δ+𝑇0

ҧ𝑔 𝑡 2 𝑑𝑡

▪ Power spectral density: power per spectral component = energy per spectral component in 

one period, normalized with the duration of one period

𝑃ത𝑔 𝑓 = ෍

𝒏=−∞

+∞

𝑮𝒏
𝟐𝜹 𝒇 − 𝒏 ⋅

1

𝑇0



Parseval Theorem with Fourier Series

• For periodic signals, Parseval’s theorem applies as well, but for power 

instead of energy

• The power of a periodic signal can be computed from 

▪ The time domain (energy over one period, normalized by the period)

▪ The integral of the power spectral density (series of dirac pulses, sampling the FT of one period, 

normalized by the period)

▪ The  squared magnitude Fourier Series coefficients

1

𝑇0
න

Δ

Δ+𝑇0

ҧ𝑔 𝑡 2 𝑑𝑡 = න
−∞

+∞

𝑃ത𝑔 𝑓 𝑑𝑓 = ෍

𝒏=−∞

+∞

𝑮𝒏
𝟐

With 𝑃ത𝑔 𝑓 : Power Spectral Density

𝑮𝒏: Fourier Series Coefficients



Power Spectral Density on a Spectrum Analyzer (1)

• In practice, we analyze the PSD on a general-purpose 

spectrum analyzer

▪ The spectrum analyzer does not “know” the period of the signal, 

but it can also not analyze the spectrum of an infinitely long signal

• Solution: consider the spectra of many long windows 𝑻𝑾 ≫ 𝑻𝟎 and average 

𝑃ത𝑔 𝑓 = ෍

𝒏=−∞

+∞

𝑮 𝒇 𝟐𝜹 𝒇 − 𝒏 ⋅
1

𝑇0
≈

𝟏

𝑴
෍

𝒏=𝟏

𝑴

𝑮𝒌
′ 𝒇 𝟐

𝑮𝒌
′ 𝒇 = 𝓕 𝒈𝒌

′ 𝒕  𝐰𝐢𝐭𝐡 𝒈𝒌
′ 𝒕 = 𝒈 𝒕 ⋅ 𝚷

𝟏

𝑻𝑾
𝒕 − 𝒌 ⋅ 𝑻𝑾



Power Spectral Density on a Spectrum Analyzer (2)

• This practical implementation produces some unexpected artifacts

• Consider the example of a periodic sine wave: we expect a sharp peak in the 

spectrum at the given frequency

▪ The expected peak (Dirac) shows as a wider peak

▪ Especially in a digital spectrum analyzer, the width of the peak 

changes with the settings of the analyzer

▪ For some frequencies of the sine wave, we even 

observe a perfect Dirac

▪ What happens here??



Recap from Week-2

• The Fourier Transform decomposes a signal into complex sinusoids

𝐺 𝑓 = ∞−׬

+∞
𝑔 𝑡 𝑒−𝑗∙2∙𝜋∙𝑓∙𝑡 𝑑𝑡 and 𝑔 𝑓 = ∞−׬

+∞
𝐺 𝑡 𝑒𝑗∙2∙𝜋∙𝑓∙𝑡 𝑑𝑡 

• Some important properties of the FT/IFT

▪ The FT of a signal and its inverse are closely related 

ℱ 𝑔 𝑡 = 𝐺 𝑓 ⟹ ℱ 𝐺 𝑡 = 𝑔 −𝑓
ℱ−1 𝐺 𝑓 = 𝑔 𝑡 ⟹ ℱ−1 𝑔 𝑓 = 𝐺 −𝑡

▪ Convolving two signals in one domain corresponds to multiplying the signals in the 

other domainand vice versa

ℱ 𝑔1 𝑡 × 𝑔2 𝑡 = 𝐺1 𝑡 ⋅ 𝐺 𝑡
ℱ−1 𝐺1 𝑡 × 𝐺 𝑡 = 𝑔1 𝑡 ⋅ 𝑔2 𝑡



Recap from Week-2

• Some important signals are helpful to keep in mind together with their FT

▪ The Dirac delta pulse: an infinitely short, infinitely high pulse with unit-energy and a flat power 

spectral density (PSD)

▪ The Brick-Wall and Sinc signals: a brick-wall signal of duration 𝑇 has a FT/IFT of the form 
sin 𝜋

𝑓

𝑇

𝜋
𝑓

𝑇

▪ In general: duration of a signal 𝑇 and its bandwidth 𝐵 are inversely proportional: 𝑇 ∝
1

𝐵

 

 . 

  . 
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Recap from Week-2

• Periodic signals have infinite energy, but we can describe them by their 

“power spectral density” (power at each frequency component)

• The spectrum of periodic signals is a sequence of 

Dirac pulses that sample the spectrum of one period

• For a signal with period 𝑻𝟎 the space between the 

Dirac pulses is 𝐟𝟎 =
𝟏

𝑻𝟎

▪ We call 𝑓𝑜 the fundamental frequency

• Since the spectrum of a periodic signal is discrete (sampled in 𝒇), we can 

express the signal as an infinite sum of Fourier Coefficeints

ഥ𝒈 𝒕 = σ𝒏=−∞
+∞ 𝑮𝒏𝒆

𝒋⋅𝟐⋅𝝅⋅𝒏⋅
𝟏

𝑻𝟎
⋅𝒕
 with  𝑮𝒏 =

𝟏

𝑻𝟎
𝟎׬

𝑻𝟎 ഥ𝒈 𝒕 ⋅ 𝒆
−𝒋⋅𝟐⋅𝝅⋅𝒏⋅

𝟏

𝑻𝟎
⋅𝒕

𝒅𝒕



Stochastic Signals

• Deterministic signals are important, but ultimately rare. 

• Most signals are actually somewhat random. For example:

▪ Noise: random, but often limited in bandwidth or with a specific frequency characteristic

▪ Data to be transmitted: random sequence of pulses of similar nature/shape (see modulation)

▪ Observation: even random signals are usually not completely random 

(points that are close in time appear somehow related to each other)

How can we characterize these signals, 

especially in terms of their spectral content?

Random Noise NRZ Modulated Random Data



Stochastic Signals

• Stochastic signals are random processes that 

generate a sequence of consecutive values 𝑥 𝑡  

▪ Every observation 𝜁𝑘 of a stochastic signal 𝑥 𝑡, 𝜁𝑘  

between 𝑡0 and 𝑡1: 𝑡0 < 𝑡 < 𝑡1 is a realization 

(sample function) of the same stochastic process

▪ Instead of considering only a single value 𝑥 𝑡  we 

consider always realizations of the process 𝑥 𝑡, 𝜁𝑘  

▪ We refer to the stochastic process that generates 

these samples as 𝑿 



Stochastic Signals (Probabilistic Characterization)

• A scalar random variable 𝑦 is characterized by its PDF 𝑃𝑌 𝑦

• Since 𝑿 always generates (infinitely) many samples, we need a PDF for a 

random process 𝑃𝑿 𝒙; 𝒕  that jointly characterizes 𝑥 𝑡  at all times 𝑡
▪ 𝒙 and 𝒕 in 𝑃𝑿 𝒙; 𝒕  are intentionally BOLD since they represent many values jointly

• Now consider 𝑥 𝑡  at two time instants 𝑡0 and 𝑡1. In 

the same sample 𝜁𝑘, 𝑥 𝑡0 , 𝑥 𝑡1 , 𝑥 𝑡2  are not 

necessarily independent (unrelated). For example,

▪ if 𝑡0 and 𝑡1 are close, 𝑥 𝑡0  and 𝑥 𝑡1  are often also close

▪ if 𝑡0 and 𝑡2 are far, 𝑥 𝑡0  and 𝑥 𝑡2  are often very different 

(or at least less likely to be close)

• Relationship captured by the joint PDF: 𝑃𝑿 𝑥0, 𝑥1; 𝑡0, 𝑡1



Stochastic Signals (Probabilistic Characterization)

• To fully capture this relationship between signal values, we would need to 

consider the joint PDF of all values in a sample

𝑃𝑿 𝑥0, 𝑥1, 𝑥2, 𝑥3, … ; 𝑡0, 𝑡1, 𝑡2, 𝑡3, …

▪ In practice this is too complex and not really necessary

• Three simplifications are common place and sufficient in communications

1. Assume that the 1st order statistics of a value is independent of its time in a sample

𝑃𝑿 𝑥; 𝑡 = 𝑃𝑿 𝑥

2. Consider only joint probability between two time instants (2nd order statistics): 

𝑃𝑿 𝑥0, 𝑥1; 𝑡0, 𝑡1  for any 𝑡0, 𝑡1

3. Assume that only the distance Δ𝑡 between the two time instances matters

𝑃𝑿 𝑥0, 𝑥1; 𝑡0, 𝑡1 ≈ 𝑃𝑿 𝑥; Δ𝑡

Such as process is called Wide-Sense Stationary



Stochastic Signals and Autocorrelation Fct. (ACF)

• With the 2nd order statistics, we can define the “autocorrelation function”

𝑅𝑿 Δ𝑡 = 𝛦𝜁𝑘
𝑥 𝑡 ⋅ 𝑥∗ 𝑡 + Δ𝑡

▪ Note that the expectation 𝛦𝜁𝑘
 is over the “ensemble”, i.e., over many realizations of the process

• In practice (ergodic process), we can replace the ensemble expectation with 

an expectation/average over time

𝑅𝑿 Δ𝑡 = lim
𝑇→∞

1

𝑇
න

−
𝑇
2

+
𝑇
2

𝑥 𝑡 ⋅ 𝑥∗ 𝑡 + Δ𝑡 𝑑𝑡

▪ We can numerically calculate the ACF from a sample of a random signal 

▪ With a high number of samples, this ACF characterizes the corresponding random process



Properties of the Autocorrelation Fct. (ACF)

• The ACF has some very interesting and helpful properties

▪ Power of a Wide-Sense Stationary Stochastic Signals

𝑃𝑥 = lim
𝑇→∞

1

𝑇
න

−
𝑇
2

+
𝑇
2

𝑥 𝑡 ⋅ 𝑥∗ 𝑡 + Δ𝑡 𝑑𝑡 = 𝑅𝑿 0

▪ The ACF has its maximum magnitude at 𝑅𝑿 0 ≥ 𝑅𝑿 𝜏

▪ More handwaving observations: The ACF reflects how 

“similar” two 𝜏-spaced values of the signal are

• when 𝑅𝑿 𝜏  decays rapidly with 𝜏, the signal changes quickly

(“appears very much random over time”)

• when it remains high for larger 𝜏, the signal changes slowly 

(“appears less random over time”)



Link between ACF and Power Spectral Density

• The PSD shows the power in each frequency component

▪ A slowly varying signal has much power in low frequencies and little power in high frequencies

▪ A fast varying signal has significant power in higher frequencies

The PSD of a Stochastic Signal is the Fourier Transform of its ACF

𝑃𝑥 𝑓 = ℱ 𝑅𝑿 𝜏

𝑅𝑿 𝜏 = ℱ−1 𝑃𝑥 𝑓

▪ We can obtain the power of a signal from the FT of its ACF: 𝑃𝑥 = ∞−׬

+∞
𝑃𝑥 𝑓 𝑑𝑓

▪ The ACF (as the PSD) are always positive: 𝑃𝑥 𝑓 ≥ 0

▪ When the signal is real-valued: 𝑃𝑥 𝑓 = 𝑃𝑥 −𝑓



Signal Generation with Filters (for the Lab)

• We often want to generate a signal with a specific shape or a specific 

spectrum and a corresponding signal generator may not be available

• Trick: we know that a filter allows us to do two things

▪ Convolve a signal with the impulse response of the filter

▪ Multiply the spectrum with the FT of the filter (its frequency characteristics)
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