

EE-432

Systeme de

Telecommunication

Prof. Andreas Burg
Joachim Tapparel, Yuqing Ren, Jonathan Magnin

Linear Passband (Carrier) Modulation
AM and Quadrature

Week 3: Table of Contents

- **Basedband and Passband (Carrier) Signals**
- **Amplitude Modulation & Demodulation (AM)**
- **Quadrature Modulation**

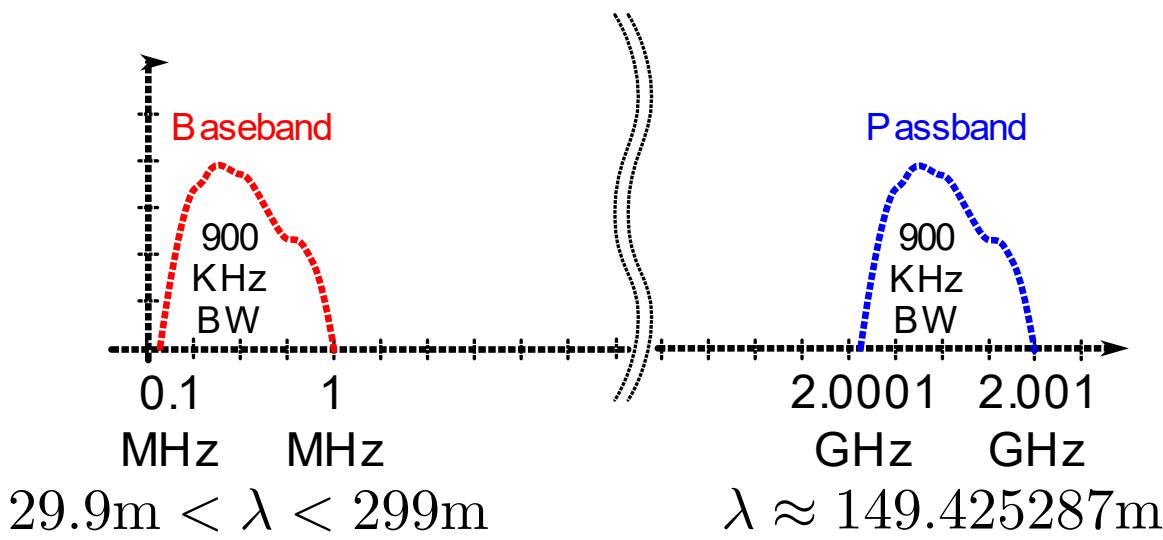
Baseband Signals

- **The baseband is the frequency band of the “original” signal $m(t)$**
 - “Original signals” may be physical signals OR artificially constructed signals to represent data
- **Examples:**
 - Voice: 300 – 3700 Hz
 - High-fidelity audio: 0.001 – 20 KHz
 - Analog television (NTSC) video: 0.001 – 4.3 MHz
 - Digital ethernet (10 Mbps): 0.001 – 20 MHz
 - Any digital signal in general (X Mbps): 0.001 – 2^*X MHz
- **Most baseband signals start at (or very close to) DC (0 Hz)**
 - and have a naturally or artificially limited bandwidth
- **Baseband signals are not necessarily real-valued**
 - We will see that we actually often prefer complex-valued baseband signals

Baseband Communication Limitations (1)

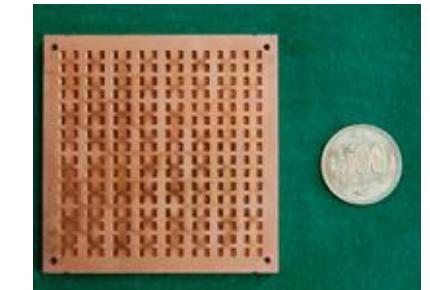
The low frequency band of baseband signals limits the available transmission media and transmission type.

- **Impedance of the antenna must be matched to the medium**
 - Antenna size d proportional to the wavelength λ and therefore inversely proportional to the frequency
 - Good matching must be achieved over the entire frequency band



$$d \approx \frac{1}{f_{min}} \approx \frac{1}{f_{max}}$$

350 kHz antenna



16x16 60 GHz antennas

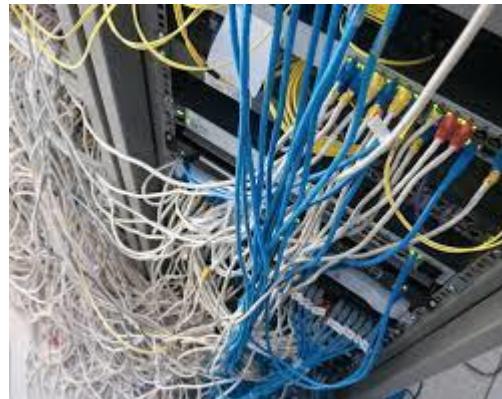
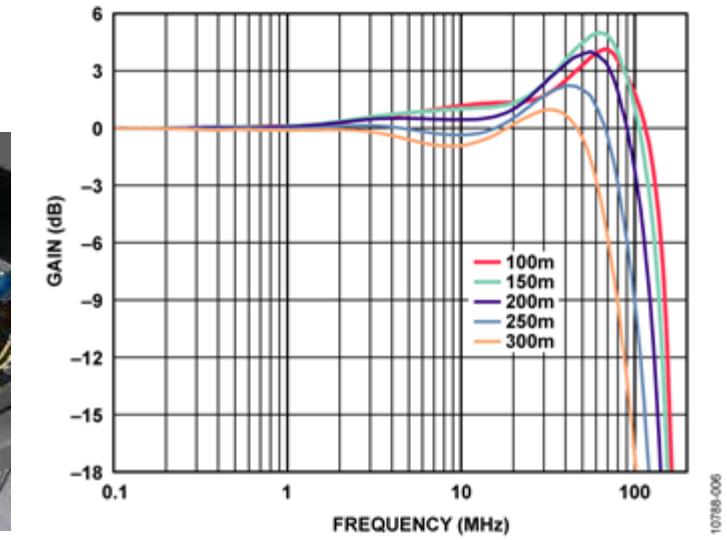
Baseband Communication Limitations (2)

The very similar (overlapping) frequency bands of different baseband signals causes interference between different transmissions

- Every baseband signal needs to have its own channel with a suitable frequency characteristics (low attenuation for low frequencies)
- Only real-valued baseband signals can be transmitted

Passband signals are used in wireline channels:

- Wires confine the signal and isolate links from each other
- Wires have a low-pass frequency characteristic

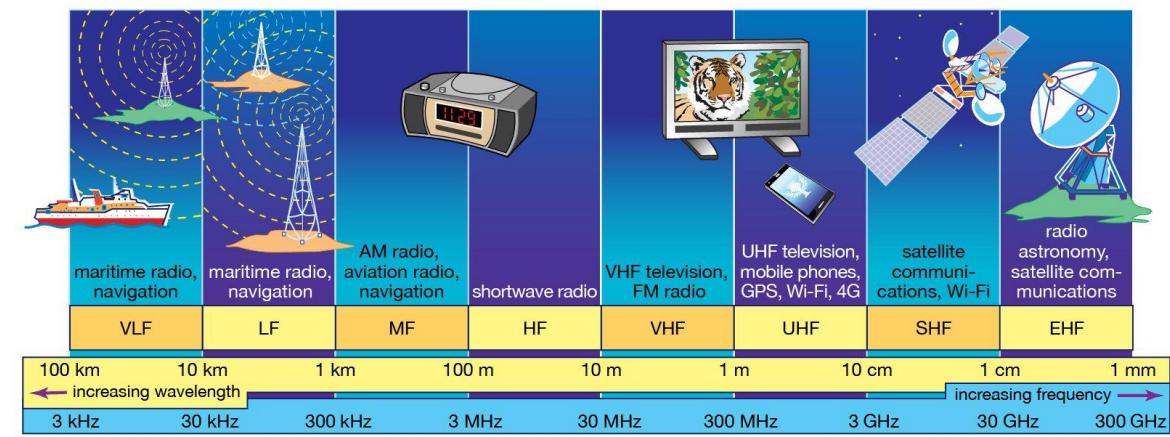


Cat-6 Cable Freq. Characteristics

Passband Frequencies and Radio Spectrum (1)

“Passband Signals” or “Carrier Signals” are located around a given “carrier frequency”, often referred to as f_c or f_0

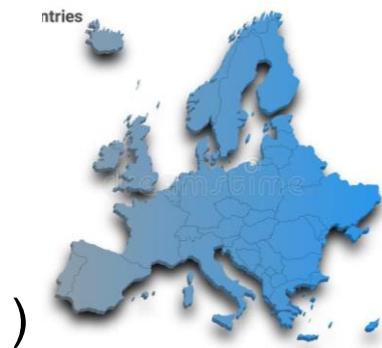
- Wireless communication requires frequencies higher than the baseband BW
- The occupied bandwidth of a single passband signal is typically much less than the carrier frequency
- Multiple Passband signals can be sent at same
 - Frequency division multiple access
- Radio spectrum is coarsely divided into ranges corresponding to different
 - Amounts of available bandwidth
 - The target reach of the radio links
 - The application



© 2013 Encyclopædia Britannica, Inc.

Passband Frequencies and Radio Spectrum (2)

- **The use of radio frequencies is regulated to avoid interference**
 - Regulation on national level (government) with international coordination
- **Process and involved institutions**
 - **International Telecommunication Union (ITU)**
 - Allocates frequency bands to different services at the global level
 - World Radiocommunication Congress (WRC) every 3 to 4 years
 - (e.g., WRC-23 initial discussion on 6G)
 - European Conference of Postal and Telecommunications Administrations (CEPT)
 - Refines ITU guidelines (on European level)
 - **National authorities** (CH: Federal Office of Communications (OFCOM - BAKOM))
 - Create national frequency allocation tables based on ITU guidelines
 - Issues licenses for frequency use and monitors compliance
 - Organizes spectrum auctions for mobile operators (e.g., auctions for 5G in 2019)



<https://www.fedlex.admin.ch/filestore/fedlex.data.admin.ch/eli/fgae/2024/85/fr/pdf-a/fedlex-data-admin-ch-eli-fgae-2024-85-fr-pdf-a.pdf>

Passband (Carrier) Signals

- **Passband signals are always real-valued signals**
- **Any passband signal can be described in the form of**

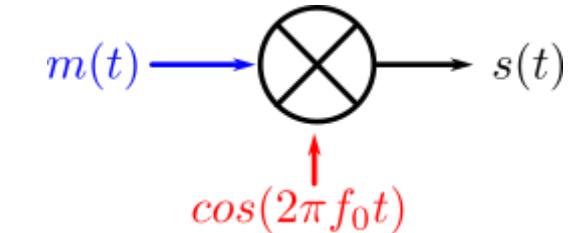
$$s(t) = A(t) \times \cos\left(2 \cdot \pi \cdot (f_0 + f(t)) \cdot t + \phi(t)\right)$$

- The sinusoid $\cos(2 \cdot \pi \cdot f_0 \cdot t)$ at the “carrier frequency” f_0 is often referred to as the “carrier”
- **Modulation is the process of generating a carrier of this form from a “carrier”**
- **$A(t)$, $f(t)$, and $\phi(t)$ represent the original baseband signal $m(t)$ to be transmitted and “modulate” the properties of the carrier, individually or jointly.**
 - **Amplitude modulation:** $A(t)$ is proportional to the baseband signal $m(t)$
 - **Frequency modulation:** $f(t)$ is proportional to the baseband signal $m(t)$
 - **Phase modulation:** $\phi(t)$ is proportional to the baseband signal $m(t)$

Angle
modulation

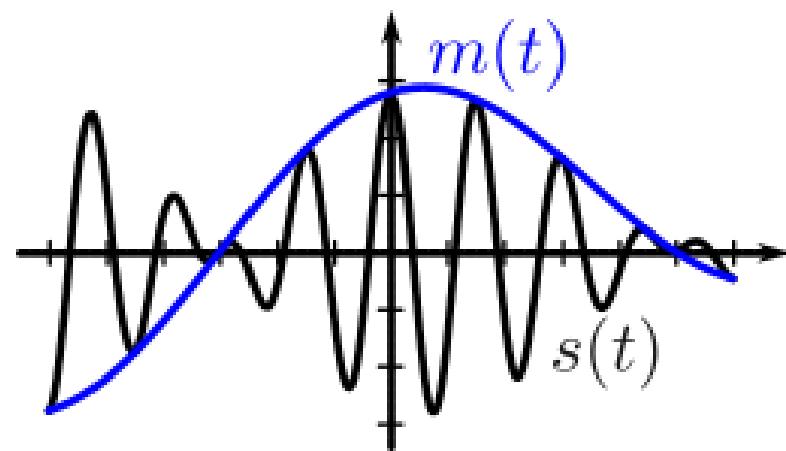
AM: Amplitude Modulation

- Consider a baseband signal $m(t)$ with FT $M(f)$
- Amplitude modulation of a carrier $\cos(2 \cdot \pi \cdot f_0 \cdot t)$ at f_0



Time domain

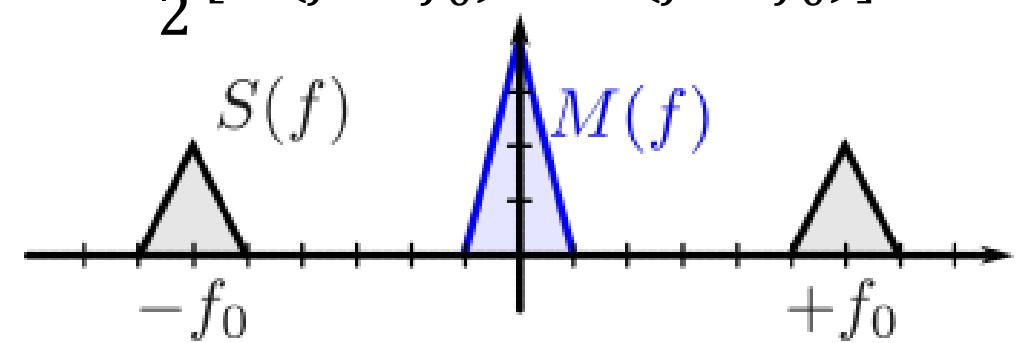
$$s(t) = m(t) \cdot \cos(2 \cdot \pi \cdot f_0 \cdot t)$$



Frequency domain

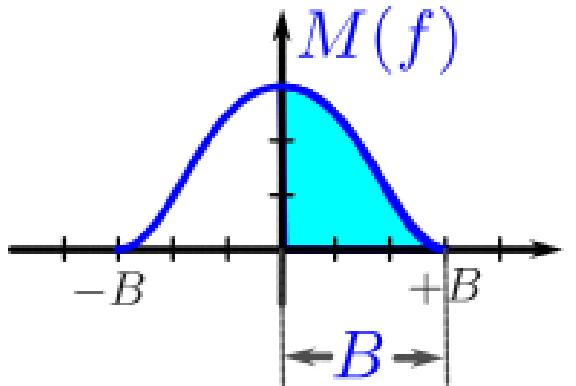
$$S(f) = M(f) \times \frac{1}{2} [\delta(f + f_0) + \delta(f - f_0)]$$

$$= \frac{1}{2} [M(f + f_0) + M(f - f_0)]$$



AM: Baseband vs. Passband Bandwidth (1)

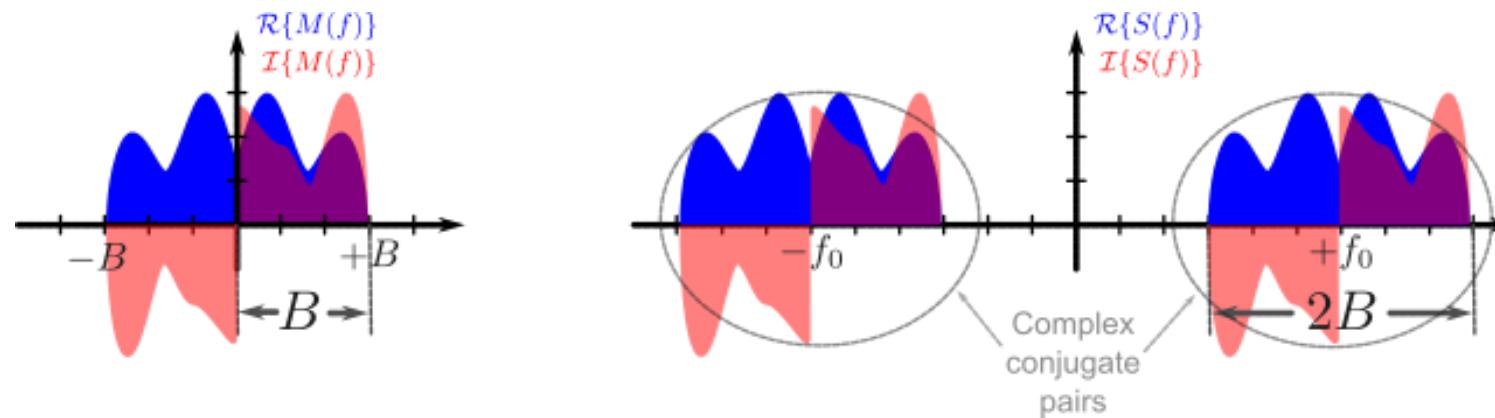
- The bandwidth of a signal describes the occupied frequency range, considering only the positive frequencies
 - Bandwidth of a baseband (BB) signal: given by the highest frequency component
 - Bandwidth of a passband (PB) signal: the occupied frequency range around the carrier
- Compare the baseband bandwidth of a BB signal $M(f)$ with the passband bandwidth of the corresponding PB signal $S(f)$



AM modulated passband signal occupies twice the bandwidth of the BB signal

AM: Baseband vs. Passband Bandwidth (2)

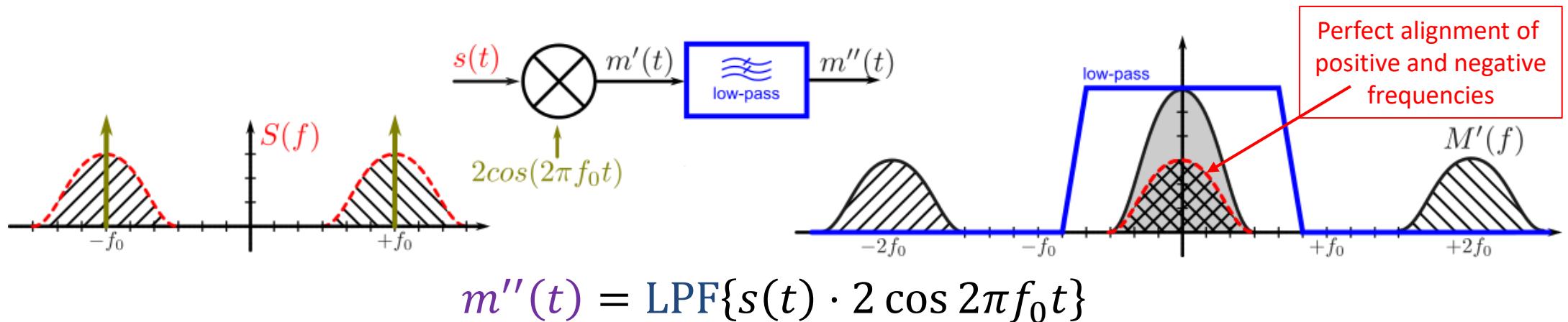
- **AM modulation starts from a real-valued BB signal**
 - Spectrum of the real-valued BB signal is complex conjugate symmetric $\mathbf{M}(-f) = \mathbf{M}^*(f)$
 - The negative frequencies contain no additional information (are redundant)
- **In the AM modulated signal, both positive and negative frequencies are “visible” and occupy spectrum around the carrier → Redundancy!**



- **AM modulated spectrum is again complex conjugate symmetric → Real-Valued Signal!**

Coherent AM Demodulation

- To demodulate an AM signal, we need to shift it back to the baseband and remove spectral components other than the baseband*
 - Coherent**: demodulating and modulating carriers are phase and frequency aligned



$$\begin{aligned} & \frac{1}{2} [M(f + f_0) + M(f - f_0)] \times [\delta(f + f_0) + \delta(f - f_0)] = \\ & = \frac{1}{2} M(f + 2f_0) + \underbrace{\frac{1}{2} M(f) + \frac{1}{2} M(f)}_{M(f)} + \frac{1}{2} M(f - 2f_0) \end{aligned}$$

AM Demodulation with Phase Offset

- Transmitter and receiver do not have a common time reference and are anyway an unknown distance apart (signal needs time to propagate*)
- Consider a **phase difference ϕ** between modulation and demodulation

$$s(t) = m(t) \cdot \cos(2 \cdot \pi \cdot f_0 \cdot t)$$
$$m''(t) = \text{LPF}\{s(t) \cdot 2 \cos(2\pi f_0 t + \phi)\}$$

$$\text{LPF} \left\{ \frac{1}{2} [M(f + f_0) + M(f - f_0)] \times [\delta(f + f_0) e^{-j\phi} + \delta(f - f_0) e^{+j\phi}] \right\} =$$
$$= \text{LPF} \left\{ \frac{1}{2} M(f + 2f_0) e^{-j\phi} + \underbrace{\frac{1}{2} M(f) e^{-j\phi} + \frac{1}{2} M(f) e^{+j\phi}}_{\frac{1}{2} M(f) \cdot (\underbrace{e^{-j\phi} + e^{+j\phi}}_{\cos \phi})} + \frac{1}{2} M(f - 2f_0) e^{+j\phi} \right\}$$

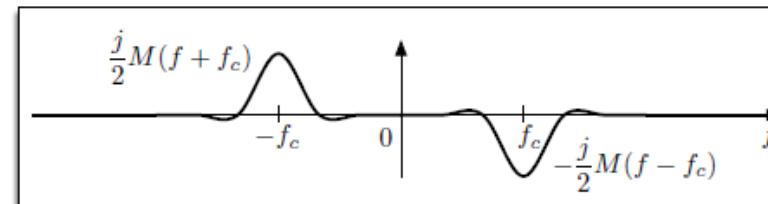
$\frac{1}{2} M(f) \cdot \cos \phi$ Attenuation depending on the phase γ

AM Demodulation with Phase Offset

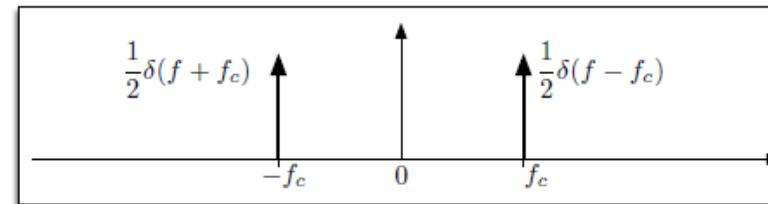
- In practice, the phase difference ϕ is unknown and varies rapidly*
- Consider the example of $\gamma = -\frac{\pi}{2}$

$$\frac{1}{2}M(f) \cdot \cos \phi$$

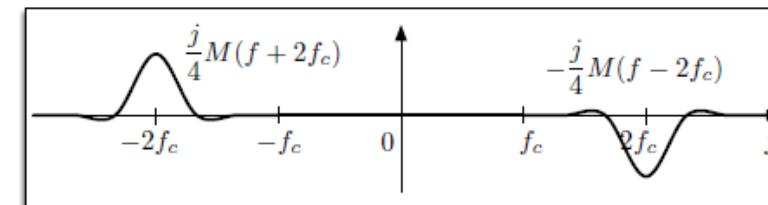
- Received signal vanishes



*



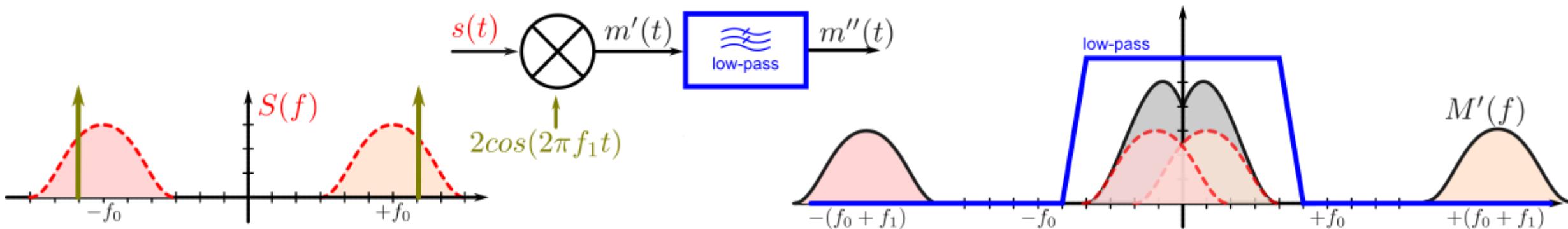
=



Note: in the figure, the demodulating carrier is $\cos(2\pi f_0 t + \gamma)$ which explains the additional factor of 1/2

AM Demodulation with Significant Frequency Offset

- Usually, it is not only difficult to align the phase of transmitter and receiver, but it is also difficult to align the frequencies
 - Need to expect a significant frequency offset between TX f_0 and RX f_1
 - This offset can easily be a considerable percentage of the BB bandwidth

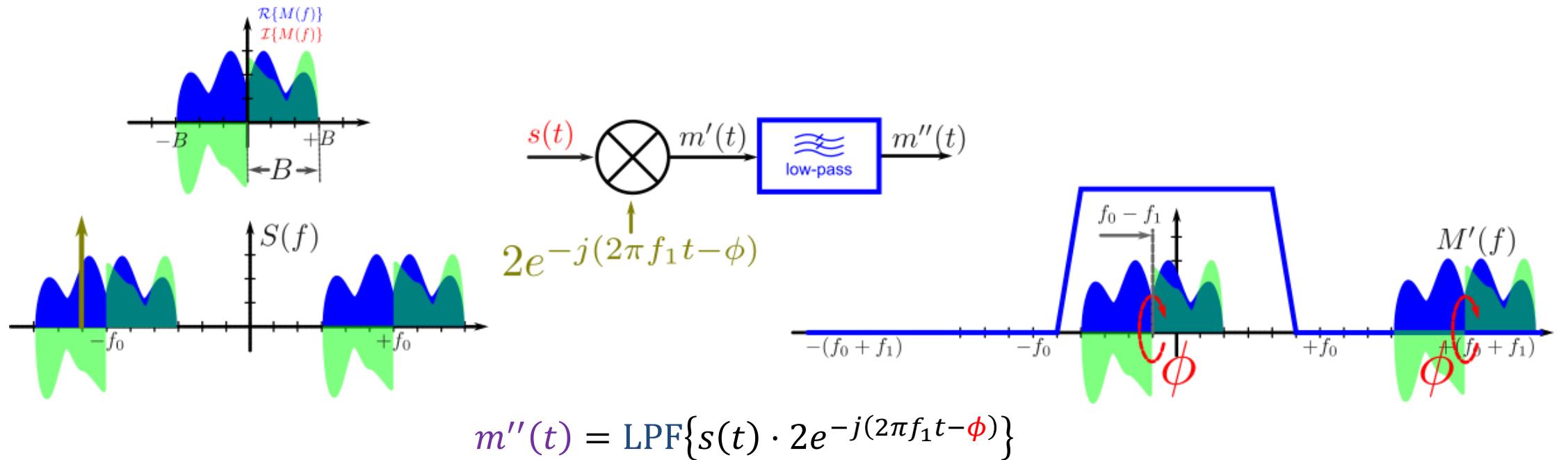


- Positive and negative passband spectra no longer overlap perfectly in the baseband (around DC) → **Aliasing!**

Frequency offsets between TX and RX distort the received signal

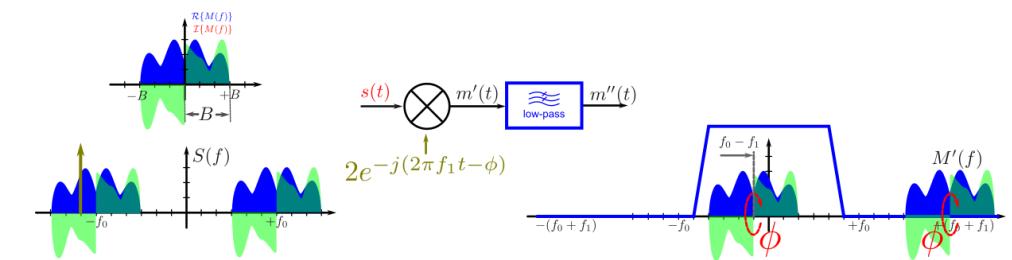
AM Demodulation with a Complex Sinusoid (1)

- **Goal: avoid aliasing (overlap from negative and positive frequencies)**
- **Idea: a complex sinusoid only shifts the signal in frequency domain**
 - Only the negative or positive passband signal lands around DC



AM Demodulation with a Complex Sinusoid (2)

- Demodulation with a complex sinusoid with mismatched frequency f_1 and phase offset ϕ



$$m''(t) = \text{LPF}\{s(t) \cdot 2e^{-j(2\pi f_1 t - \phi)}\} = ??$$

$$\Delta f = f_0 - f_1$$

- We find the solution in the frequency domain first:

$$\begin{aligned} \text{LPF} \left\{ \frac{1}{2} [M(f + f_0) + M(f - f_0)] \times \delta(f + f_1) e^{-j\phi} \right\} = \\ \text{LPF} \left\{ M \left(f + \underbrace{\frac{(f_0 - f_1)}{\Delta f}}_{\Delta f} \right) e^{+j\phi} + M(f - f_0 - f_1) e^{+j\phi} \right\} = M(f + \Delta f) e^{+j\phi} \\ m''(t) = m(t) \cdot e^{-j2\pi\Delta f \cdot t} \cdot e^{+j\phi} \end{aligned}$$

- Complex demodulation avoids aliasing, BUT the demodulated signal
 - can be complex valued (if $\phi \neq 0$ or $\Delta f \neq 0$)
 - Has a (complex) phasor that changes with ϕ or changes even over time when $\Delta f \neq 0$

AM Demodulation with a Complex Sinusoid (3)

- Consider the special case of coherent demodulation with $\phi = 0$ and $\Delta f = 0$

$$m''(t) = m(t) \cdot e^{-j2\pi\Delta f \cdot t} \cdot e^{+j\phi} = m(t)$$

- Note that:

$$\mathcal{R}\{m''(t)\} = m(t)$$

$$\mathcal{I}\{m''(t)\} \equiv 0$$

We receive the real-valued transmitted signal (modulated with a cosine) on the real part of the complex-valued demodulated signal $m''(t)$

Non-Coherent AM Demodulation

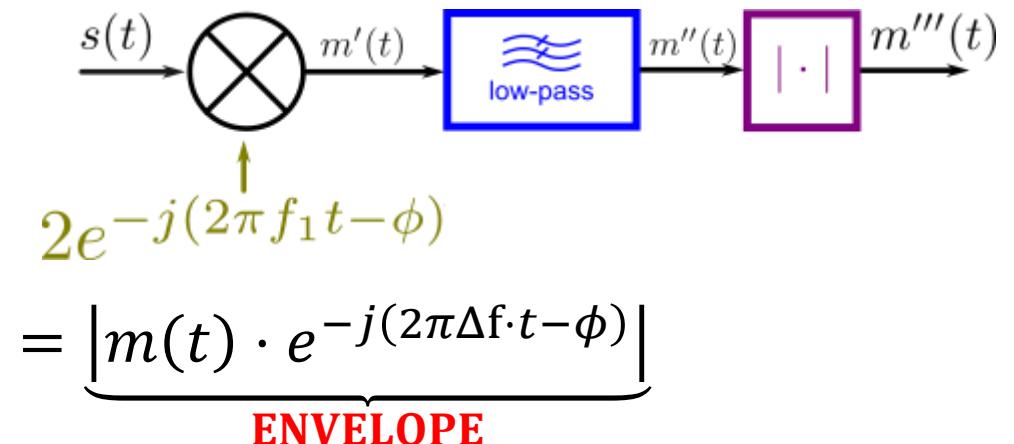
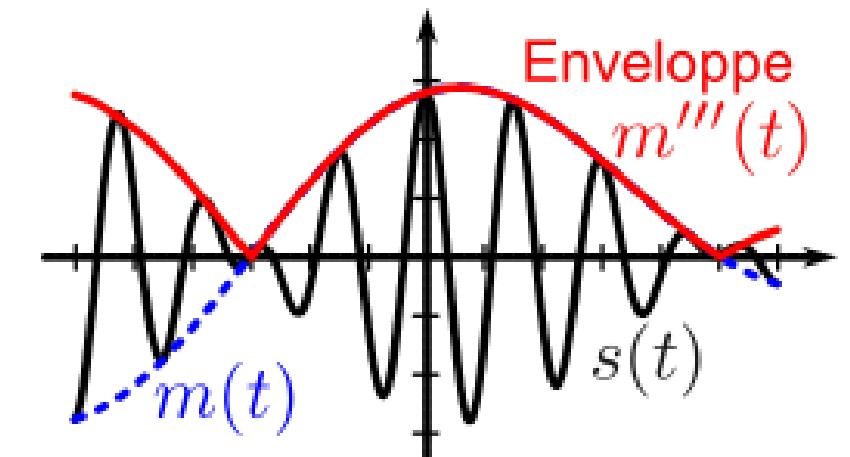
- Non-coherent modulation: modulate a signal in a way that it can be recovered independently from the phase at the demodulator

- Idea for non-coherent demodulation

- Envelope demodulation:

$$m'''(t) = \left| \text{LPF} \{ s(t) \cdot 2e^{-j(2\pi f_1 t - \phi)} \} \right| = \underbrace{\left| m(t) \cdot e^{-j(2\pi \Delta f \cdot t - \phi)} \right|}_{\text{ENVELOPE}}$$

- Unfortunately, this demodulator recovers only $|m(t)|$ which leads to distortions for $m(t) < 0$



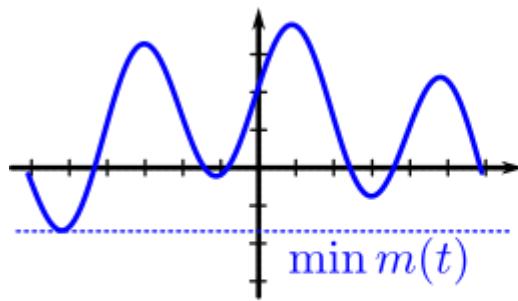
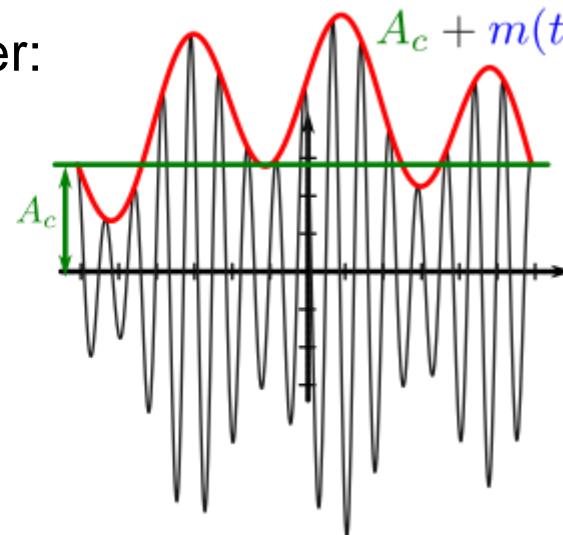
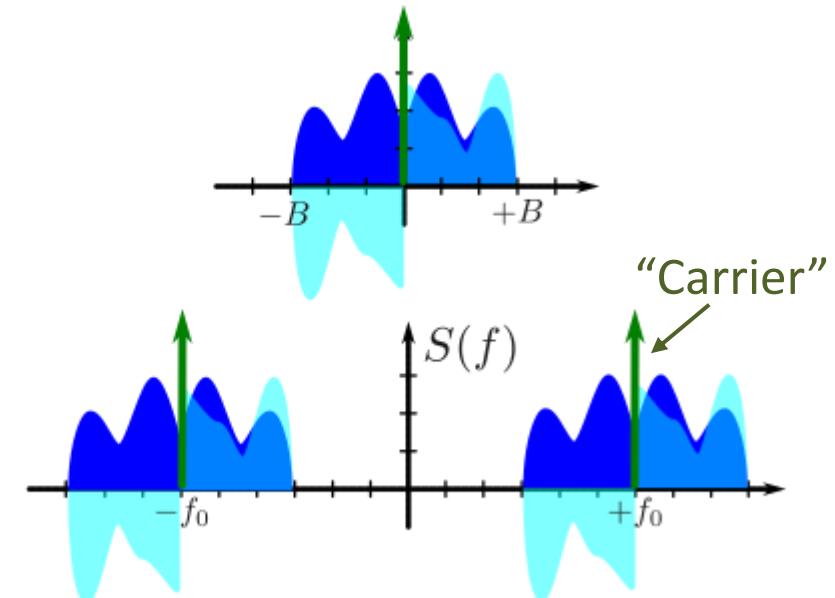
AM Modulation with Carrier

- To enable non-coherent modulation, we must ensure that the modulated signal is always positive $A(t) \geq 0$

$$s(t) = \underbrace{(A_c + m(t))}_{A(t)} \cdot \cos(2 \cdot \pi \cdot f_0 \cdot t) \text{ with } A_c \geq -\min_t m(t)$$

$$S(f) = \frac{1}{2} [M(f + f_0) + M(f - f_0)] + \frac{A_c}{2} [\delta(f + f_0) + \delta(f - f_0)]$$

- Double side band with carrier:



AM with Carrier Demodulation

- **Demodulate an AM signal with carrier using the envelope demodulator:**
 - Complex valued with frequency and phase offset:

$$\begin{aligned} A'''(t) &= \left| \text{LPF}\{s(t) \cdot 2e^{-j(2\pi f_1 t - \phi)}\} \right| = \underbrace{\left| A(t) \cdot e^{-j(2\pi \Delta f \cdot t - \phi)} \right|}_{\text{ENVELOPE}} \\ &= |A(t)| \cdot \underbrace{\left| e^{-j(2\pi \Delta f \cdot t - \phi)} \right|}_1 = |A(t)| \text{ only since } m(t) \geq 0 \end{aligned}$$

- Real valued (without frequency or phase offset):

$$\begin{aligned} A'''(t) &= \left| \text{LPF}\{s(t) \cdot \cos 2\pi f_0 t\} \right| = \left| \text{LPF}\{A(t) \cdot \cos^2 2\pi f_0 t\} \right| \\ &= \left| \text{LPF}\left\{ A(t) \cdot \frac{1}{2} (1 + \cos(2 \cdot 2\pi f_0 t)) \right\} \right| = \frac{1}{2} |A(t)| \end{aligned}$$

AM Modulation with Carrier (Properties)

A few notes are in order:

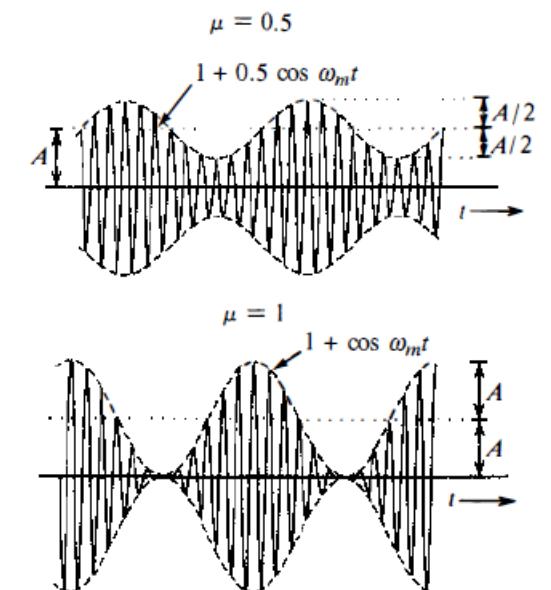
- The baseband signal is often symmetric ($\min_t m(t) = \max_t m(t) = \max_t |m(t)|$)
- You will sometimes see a notation of the transmitted signal as

$$s(t) = (A_c + \mu \cdot m(t)) \cdot \cos(2 \cdot \pi \cdot f_0 \cdot t)$$

- $A_c \geq -\min_t m(t)$
- **μ : is the modulation index.** We must choose $0 < \mu < 1$ to avoid distortion.

- We can calculate μ from the maximum baseband amplitude

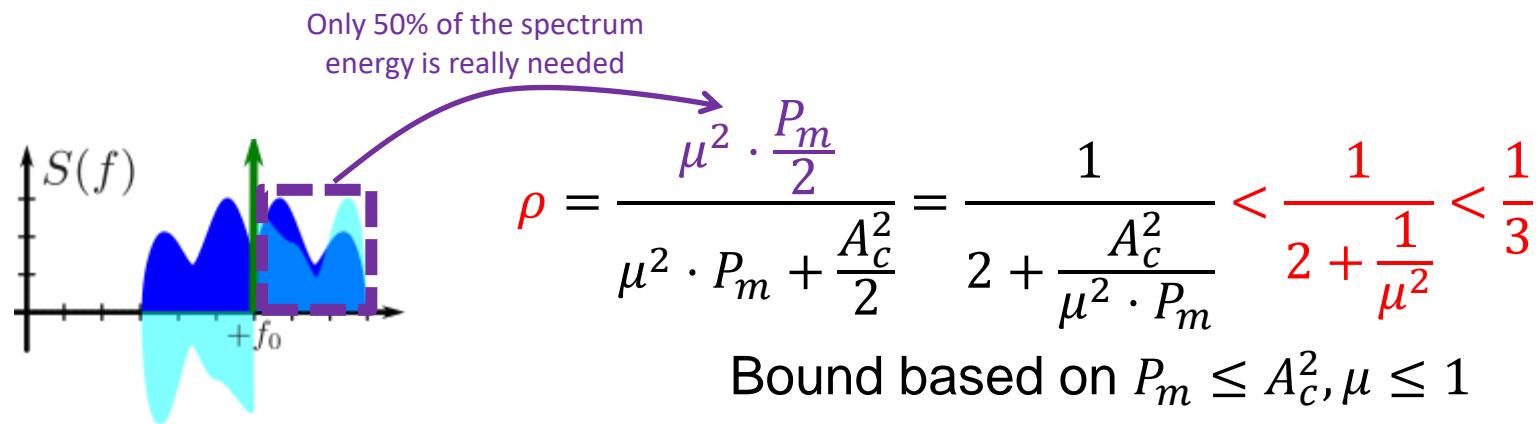
$$\mu = \frac{\max |m(t)|}{A_c}$$



AM Modulation with Carrier (Properties)

A few notes are in order:

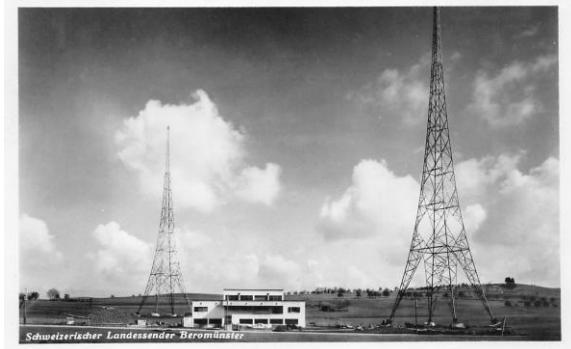
- The choice of μ determines the **power efficiency ρ** of the transmission (i.e., the useful power in the signal vs. the power spent on the carrier)



- If the maximum amplitude of the baseband signal is not well known, AM is quite power-inefficient since modulation index μ must be chosen conservatively (small)

AM Radio Broadcast

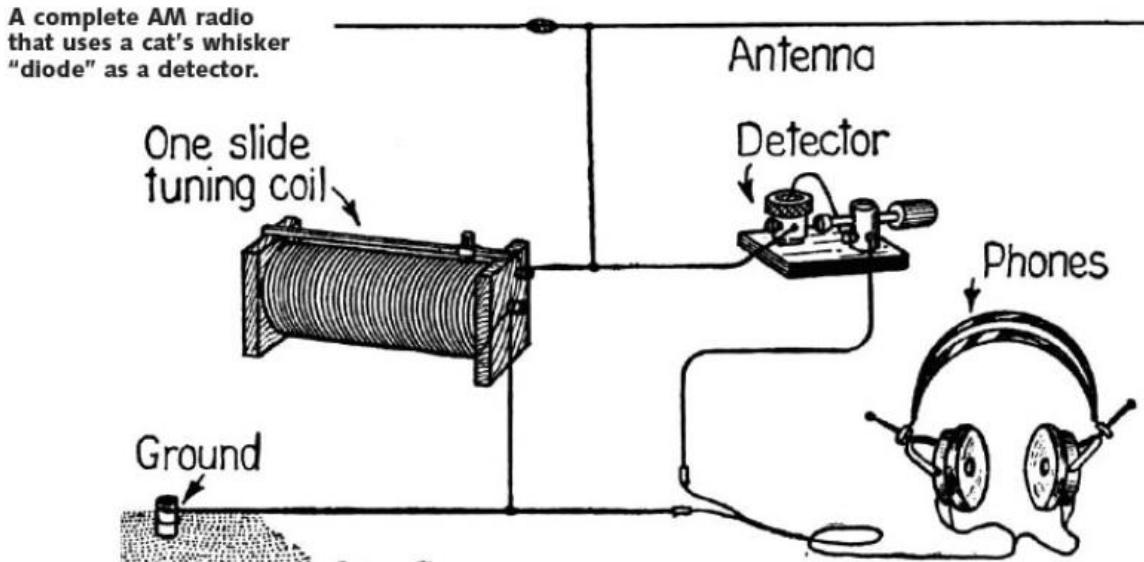
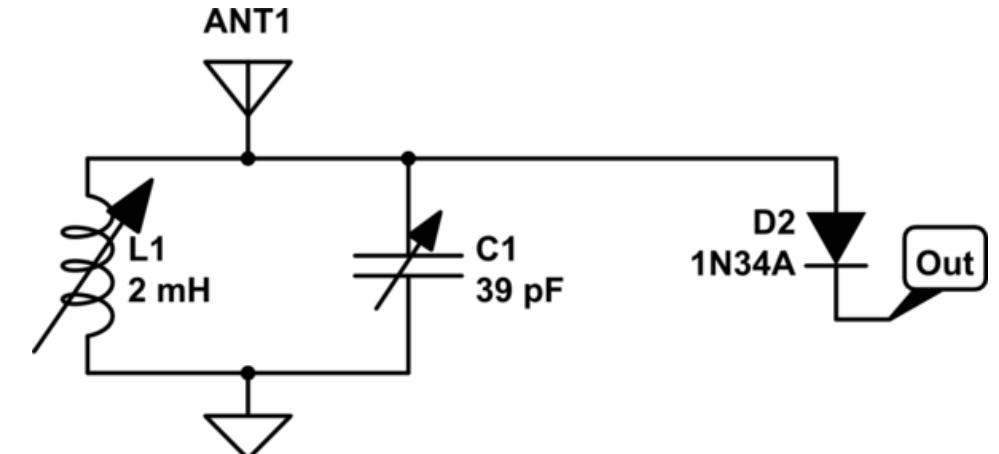
- **Early radio broadcast was based on AM since**
 - AM modulation is relatively simple to realize with basic components
 - Low bandwidth of audio signals occupy only a limited spectrum
 - Enough space even at low frequencies for many radio AM stations
- **First commercial AM radio stations in the 1920s**
 - Switzerland: commercial AM radio started in 1930s
 - Three major medium-wave transmitters:
 - Radio Sottens: French speaking population
 - Radio Beromünster: German speaking population
 - Monte Ceneri: Italian speaking population
 - AM radio broadcast started to loose popularity after introduction of FM radio in the 1950s/1960s
 - Last AM radio station in Switzerland operation in 2010



Sottens
& Beromünster

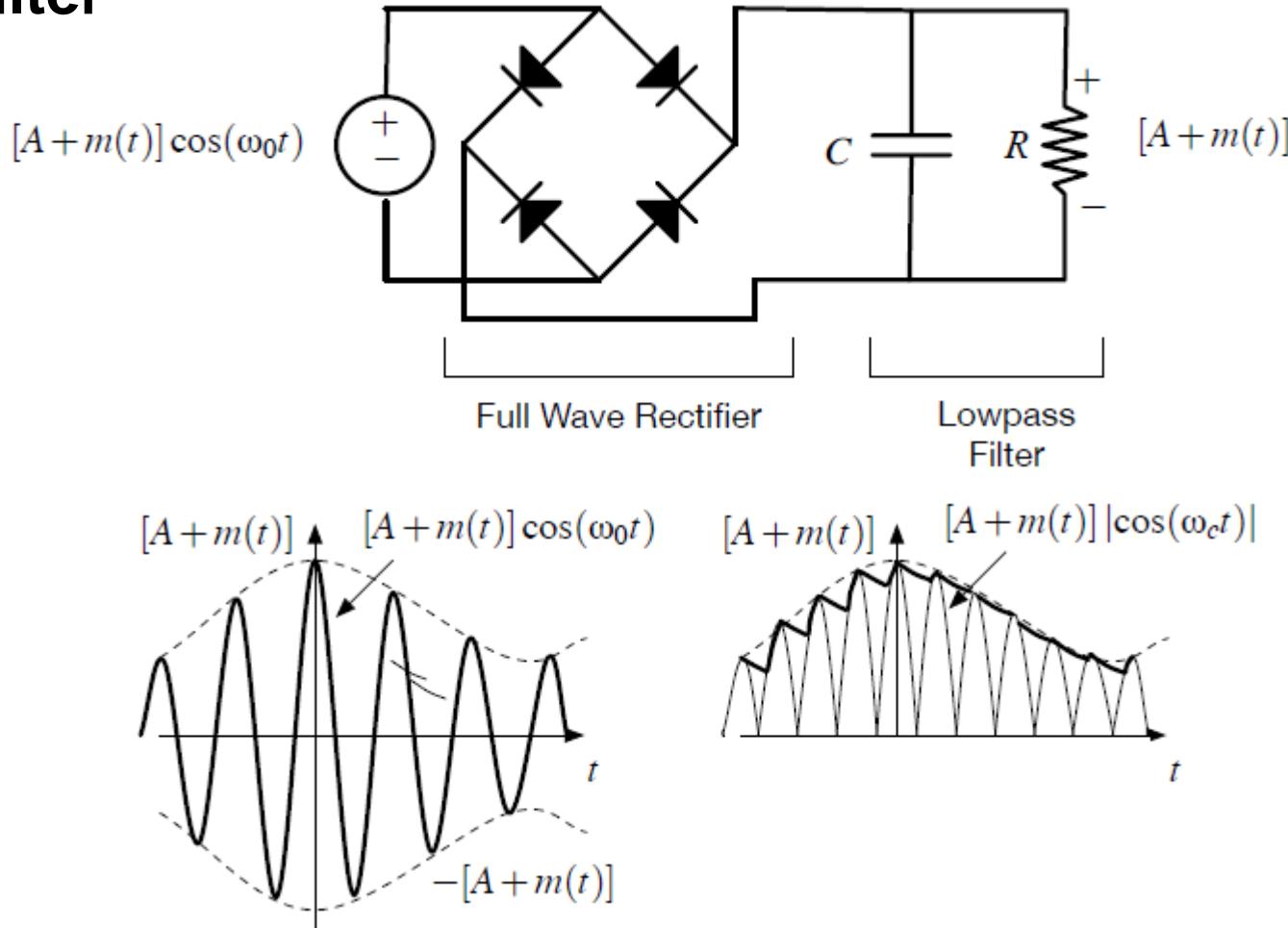
Practical AM Radio Receiver (1)

- **AM radio was possible due to the simplicity of the receiver**
 - Receiver can be realized even without active components (with sufficient received power)
- **Nonlinearity based AM receiver**



Practical AM Radio Receiver (2)

- A slightly more sophisticated receiver can be realized with a “rectifier” and a low-pass filter

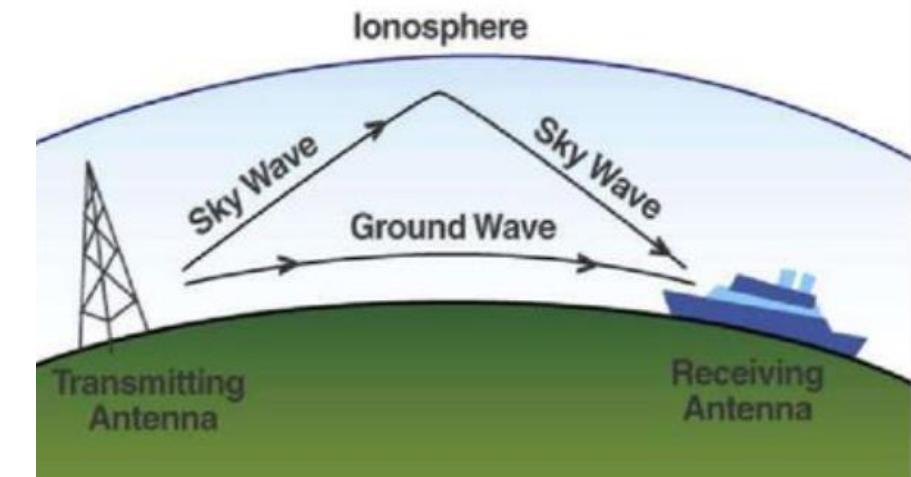


AM Radio Propagation

- **Frequency bands allocated to AM radio in the 100s of kHz regime**
 - Channel spacing ~9-10 kHz, supporting audio with 4.5kHz BW
 - Some countries allowed for 10.2kHz audio (~20.4kHz spacing) in higher frequency bands

Long Wave (LW)	153 kHz – 279 kHz	9 kHz	~126 kHz	Europe, Africa, and parts of Asia.
Medium Wave (MW)	530 kHz – 1,700 kHz	9-10 kHz	~1,170 kHz	Primary AM broadcast band worldwide.
Short Wave (SW)	1.6 MHz – 30 MHz	Variable	~28.4 MHz	International broadcasting.

- **Low frequencies are good for long-range**
 - **Ground waves** propagate along the surface and therefore reach beyond the horizon (100km – 500km)
 - **Sky waves** are reflected on the outer layer of the atmosphere during night time as during day time a lower layer absorbs the radio signal (up to 2000km)



Touching an AM Radio “Tower”

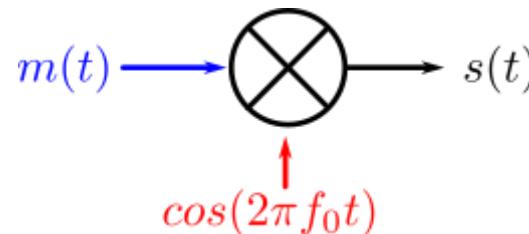
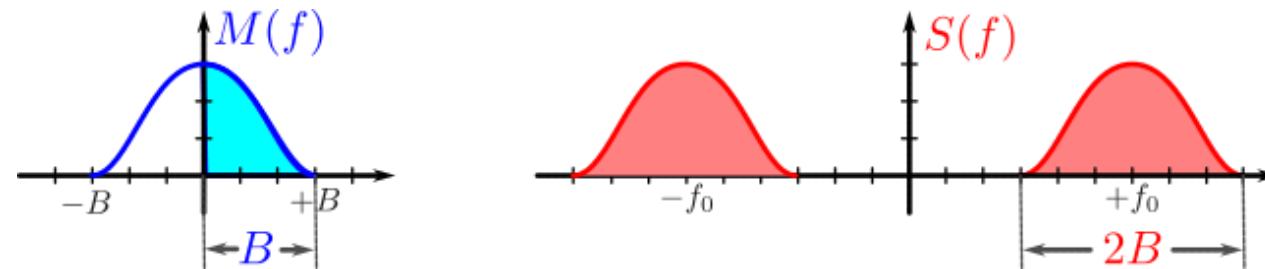
- **AM radio transmitters operate **with** a transmit power of 50k – 600k Watt**

Recap from Week-3

- Baseband signals, centered around DC are used for wireline transmission
- Passband signals, are centered at a carrier frequency, used for wireless
- Modulation translates a baseband signal by altering amplitude or phase of a sinusoid carrier signal

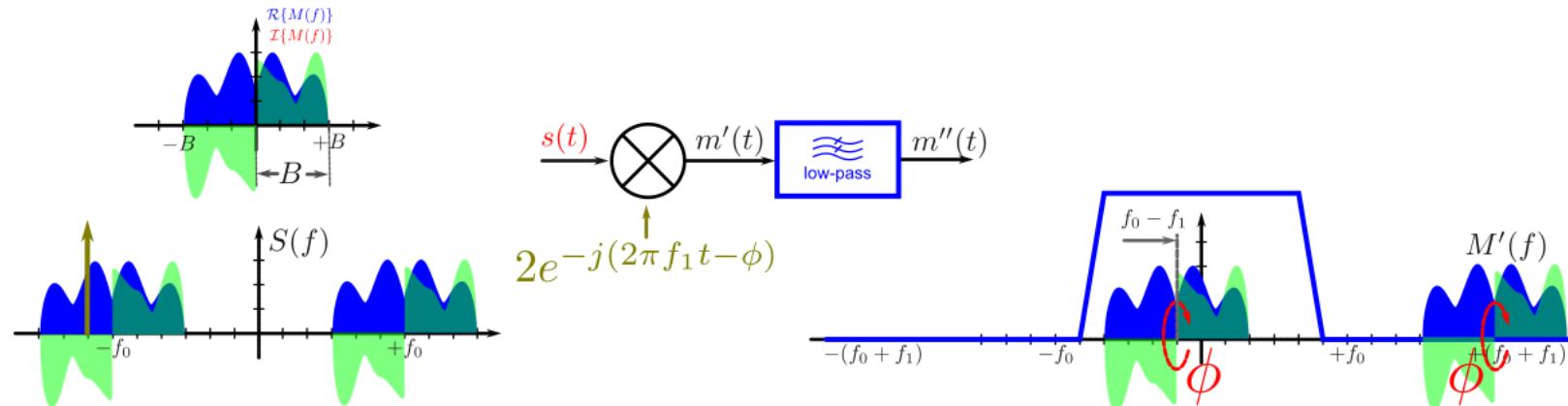
$$s(t) = A(t) \times \cos(2 \cdot \pi \cdot f_0 \cdot t + \phi(t))$$

- Amplitude modulation with sinusoidal carrier with a real-valued signal of bandwidth B (only positive frequencies) uses a bandwidth $2B$ in Passband
 - Very bandwidth inefficient



Recap from Week-3

- AM signals can be demodulated with a complex sinusoid and a LP-filter

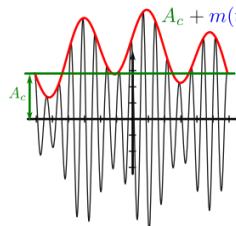
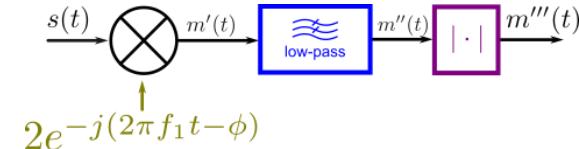


- Phase and frequency offsets cause the resulting BB signal to “rotate”

$$m''(t) = m(t) \cdot e^{-j2\pi\Delta f \cdot t} \cdot e^{+j\phi}$$

- Non-Coherent AM Modulation creates an always positive signal that can be demodulated based on the magnitude (Envelope)

$$s(t) = (A_c + m(t)) \cdot \cos(2 \cdot \pi \cdot f_0 \cdot t)$$



Quadrature Modulation (Motivation)

- **Reminder: AM modulation is very inefficient in terms of its bandwidth**
 - The bandwidth of the passband signal is 2x wider than the bandwidth of the baseband signal

Fundamentally, there should be enough space in the passband signal of bandwidth $2 \cdot B$ for two baseband signals of bandwidth B

Quadrature Modulation (Reminders)

- How can we “squeeze” a second real-valued baseband signal $m_2(t)$ of baseband bandwidth B into the same real-valued passband signal $s(t)$ of bandwidth $2B$?
- Reminders:
 - The first real-valued baseband signal $m_1(t)$ is modulated with a cosine

$$s_1(t) = m_1(t) \cdot \cos(2 \cdot \pi \cdot f_0 \cdot t)$$

- We could recover the signal with a coherent receiver as

$$\mathcal{R} \left\{ \text{LPF} \left\{ s(t) \cdot 2e^{-j(2\pi f_0 t)} \right\} \right\} = \text{LPF} \{ s_1(t) \cdot 2 \cos(2\pi f_0 t) \} = m_1(t)$$

$$\mathcal{I} \left\{ \text{LPF} \left\{ s(t) \cdot 2e^{-j(2\pi f_0 t)} \right\} \right\} = \text{LPF} \{ s_1(t) \cdot 2 \sin(2\pi f_0 t) \} \equiv 0$$

Demodulation with \sin shows no trace of the signal modulated with a \cos

Quadrature Modulation

- Real and Imaginary part are orthogonal (can carry independent signals)
- Idea: look for a carrier at the same carrier frequency that is orthogonal to the cosine carrier that “carries” the first signal $m_1(t)$
 - Reminder: at f_0 , we have two orthogonal sinusoids
$$\cos(2 \cdot \pi \cdot f_0 \cdot t) \text{ and } \sin(2 \cdot \pi \cdot f_0 \cdot t)$$
$$\langle \cos(2 \cdot \pi \cdot f_0 \cdot t), \sin(2 \cdot \pi \cdot f_0 \cdot t) \rangle = 0$$
- Modulation and demodulation of only $m_2(t)$ with sine (instead of cos) yields

$$s_2(t) = m_2(t) \cdot \sin(2 \cdot \pi \cdot f_0 \cdot t)$$

$$\mathcal{R} \left\{ \text{LPF} \left\{ s(t) \cdot 2e^{-j(2\pi f_0 t)} \right\} \right\} = \text{LPF} \left\{ s_2(t) \cdot 2 \cos(2\pi f_0 t) \right\} \equiv 0$$

$$\mathcal{I} \left\{ \text{LPF} \left\{ s(t) \cdot 2e^{-j(2\pi f_0 t)} \right\} \right\} = \text{LPF} \left\{ s_2(t) \cdot 2 \sin(2\pi f_0 t) \right\} = m_2(t)$$

Demodulation with cos shows no trace of the signal modulated with a cos

Quadrature Modulation

- Quadrature modulation modulates two real-valued signals with two orthogonal carriers: sin and cos

$$s(t) = m_1(t) \cdot \cos(2 \cdot \pi \cdot f_0 \cdot t) + m_2(t) \cdot \sin(2 \cdot \pi \cdot f_0 \cdot t)$$

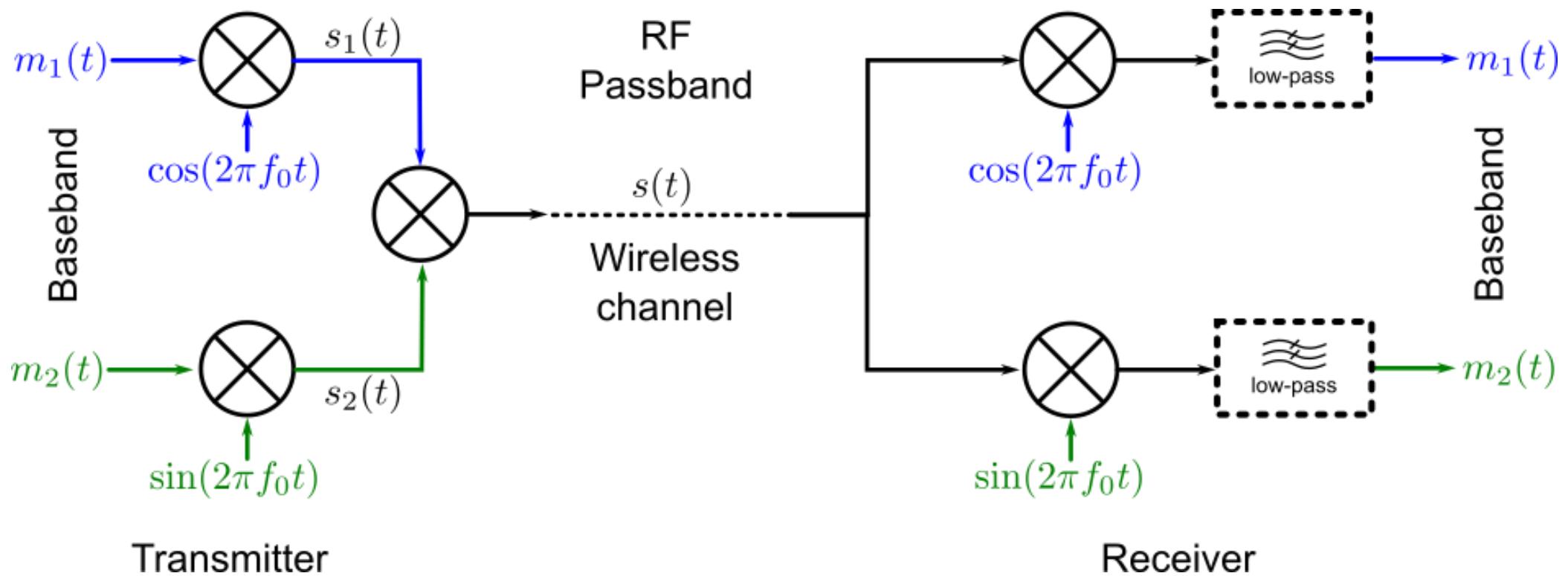
- Demodulation (using linearity)

$$\begin{aligned} \text{LPF}\{[m_1(t) \cdot \cos(2 \cdot \pi \cdot f_0 \cdot t) + m_2(t) \cdot \sin(2 \cdot \pi \cdot f_0 \cdot t)] \cdot 2 \cos(2\pi f_0 t)\} &= \\ &= \mathcal{R} \left\{ \text{LPF}\{s(t) \cdot 2e^{-j(2\pi f_0 t)}\} \right\} \\ &= m_1(t) + 0 \end{aligned}$$

$$\begin{aligned} \text{LPF}\{[m_1(t) \cdot \cos(2 \cdot \pi \cdot f_0 \cdot t) + m_2(t) \cdot \sin(2 \cdot \pi \cdot f_0 \cdot t)] \cdot 2 \sin(2\pi f_0 t)\} &= \\ &= \mathcal{R} \left\{ \text{LPF}\{s(t) \cdot 2e^{-j(2\pi f_0 t)}\} \right\} \\ &= 0 + m_2(t) \end{aligned}$$

Quadrature Modulation

- Quadrature transmitter / receiver transmitting two real-valued signals (both baseband bandwidth B in the same $2B$ wide passband around f_0)



Quadrature Modulation in Complex Domain

- **We can also think of a quadrature modulator in the complex domain:**
 - Think of the two baseband signals $m_1(t)$ and $-m_2(t)$ as the real and imaginary values of a complex-valued baseband signal $m(t)$

$$m(t) = m_1(t) - j \cdot m_2(t)$$

- Modulation is performed with a complex-valued sinusoid $e^{j(2\pi f_0 t)}$, keeping only the real value

$$s(t) = \mathcal{R}\{m(t) \cdot e^{j(2\pi f_0 t)}\} =$$

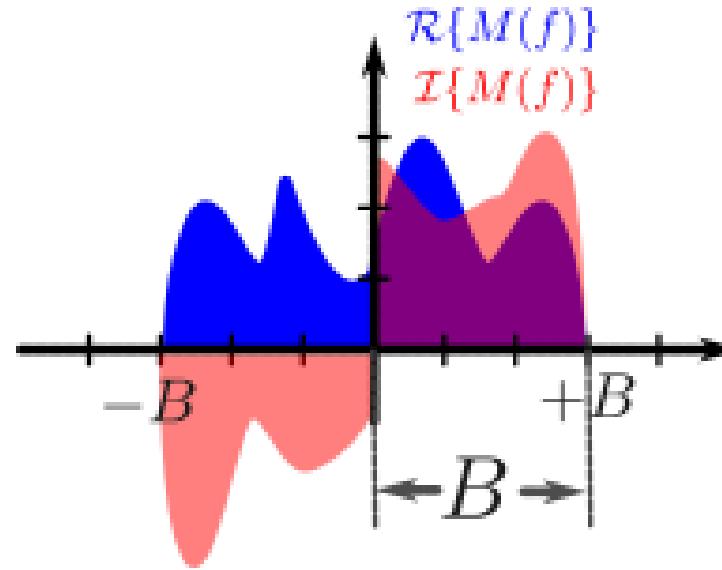
$$\mathcal{R}\{[m_1(t) - j \cdot m_2(t)] \cdot [\cos(2\pi f_0 t) + j \cdot \sin(2\pi f_0 t)]\} =$$

$$\mathcal{R}\{[m_1(t) \cdot \cos(2\pi f_0 t) + m_2(t) \cdot \sin(2\pi f_0 t)] + j \cdot [m_1(t) \cdot \sin(2\pi f_0 t) - m_2(t) \cdot \cos(2\pi f_0 t)]\} =$$

$$[m_1(t) \cdot \cos(2\pi f_0 t) + m_2(t) \cdot \sin(2\pi f_0 t)]$$

Quadrature Modulation (Spectral Interpretation)

- We start from a complex-valued signal: $m(t) = m_1(t) - j \cdot m_2(t)$
 - The spectrum between $f = -B \dots +B$ does not need to be complex-symmetric. Any arbitrary spectrum is allowed



- The complex-valued transmitted signal uses both sides of the spectrum with no redundancy!

Quadrature Modulation (Spectral Interpretation)

- The complex-valued formulation of the quadrature modulation is convenient to interpret in the frequency domain as a two step process

$$s(t) = \mathcal{R}\{m(t) \cdot e^{j(2\pi f_0 t)}\}$$

1. Shifting the complex-valued signal up to the carrier: results in a purely positive spectrum, but in a complex-valued signal
2. Taking the real part: “creates” the “negative” frequency components around $-f_0$ as the complex-conjugate of the spectrum around $+f_0$

