

EE-432

Systeme de

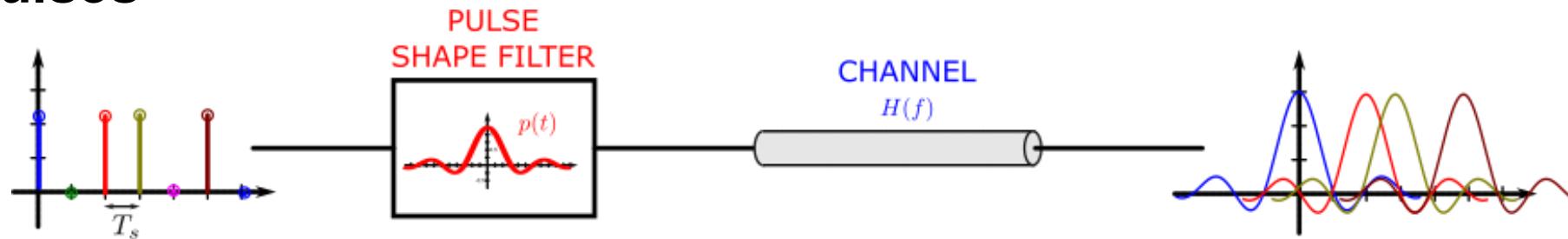
Telecommunication

Prof. Andreas Burg
Joachim Tapparel, Yuqing Ren, Jonathan Magnin

**Digital Data Transmission: Error Rates
in Digital PAM and Scaling with SNR, E_s , E_b**

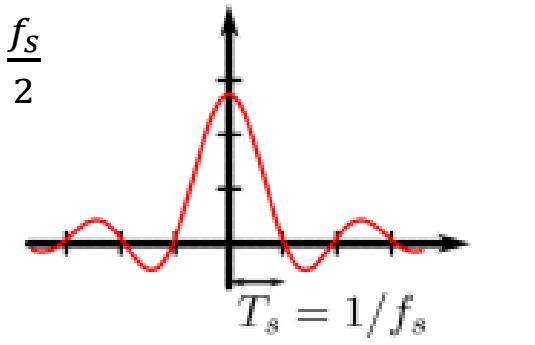
Recap from Week-6

- Digital Signals are modulated by sending pulses that encode digital bits
- Pulse shape filter “translated” the discrete time data signal into continuous time pulses



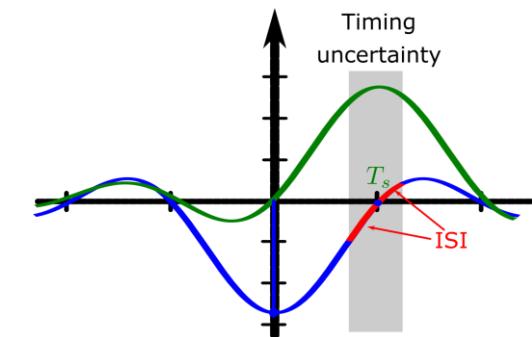
- The symbol rate and the shape of the corresponding pulse shape filter define the bandwidth of the signal
- An optimal pulse shape is a SINC filter resulting in a bandwidth of $BW_{ch} = \frac{f_s}{2}$
- A SINC pulse guarantees ISI free transmission as

$$\frac{\sin(k \cdot \pi)}{k \cdot \pi} = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

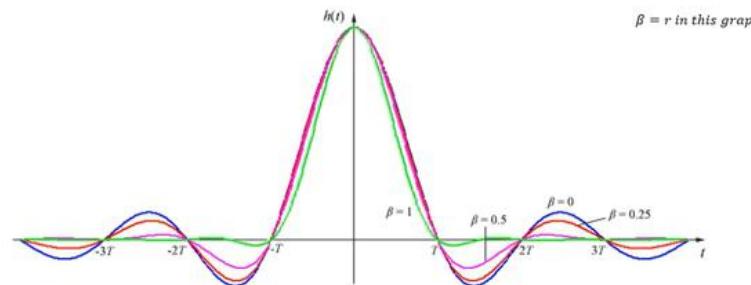
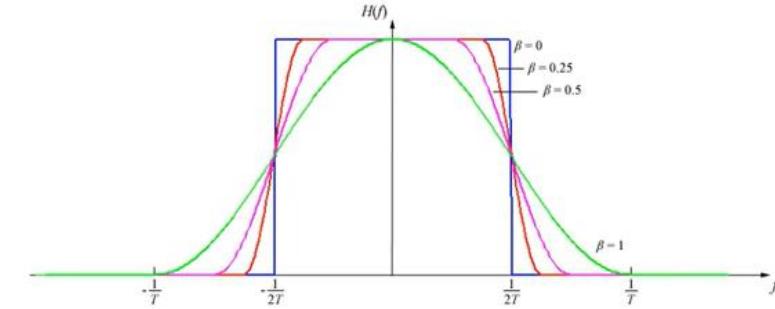


Recap from Week-6

- SINC pulses are not always ideal.
They are very long and decay only slowly**



- Any pulse that fulfills 2nd Nyquist criterion is sufficient to avoid ISI**
 - Better pulses exist than the SINC pulse: Raised Cosine Pulse



- The more rapid decay of signal power comes at the expense of additional bandwidth.
- For a non-SINC pulse, we have

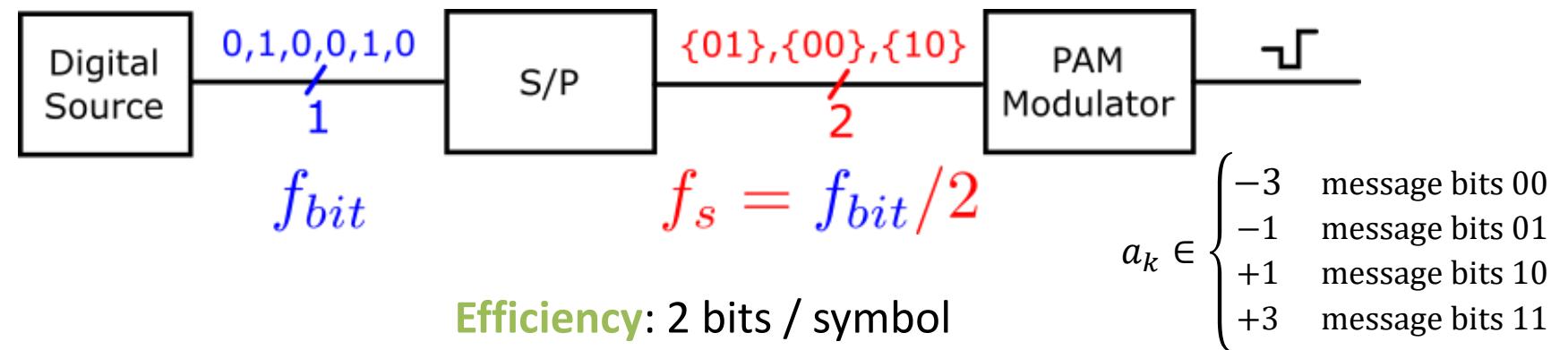
$$\frac{1+\beta}{2} f_s < BW_{ch}$$

with bandwidth expansion factor $\beta \approx 0.6 - 0.8$

Recap from Week-6

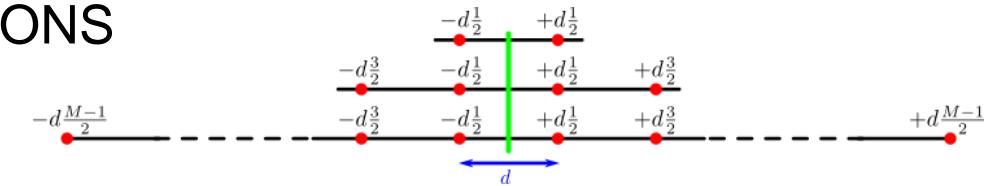
- For a given bandwidth, the data rate with binary PCM is limited by the bandwidth as we send only 1 bit for every “symbol”
- To achieve higher data rates, we combine multiple bits into one symbol with multiple levels

- Example: 4-PAM



- We call the set of values that encode bits CONSTELLATIONS

$$\mathcal{O} = \{x_0, x_1, x_2, \dots, x_{M-1}\}$$



EE-432

Systeme de

Telecommunication

Prof. Andreas Burg
Joachim Tapparel, Yuqing Ren, Jonathan Magnin

Applications

Applications of PCM Systems: Wireline

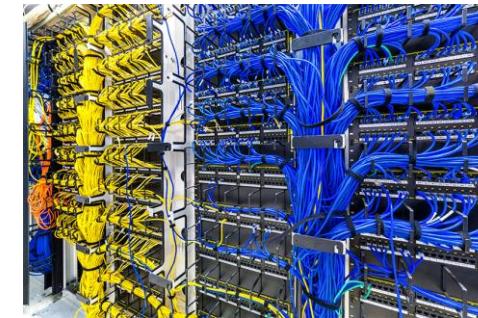
Telephone

USB

HDMI, Display Port, ...



Memory Interfaces

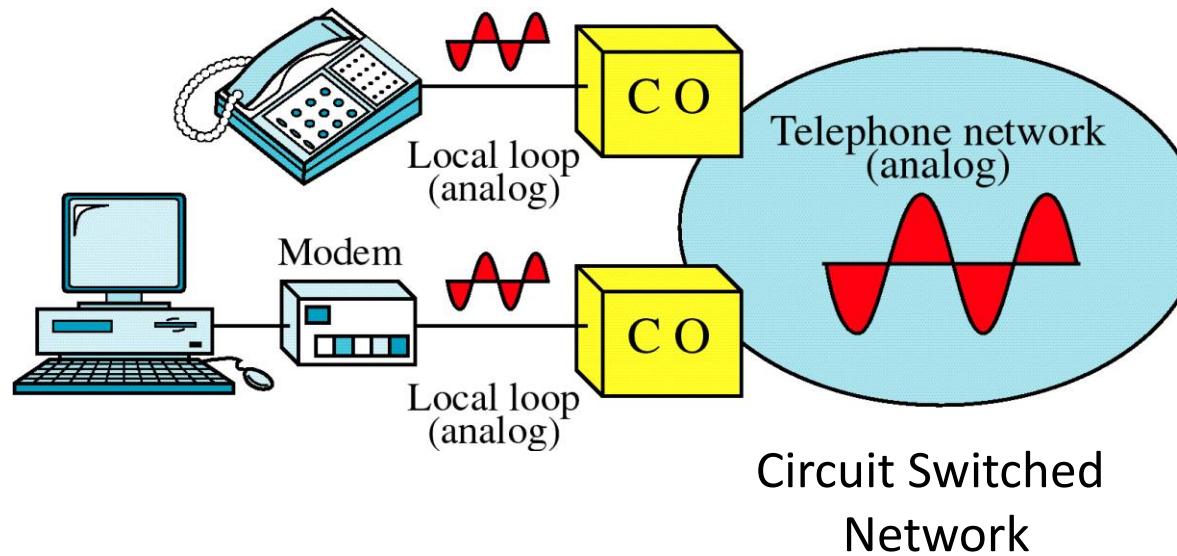
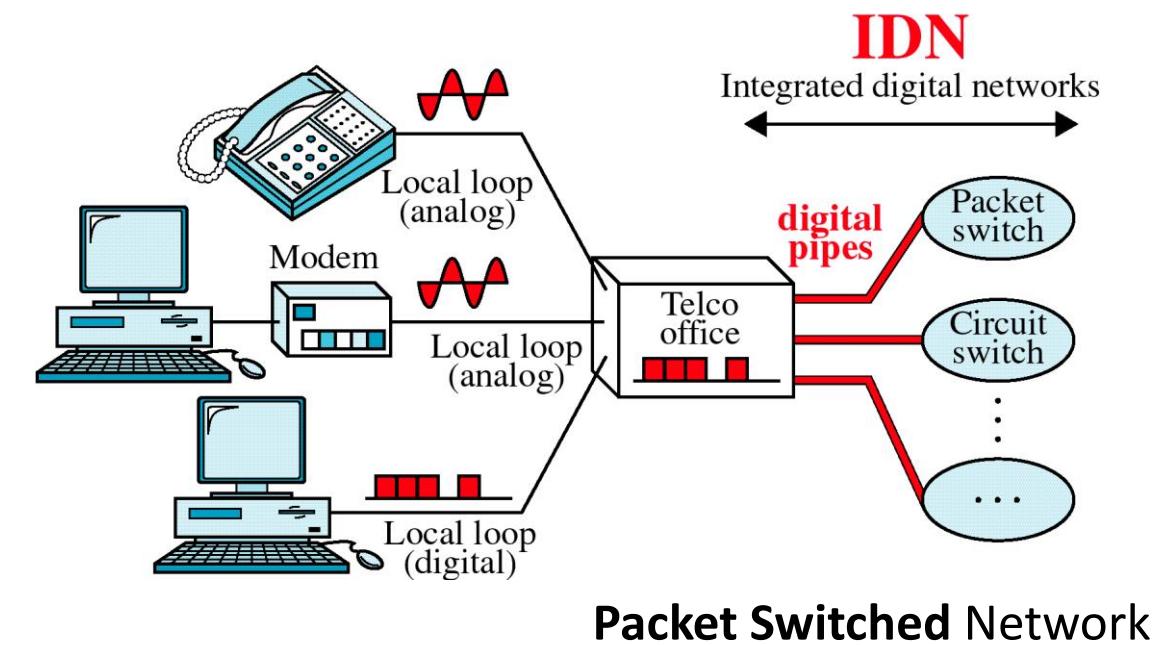


Computer Networks

ISDN Digital Telephony Motivation

• Motivation in the late 1980s

- Increasing digitization of the global telephone network (with only local loop analog)
- Increasing need for digital data communication over analog telephone network

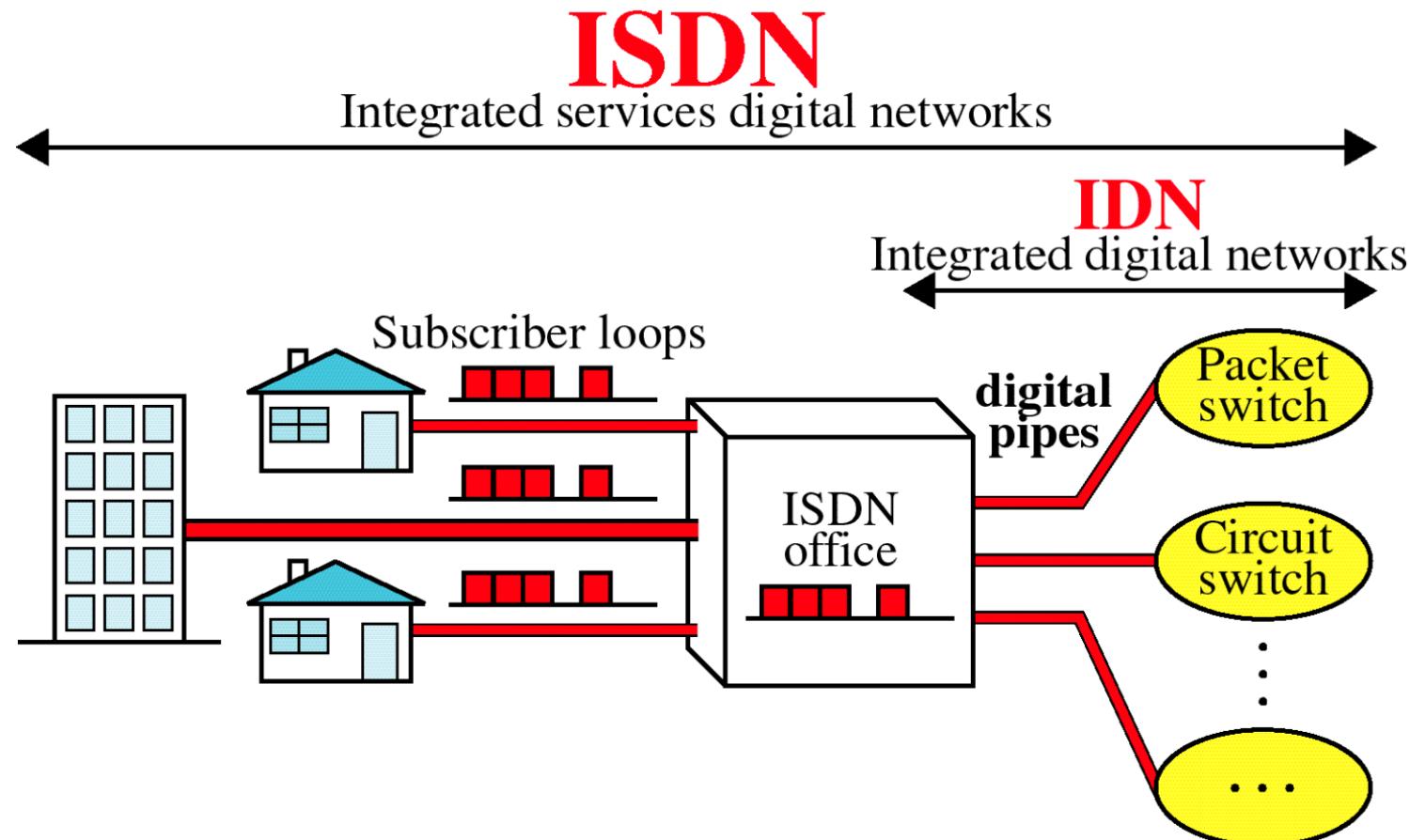


- Transition from analog local loop (end-user connection) to telephone network was inefficient. Need for new fully digital system

ISDN Digital Telephony

- **ISDN: Integrated Services Digital Network**

- Proposed in 1984, standardization completed in 1988, commercially available since 1992

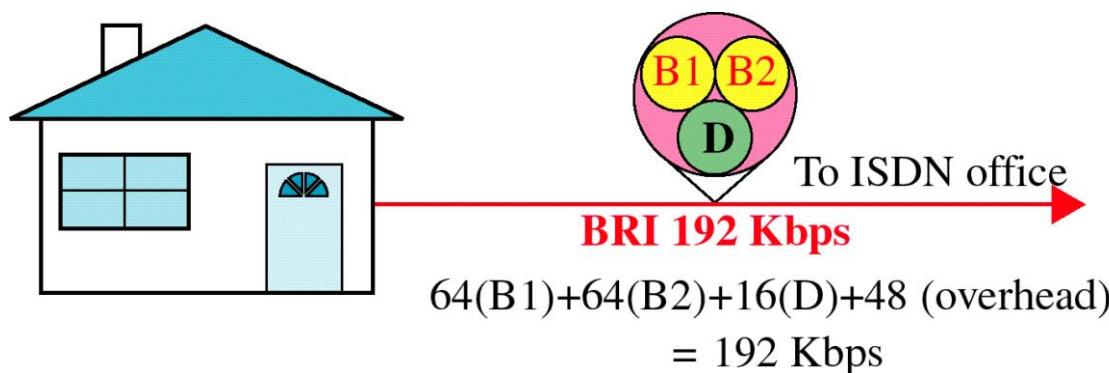
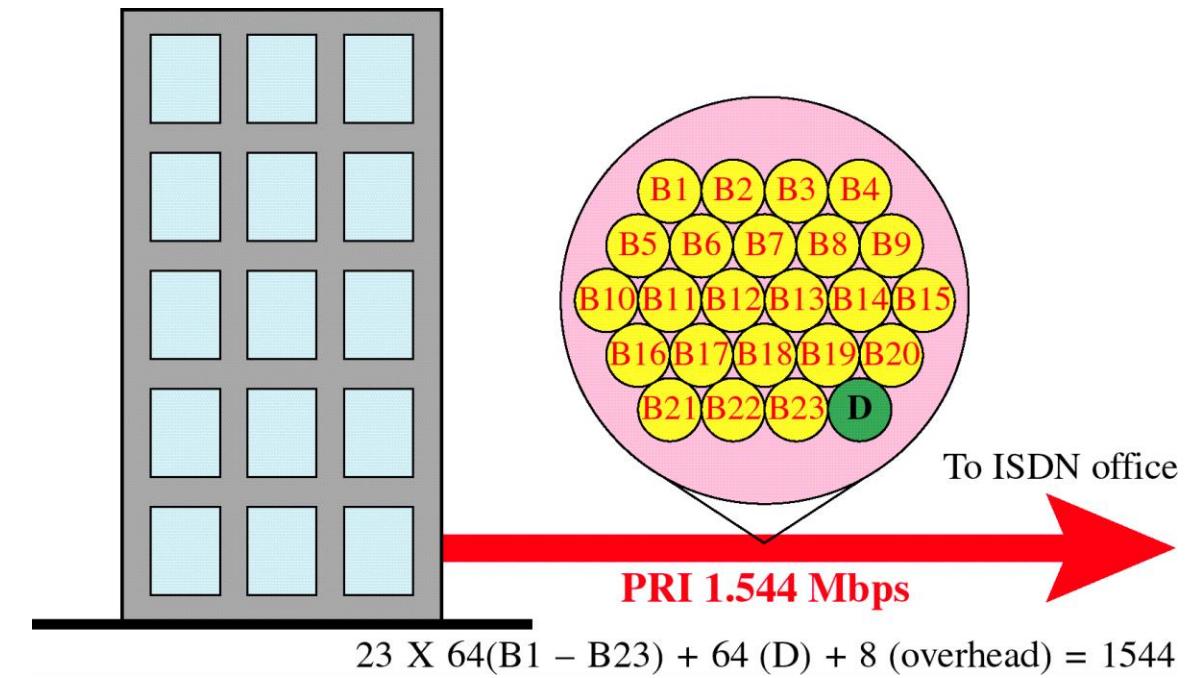


Digital Telephone System: ISDN

- **ISDN:** Carry digitized voice using standard telephony bandwidth
- **ISDN Voice Channels Bandwidth / Quantization:**
 - **Audio bandwidth:** ~300 Hz to 3400 Hz (speech-optimized passband)
 - **Nyquist rate:** To capture this bandwidth, the minimum sampling rate is $2 \times 3400 = 6800$ Hz
 - **Standard choice:** 8000 samples/second (8 kHz) is used in practice — the same rate as traditional PSTN systems.
 - **Voice quantization with 8 bits/sample**
 - **Non-linear analog signal compression** based on A-law in Europe, μ -law in North America/Japan
 - No digital data compression
 - **64 kbps per voice channel** is referred to as a B-channel (Bearer channel) in ISDN
 - **Modulated using “2B1Q” (2 Binary 1 Quaternary) modulation (=4-PAM -3V,-1V,+1V,+3V)**

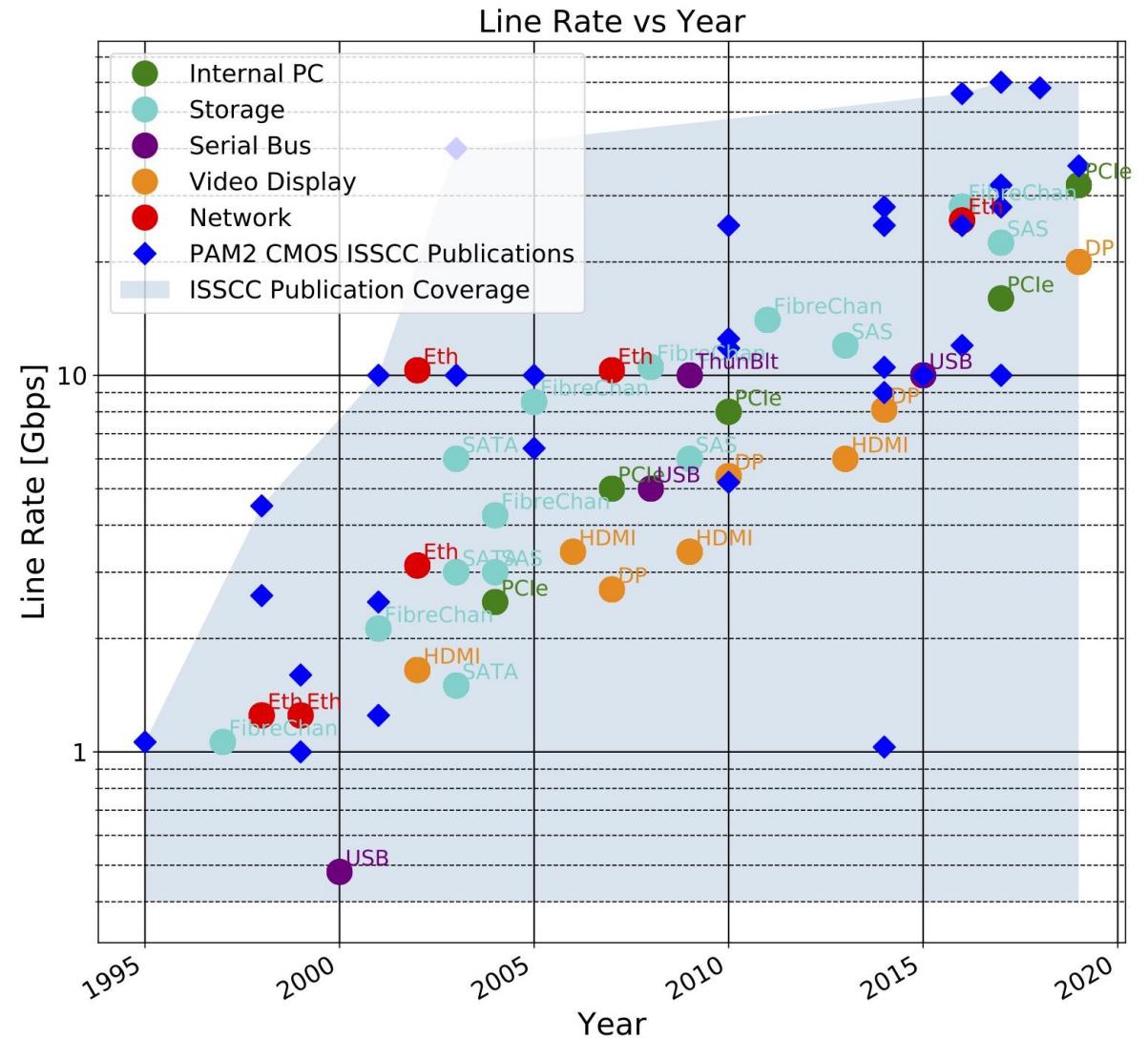
Digital Telephone System: ISDN

- **Basic Rate Interface (BRI):** residential and small-office customers
 - Two B-channels + one 16 Kbps D-channel (2B+D) and 48 Kbps of operating overhead
 - Can use the same **twisted-pair local loop** as analog network
- **Primary rate interface (PRI): business customers**
 - 23 B channels + one 64-kbps D channel and 8 kbps of overhead: 1.544 Mbps
 - **Require updated local wiring** to support the higher signalling bandwidth



SerDes High Speed Chip-to-Chip Links

- High speed serial links are essential for many applications
 - Optical Transmission: OC-192, OC-768, SONET
 - Internal PC: PCIe 1-5
 - Storage: Fibre Channel, SATA, SAS
 - Serial Bus: USB, Thunderbolt
 - Video Display: DisplayPort, HDMI



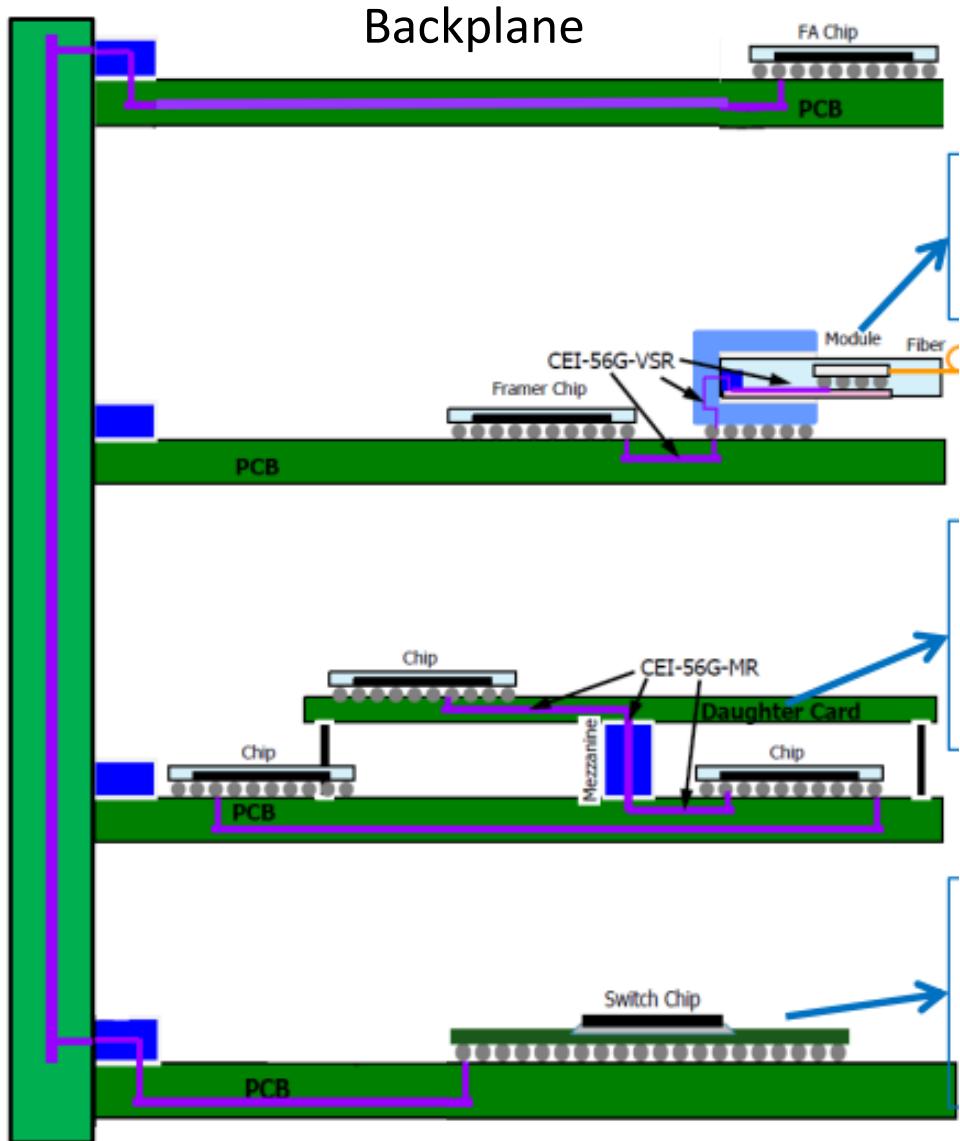
Ethernet

- **Purpose:** robust, and scalable method for local area communication (LAN)
 - Foundations developed in 1973
 - IEEE 802.3 standard since 1983 (10BASE5)

- **Evolution toward higher speed with more parallel lanes, higher bandwidth, and higher order modulation**

Standard	Data Rate	Modulation	Lanes	Baud rate	BW	Medium
10Base-T	10 Mbps	Machester	1	10	10 MHz	Twisted pair
100Base-T	100 Gbps	MLT-3 (PAM-3)	1	125	31.25 MHz	Cat 5
1000Base-T	1 Gbps	PAM-5	4	125	62.5 MHz	Cat 6
10GBase-T	10 Gbps	PAM-16	4	800	500 MHz	Cat 6A
25GBase-T	25 Gbps	PAM-16	4	2500	1250 MHz	Cat 8

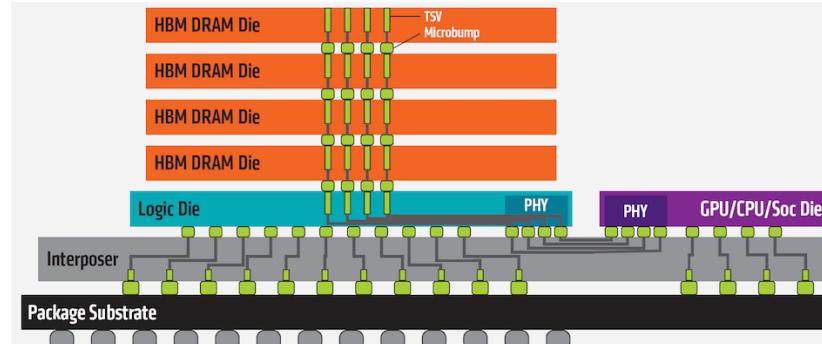
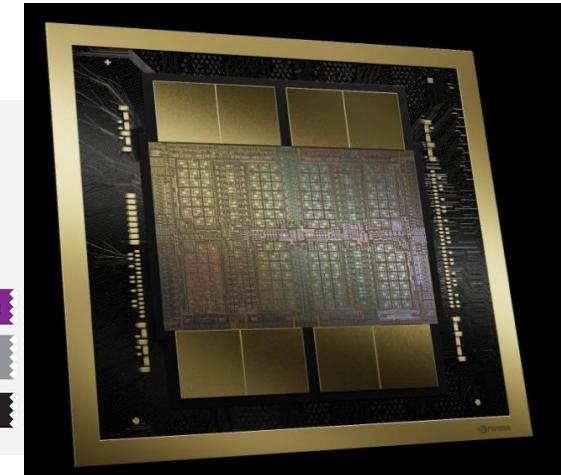
Chip-to-Chip Links in the Gbps Regime



Memory Interfaces: moderate rate due to many parallel pins

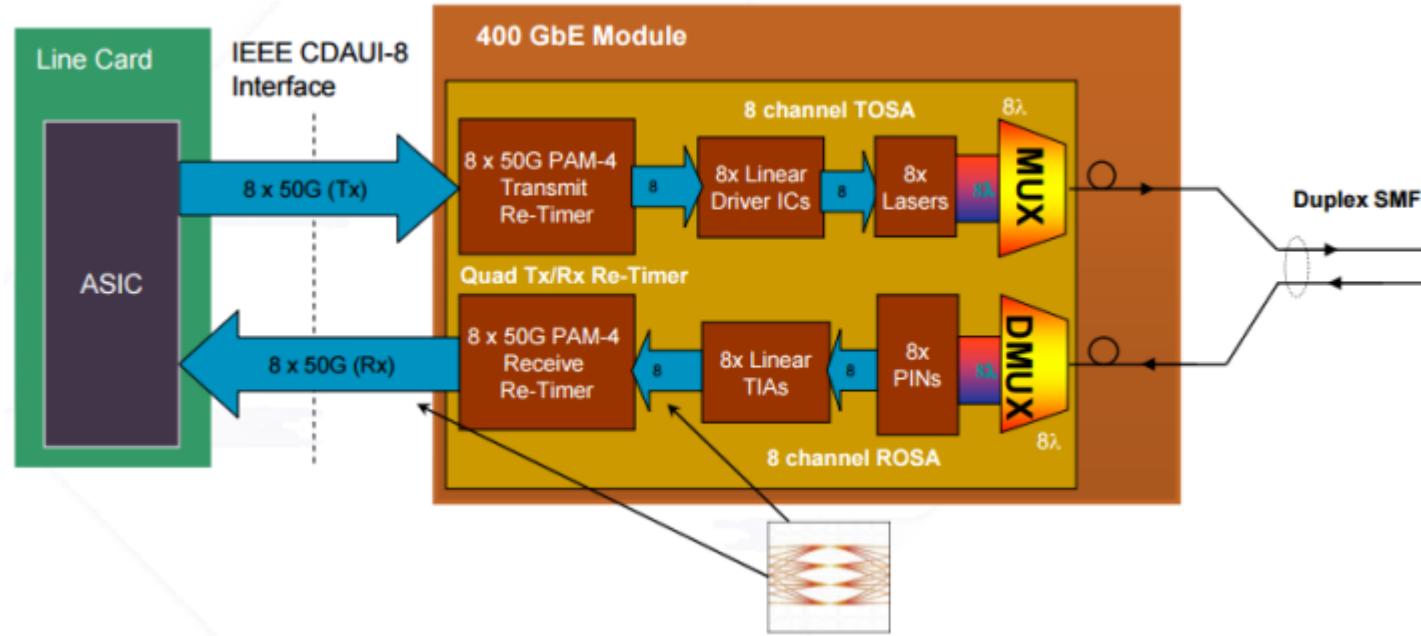
Standard	Year	Baud Rate
DDR	1998	400 Mbaud
DDR 2	2003	400 – 1066 Mbaud
DDR 3	2007	800 – 2133 Mbaud
DDR 4	2014	1600 – 3200 Mbaud
DDR 5	2020	3200 – 6400 Mbaud

Memory Interfaces



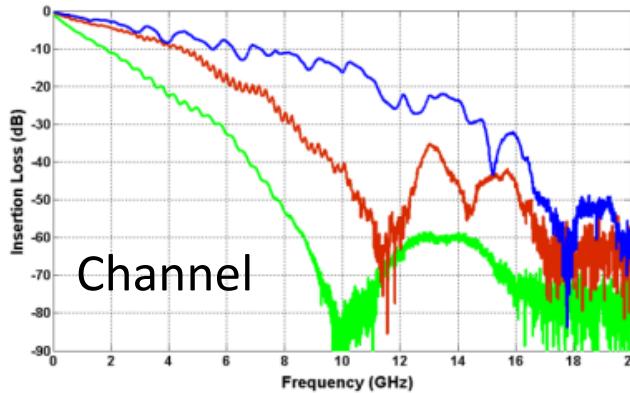
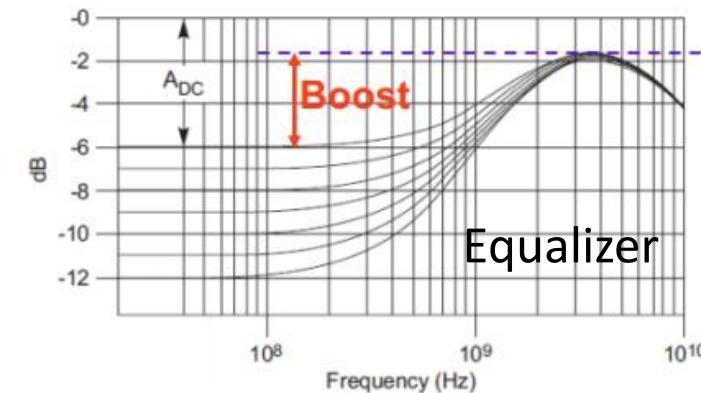
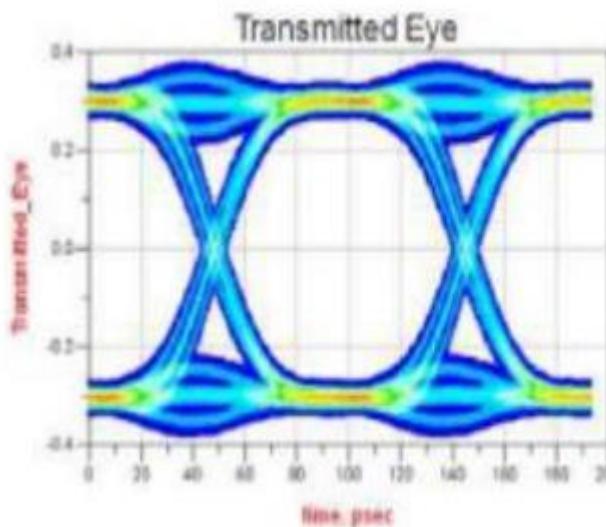
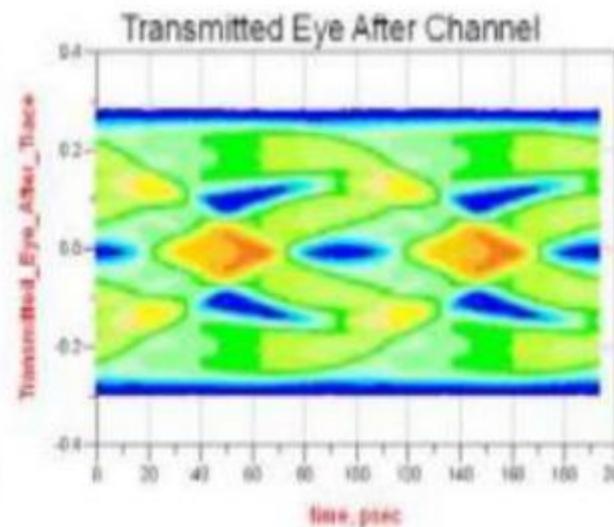
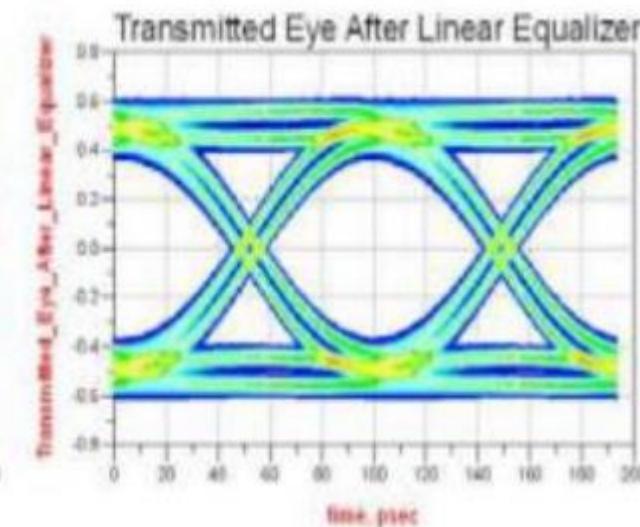
Line Card Interfaces

- Interfaces to optical links are even more challenging
 - Throughput in the 10s of Gbps per single pin



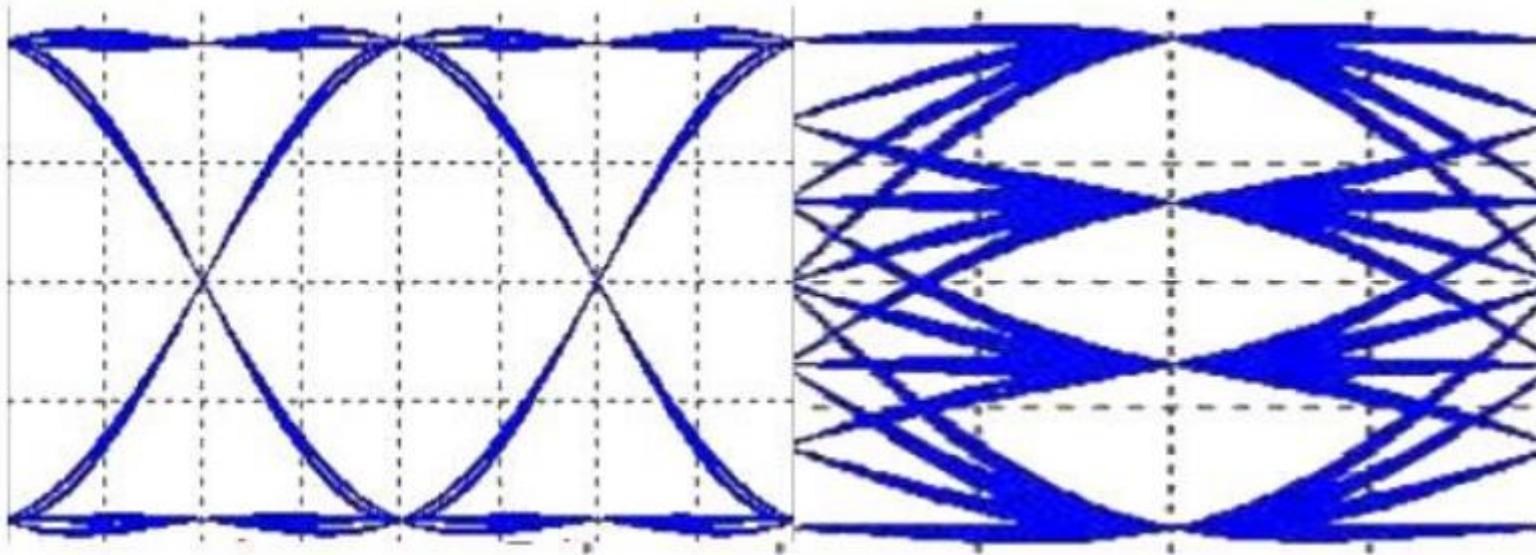
Serial Links Equalization

- Chip-to-chip physical link has limited bandwidth: correction with equalization



Serial Links with Higher PAM Order

- Higher order PAM requires less bandwidth, but eye opening also reduces

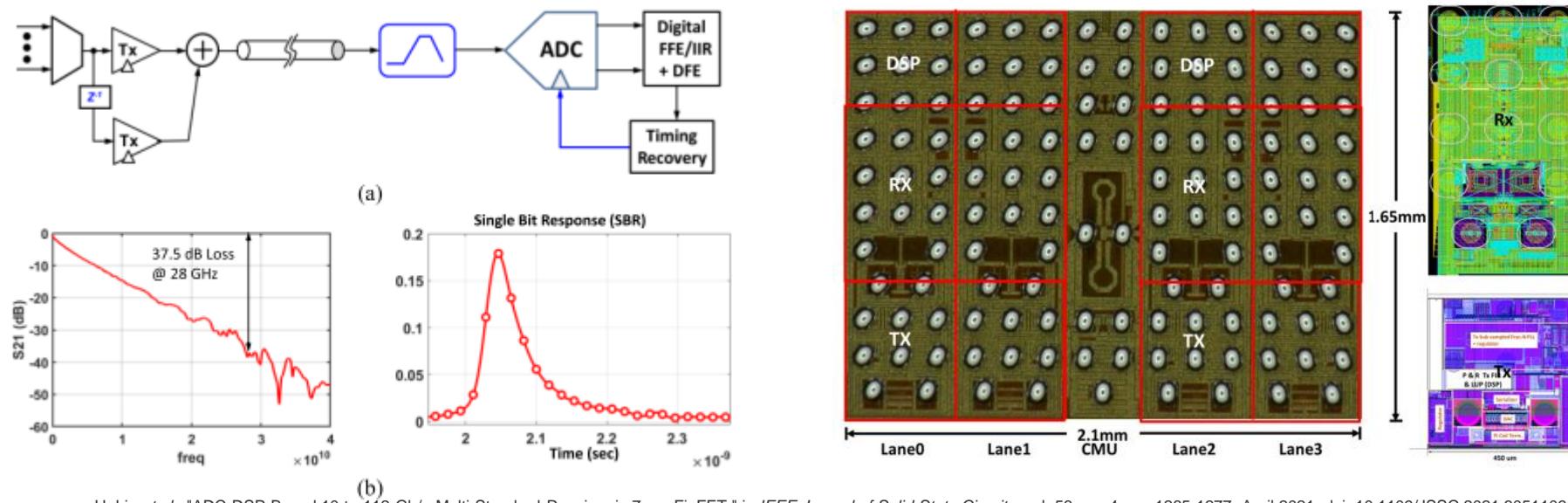


- Eye height for PAM4 is 1/3 of that of PAM2, thus

$$\text{Loss in minimum distance} = 20 \cdot \log_{10} \left(\frac{1}{3} \right) \approx 9.5 \text{ dB}$$

Difficulty to Implement Advanced Receivers

- **Serial Links today can operate with Baud Rates in the 10s Gbps regime**
 - Signal processing mostly done in the analog domain
 - Digital signal processing only recently possible with very high-speed data converters



H. Lin et al., "ADC-DSP-Based 10-to-112-Gb/s Multi-Standard Receiver in 7-nm FinFET," in *IEEE Journal of Solid-State Circuits*, vol. 56, no. 4, pp. 1265-1277, April 2021, doi: 10.1109/JSSC.2021.3051109.

Week 7: Table of Contents

- **M-PAM Error Probability**
- **BER Scaling with SNR, Es, and Eb**

M-PAM Signal Reception with Noise

- Consider a real M-PAM signal that is affected by additive **noise $n(t), n_k$**
- Noise can displace the signal at $t = k \cdot T_s$ "sufficiently" to lead to **ERRORS****
 - An error occurs if the noise exceeds the **margin* $d/2$** between adjacent constellation points

**Transmitted
symbol**

x_0

x_1, \dots, x_{M-2}

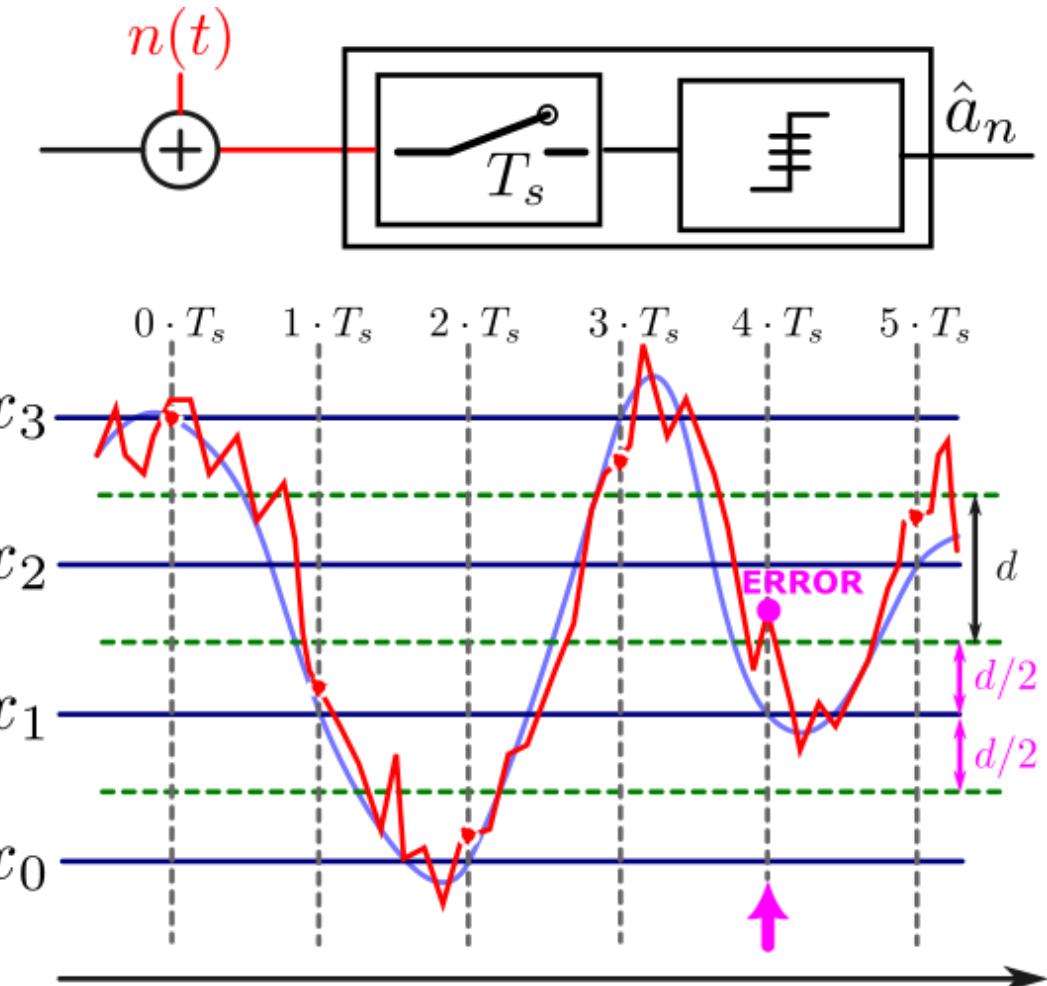
x_0

Error if

$$n_k > \frac{1}{2}d$$

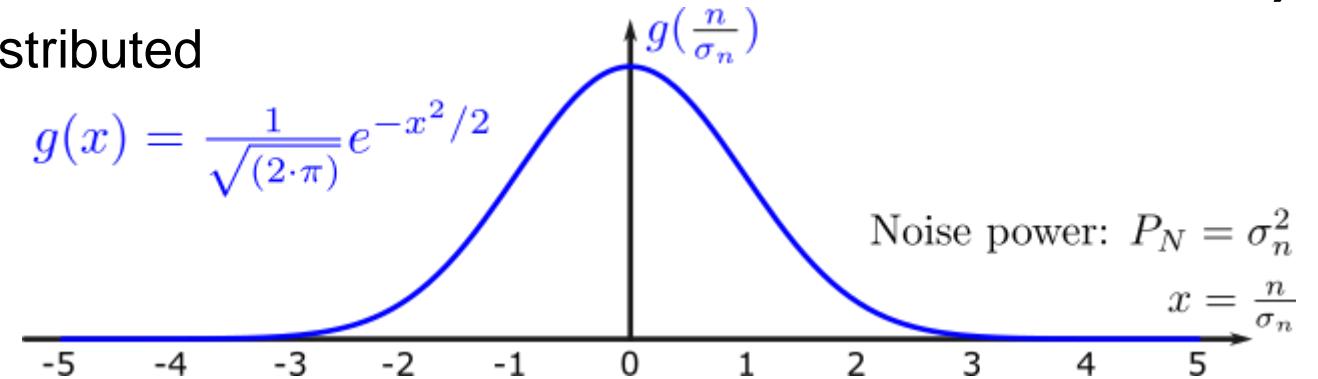
$$|n_k| > \frac{1}{2}d$$

$$n_k < -\frac{1}{2}d$$



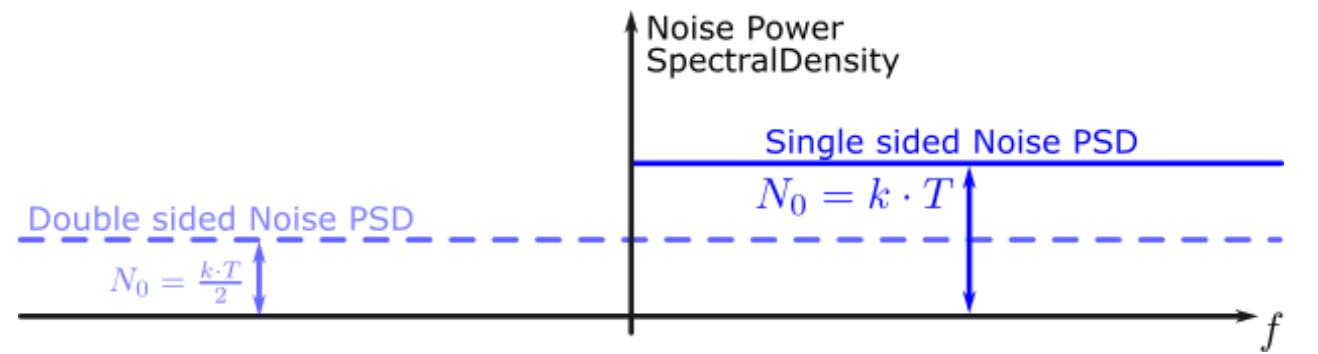
Thermal Noise Model

- So far, we have specified the amount of noise by its variance σ^2 without further details.
- We consider **Thermal Noise** (random thermal motion of electrons in resistor)
 - Thermal noise is Zero-Mean Gaussian distributed



- Thermal noise has a flat power spectral density (for relevant frequency range $f \ll \frac{h}{kT} \approx 6$ THz):

$$S_n(f) = |N(f)|^2 = \frac{2h|f|}{e^{\frac{h|f|}{kT}} - 1} \approx kT = N_0$$



M-PAM Error Probability with Gaussian Noise

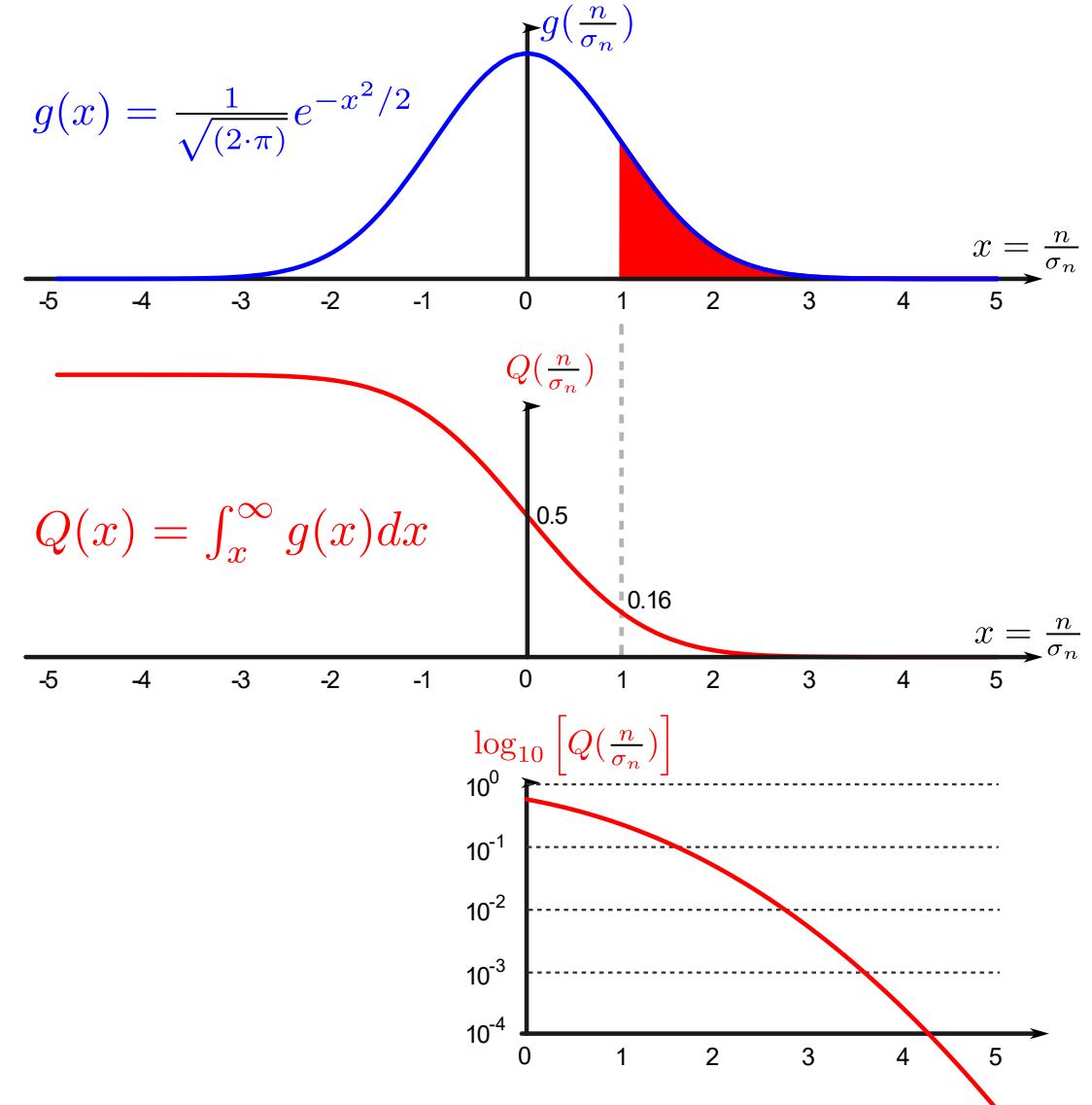
- In practice the noise is often zero-mean Gaussian (or we at least assume that for various reasons including for simplicity)
- General Gaussian Random Variable n (zero-mean) with unit Variance σ_n^2

Probability density function

$$g_{\sigma^2}(x) = g\left(\frac{x}{\sigma}\right) = \frac{1}{\sigma\sqrt{2\cdot\pi}} e^{-\frac{1}{2}\frac{x^2}{\sigma^2}}$$

Cumulative distribution function:

$$Q_{\sigma}(x) = Q\left(\frac{x}{\sigma}\right) = \int_{\frac{x}{\sigma}}^{\infty} g\left(\frac{x}{\sigma}\right) dx$$



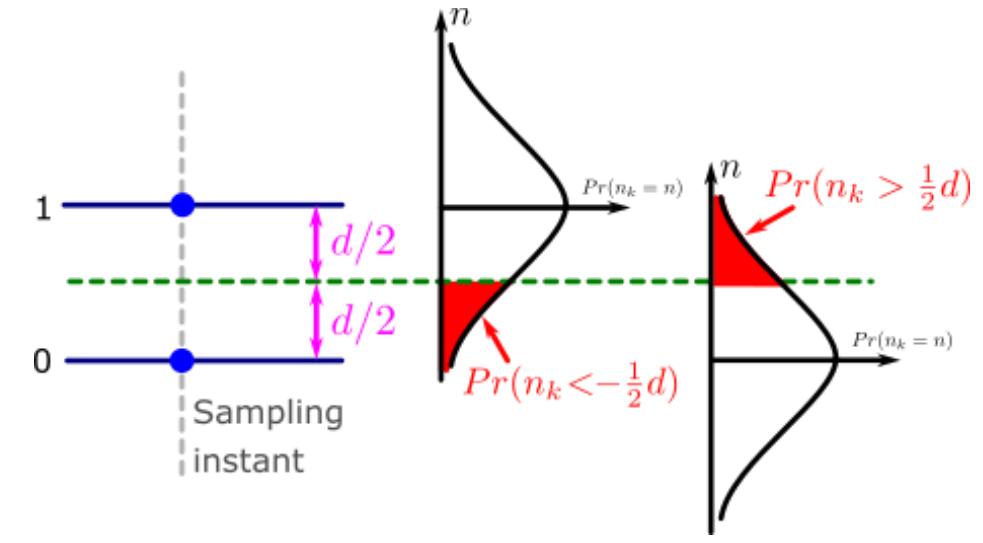
PCM Error Probability

- Consider only the sampled signal (before the slicer)
 - Constellation points with distance d

- Expression for PCM error probability ε with distance d between symbols

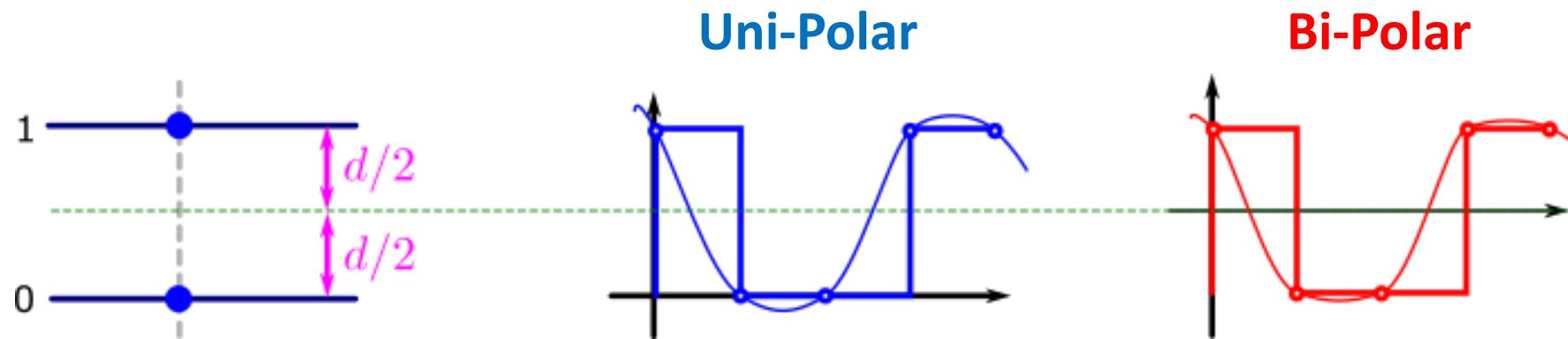
- Two possible error events with equal probability

$$\begin{aligned}\varepsilon &= \frac{1}{2} \Pr\left(n_k < -\frac{1}{2}d\right) + \frac{1}{2} \Pr\left(n_k > \frac{1}{2}d\right) = \\ &= \Pr\left(n_k < \frac{1}{2}d\right)\end{aligned}$$



PCM Error Probability: Uni-Polar/Bi-Polar

- Consider two competing PCM signals: uni-polar and bi-polar



- We want to compare these in terms of error rate performance*
- Define constellations with a given distance d
- Express the signal power as a function of the distance d
- Find the expression for the two respective error rates (should be equal for same distance)
- Express the minimum distance as a function of the power for the two constellations separately
- How are the power levels required for equal error probability related?
- Which constellation is the better choice?

*See hand-written class notes

PCM Error Probability: Uni-Polar/Bi-Polar

Unipolar

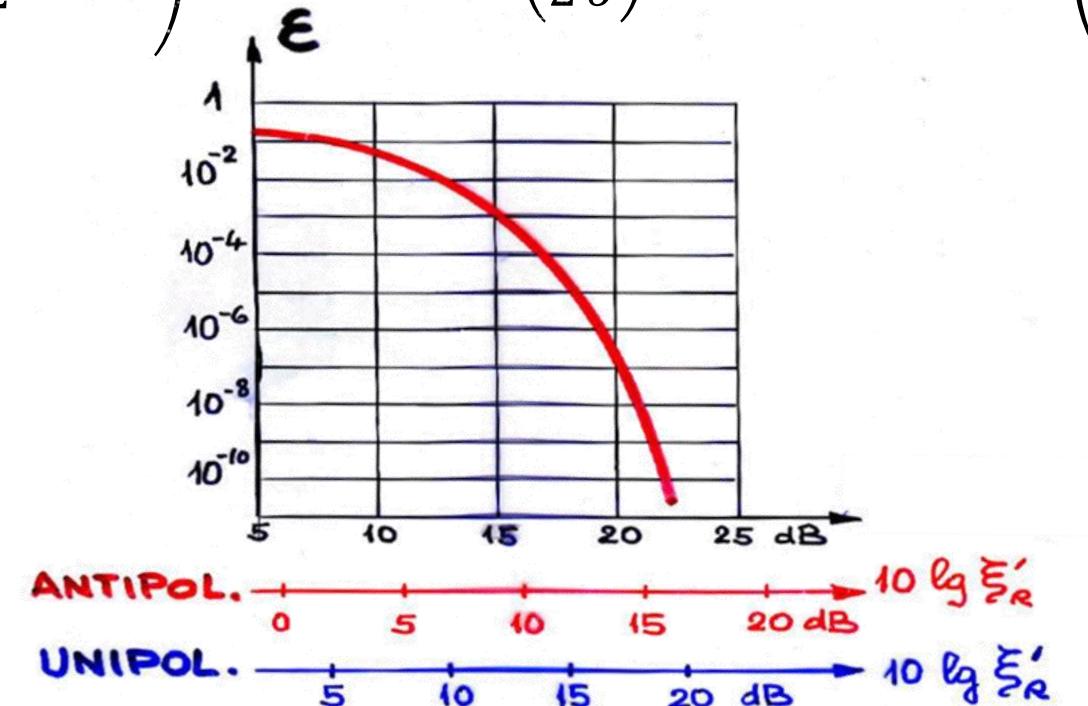
$$\varepsilon_U = Q\left(\sqrt{\frac{1}{2} \frac{\bar{P}_U}{\sigma^2}}\right) = Q\left(\sqrt{\frac{1}{2} SNR_U}\right)$$

General

$$\varepsilon = Q\left(\frac{1}{2} \frac{d}{\sigma}\right)$$

Bi-Polar

$$\varepsilon_B = Q\left(\sqrt{\frac{\bar{P}_B}{\sigma^2}}\right) = Q\left(\sqrt{SNR_B}\right)$$



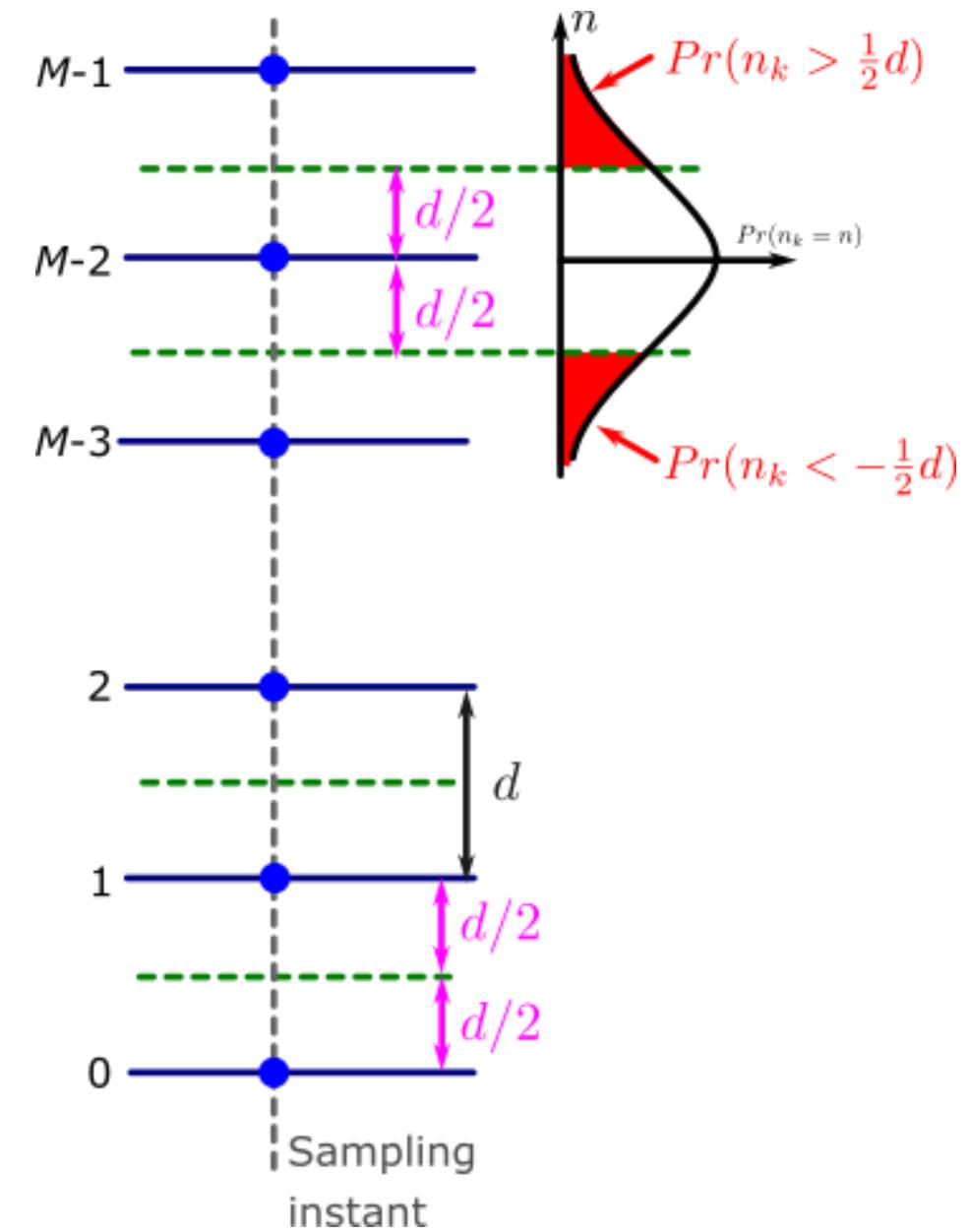
- Bi-polar signalling provides a 3dB advantage over antipolar signalling for PCM (same error rate for $SNR_B = SNR_U/2$)

M-PAM Error Probability (1)

- Consider only the sampled signal (before the slicer)
- General expression for M-PAM error probability ε with

- Equal distance d between symbols: margin $\frac{d}{2}$

$$\varepsilon = \Pr(x_M) \cdot \Pr\left(n_k < -\frac{1}{2}d\right) + \sum_{m=1}^{M-2} \Pr(x_M) \cdot \Pr\left(|n_k| > \frac{1}{2}d\right) + \Pr(x_0) \cdot \Pr\left(n_k > \frac{1}{2}d\right)$$



M-PAM Error Probability (2)

- Often we can make some simplifying assumptions (as we are often only interested in orders of magnitude):

1. All symbol of the constellation are equally likely: $\Pr(x_m) = \frac{1}{M}$

$$\varepsilon = \frac{1}{M} \cdot \Pr\left(n_k < -\frac{1}{2}d\right) + \frac{M-2}{M} \cdot \Pr\left(|n_k| > \frac{1}{2}d\right) + \frac{1}{M} \cdot \Pr\left(n_k > \frac{1}{2}d\right) =$$
$$\frac{M-1}{M} \cdot \Pr\left(|n_k| > \frac{1}{2}d\right)$$

2. Noise is symmetric: $\Pr\left(n_k < -\frac{1}{2}d\right) = \Pr\left(n_k > \frac{1}{2}d\right)$

$$\varepsilon = 2 \cdot \frac{M-1}{M} \cdot \Pr\left(n_k > \frac{1}{2}d\right)$$

3. Ignore the special situation of the nodes on the edge of the constellation (for large M only)

$$\varepsilon \approx 2 \cdot \Pr\left(n_k > \frac{1}{2}d\right)$$

Error Probability: Symmetric M-PAM (fixed-BW/given SNR)

- Consider a symmetric M-PAM constellation with distance d .
All symbols have equal probability and BW (SNR) is fixed
- We are interested in the error rate as function of signal-to-noise ratio (SNR)
 - Bandwidth is fixed: higher order M results in higher throughput

$$SNR_M = \bar{P}_{\mathcal{O}_M} / \sigma^2$$

- Some useful expressions

$$\bar{P}_{\mathcal{O}_M} = \frac{M^2 - 1}{3} \left(\frac{d}{2} \right)^2$$

$$\varepsilon_M = 2 \cdot \frac{M-1}{M} \cdot \Pr \left(n_k > \frac{1}{2} d \right)$$

$$\Pr \left(n_k > \frac{1}{2} d \right) = Q \left(\frac{d}{2\sigma} \right)$$

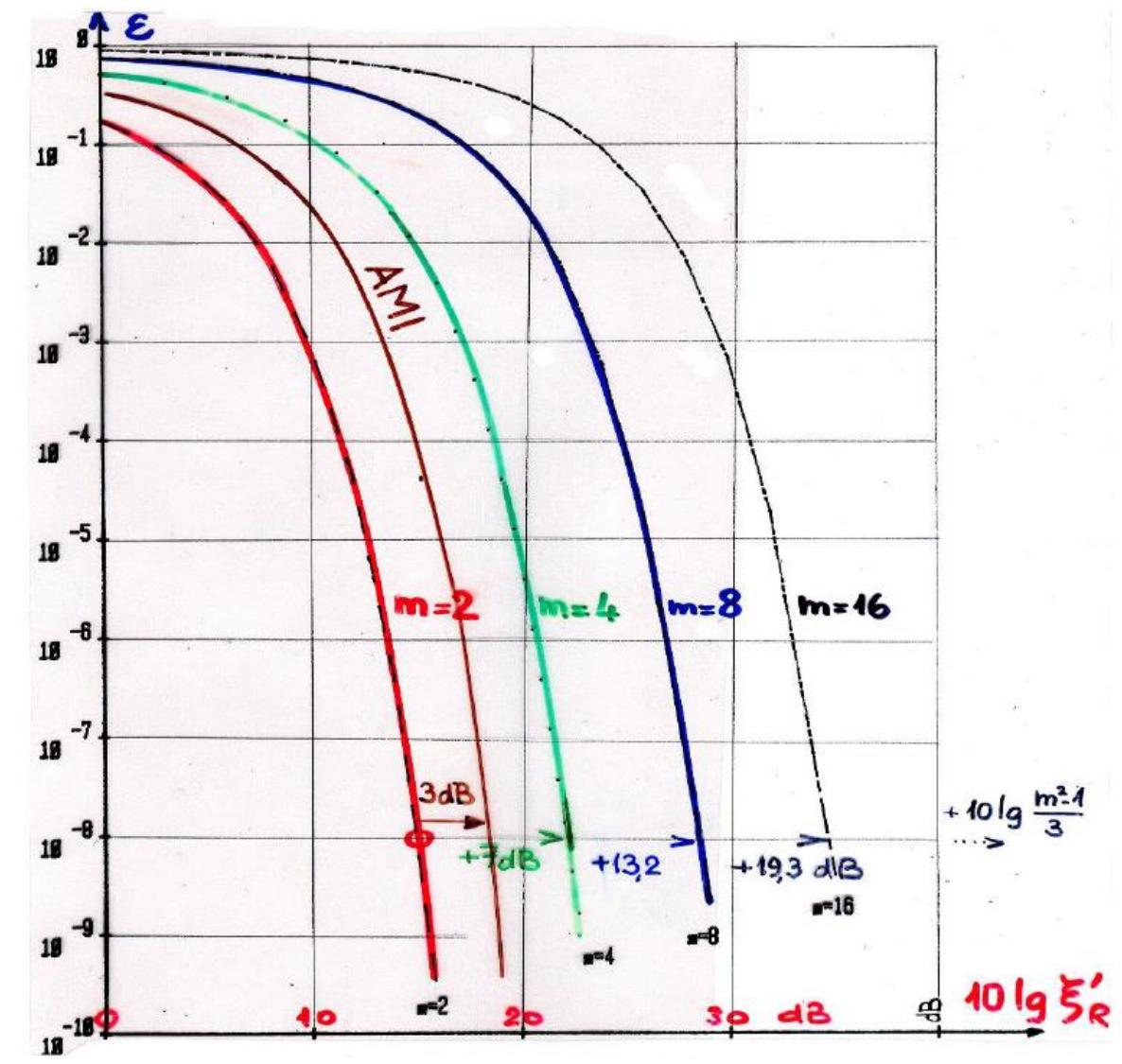
Error Probability: Scaling with Constellation size M

- Symmetric M-PAM (fixed-BW/given SNR)

$$\varepsilon_M = 2 \cdot \frac{M-1}{M} \cdot Q \left(\sqrt{\frac{3}{M^2-1} SNR_M} \right)$$

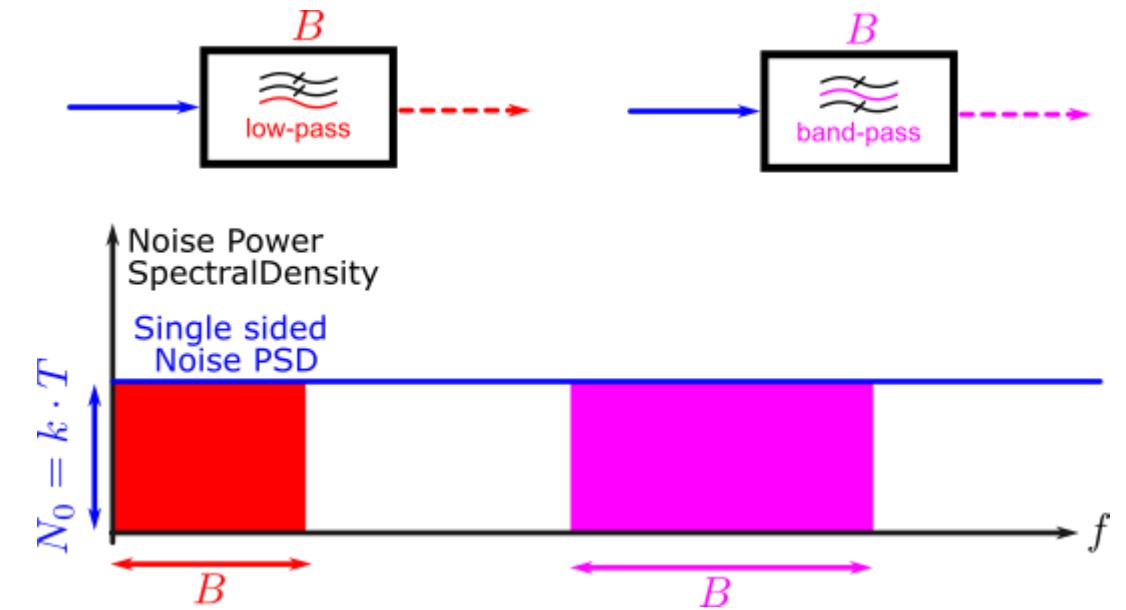
- SNR increase & bandwidth for given throughput and a given error rate

M	$\frac{3}{M^2-1}$	SNR _M	Bandwidth $1/\log_2 M$
2	1/1	1 = 0 dB	1
4	1/5	5 = +6.98 dB	1/2
8	1/21	21 = +13.2 dB	1/3
16	1/85	85 = +19.3 dB	1/4



Relationship Between σ^2 and Noise PSD (N_0)

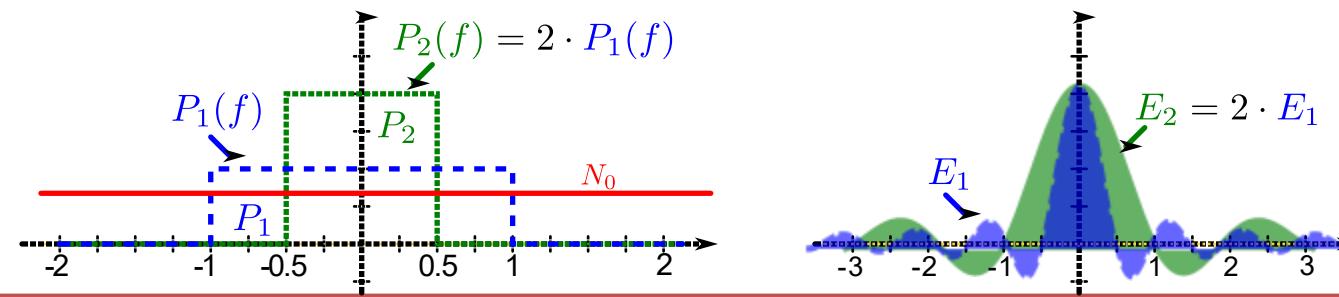
- We define the **SNR** $SNR_M = \bar{P}_{O_M}/\sigma^2$ relative to the noise variance.
- The Noise Variance σ^2 corresponds to the total amount of “relevant” noise
 - As noise is zero mean ($E\{n(t)\} = 0$), we have $E\{|n(t)|^2\} = \sigma_n^2$
- The “relevant” amount of noise depends on the signal bandwidth
 - Single sided:
$$\sigma^2 = \int_{B_{start}}^{B_{stop}} S_n(f) df = k \cdot T \cdot B = N_0 \cdot B$$
 - Double sided: integration on both positive and negative frequencies, but with a PSD of $N_0/2$



Energy/Power: Scaling with Symbol-Rate (inv. BW)

- We scale the symbol duration and the used BW (inverse), for given constellation \mathcal{O}_M

	Signal	Noise
Symbol duration		$T_s \rightarrow T'_s = \alpha \cdot T_s$
Baud rate / BW		$B_s \rightarrow B'_s = \frac{B_s}{\alpha}$
Energy/symbol	$E_s \rightarrow E'_s = \alpha \cdot E_s$	$E_N = T_s \cdot B_s \cdot N_0 \rightarrow E'_N = \alpha \cdot T_s \cdot \frac{B_s}{\alpha} \cdot N_0 = E_N$
Power	$P_s = \frac{E_s}{T_s} \rightarrow P'_s = \frac{\alpha \cdot E_s}{\alpha \cdot T_s} = P_s$	$P_N = B_s \cdot N_0 \rightarrow P'_N = \frac{B_s}{\alpha} \cdot N_0 = \frac{P_N}{\alpha}$



SNR Scaling with Symbol-Rate (inv. prop. BW)

- **From the previous table, we notice the following:**
 - Signal energy (per symbol) scales with symbol rate, BUT noise energy (per symbol) does not
 - Signal power (per symbol) does not scale with symbol rate, but noise power does scale
- **Signal to noise ratio for scaling symbol duration $T_s \rightarrow T'_s = \alpha \cdot T_s$ if the constellation alphabet remains the same**

$$SNR' = \frac{E'_s}{E'_N} = \alpha \cdot \frac{E_s}{E_N} = \alpha \cdot \frac{P_s}{P_N}$$

- Two interpretations:
 - Signal power remains the same, while noise power scales with bandwidth (inverse to symbol duration)
 - Signal energy increases, while noise energy remains the same (noise is correlated, as reflected by its reduced bandwidth)

Error Rate from an Energy Perspective

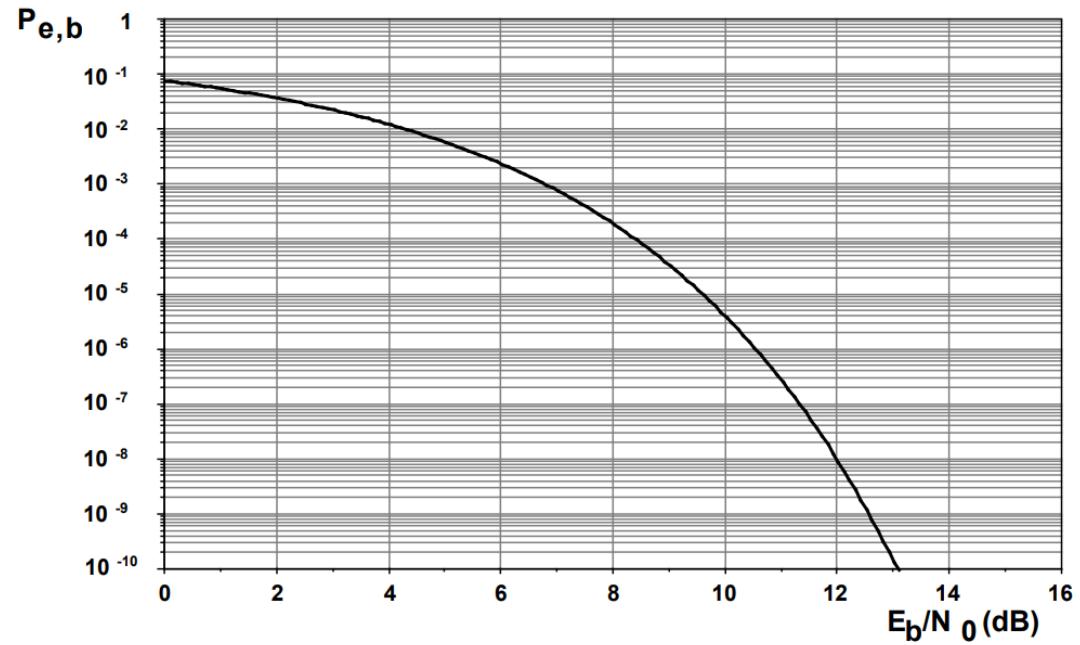
- Longer symbols correspond to expending more power for each symbol
 - Is there a “fair” way to account for the increase of power when extending symbol duration?
- Idea: start from an energy-perspective
 - Using the “energy per symbol” $E_s = P_s \cdot T_s$ allows to express error rate performance independently from the symbol rate, but still relating to the thermal noise constant PSD
 - Assume minimum bandwidth as $B_s = \frac{1}{2 \cdot T_s}$

$$SNR = \frac{P_s \cdot T_s}{T_s \cdot B_s \cdot N_0} = 2 \cdot \frac{E_s}{N_0}$$
$$\varepsilon_2 = Q \left(\sqrt{2 \frac{E_s}{N_0}} \right)$$

Example: Error rates based on Power and Symbol Duration

- A typical example is a communication system, given the following
 - Received power P
 - Bit rate f_{bit} and modulation order 2 – PAM (Bi-Polar)
 - Ideal SINC pulse shape filter
 - Thermal noise PSD: $N_0 = -174 \text{ dBm}$
 - What is the error rate?

$$\varepsilon_{2\text{-PAM}} = Q\left(\sqrt{2 \frac{E_b}{N_0}}\right) = Q\left(\sqrt{2 \frac{P \cdot \frac{1}{f_{bit}}}{N_0}}\right)$$



Relationship between SNR, Es, and Eb

- The three parameters SNR, Es, and Eb are closely related, but translating between them requires **additional information**

- The symbol duration is the link between transmitted power P_s and E_s

$$E_s = P_s \cdot T_s$$

- The modulation order M links the energy-per-bit E_b and the energy per symbol E_s

$$E_s = E_b \cdot \log_2 M$$

- The bandwidth links the noise power and the noise PSD

$$\sigma^2 = N_0 \cdot B$$

$$SNR = \frac{P_s}{\sigma^2} = \frac{E_s}{N_0} \cdot \frac{1}{T_s \cdot BW} = \frac{E_b}{N_0} \cdot \frac{\log_2 M}{T_s \cdot B} = \frac{E_b}{N_0} \cdot \gamma$$

$$\text{Spectral efficiency } \gamma = \frac{\log_2 M}{T_s \cdot B}$$

SNR Scaling with Symbol-Rate (fixed BW)

- In some systems, we may not have a proper filter to remove the noise outside of the bandwidth:

- Energy per symbol scales as $E_s = T_s \cdot P_s$
- Noise energy is proportional to the fixed bandwidth B

$$SNR = \frac{P_s \cdot T_s}{T_s \cdot B \cdot N_0} = \frac{P_s}{B \cdot N_0}$$

Note: $B > \frac{f_s}{2}$

- Scaling symbol duration without adapting the receive filter (before sampling) will not have an impact on SNR

Bipolar M-PAM Error Probability with PSD

- Increasing constellation order M allows to reduce the bandwidth (impact on noise as $\sigma^2 = N_0 \cdot B$)
- Consider a M-PAM signal with a given bit rate f_{bit} , a pulse shaping filter with **minimum spectrum occupation**, and power \bar{P}_s
- Calculate the error rate ε_M as a function of the one-sided noise PSD N_0 and the bit rate f_{bit}
 - Some useful expressions/hints

$$\varepsilon_M = 2 \cdot \frac{M-1}{M} \cdot Q \left(\sqrt{\frac{3}{M^2 - 1} SNR_M} \right)$$

$$\text{Bandwidth: } \frac{f_{bit}}{2 \log_2 M}$$

$$\text{Symbol-duration: } T_s = \frac{\log_2 M}{f_{bit}} \quad \text{Bit-duration: } T_{bit} = \frac{1}{f_{bit}}$$

Bipolar M-PAM Error Probability with Fixed Throughput

- First we obtain the Error Probability as a function of the symbol energy for the minimum required bandwidth

$$\varepsilon_M = 2 \cdot \frac{M-1}{M} \cdot Q \left(\sqrt{\frac{3 \cdot 2}{M^2 - 1} \frac{E_s}{N_0}} \right)$$

- Fixing the throughput f_{bit} implies that $T_s = \frac{\log_2 M}{f_{bit}}$ and with $E_s = \bar{P}_s \cdot \frac{\log_2 M}{f_{bit}}$

$$\varepsilon_M = 2 \cdot \frac{M-1}{M} \cdot Q \left(\sqrt{\frac{3 \cdot 2}{M^2 - 1} \frac{\bar{P}_s}{N_0} \frac{\log_2 M}{f_{bit}}} \right)$$

- Increasing the constellation implies a significant penalty in error rate performance
- the increase in symbol energy when packing more bits with a fixed E_b provides only a slight compensation for the penalty

Energy per Bit

- Similar to the “energy per symbol, we can define the “energy per bit”

$$E_b = \frac{\bar{P}_s \cdot \log_2 M}{f_{bit}} = E_s / \log_2 M$$

- E_b provides another level of normalization that simplifies the comparison as it removes the dependency on the number of bits per symbol

$$\varepsilon_M = 2 \cdot \frac{M-1}{M} \cdot Q \left(\sqrt{\frac{3 \cdot 2}{M^2 - 1} \frac{E_b}{N_0} \cdot \log_2 M} \right)$$

- Constant “energy per bit” is equivalent to saying we pack more bits into a symbol and extend the symbol duration accordingly.